Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Siyuan Wang

and 5 more

Natural and anthropogenic disturbances are important drivers of tree mortality, shaping the structure, composition, and biomass distribution of forest ecosystems. Differences in disturbance regimes, characterized by the frequency, extent, and intensity of disturbance events, result in structurally different landscapes. Characterizing different disturbance regimes through landscape-scale forest structure provides a unique perspective for diagnosing the impacts and potential carbon-climate feedbacks from terrestrial ecosystems. In this study, we design a model-based experiment to investigate the links between disturbance regimes and spatial biomass patterns. We generate over 850 thousand biomass patterns, from 2,142 combinations of μ, α, and β under different primary productivity and background mortality scenarios. We characterize the emergent biomass patterns via synthesis statistics, including central tendency statistics; different moments of the distribution; information-based and texture features. We further follow a multi-output regression approach that takes the biomass synthesis statistics and gross primary production (GPP) as independent variables to retrieve the three disturbance regimes parameters. Results show confident inversion of all three “true” disturbance parameters, with Nash-Sutcliffe efficiency of  94.8% for μ, 94.9% for α, and 97.1% for β. Overall, these results demonstrate the association between biomass patterns and disturbance statistics that emerge from different underlying disturbance regimes. By doing so, it overcomes the known issue of equifinality between mortality rates and total biomass. Given the increasing availability of Earth observation of biomass, our findings open a new avenue to better understand and parameterize disturbance regimes and their links with vegetation dynamics under climate change. Ultimately, at a large scale, this approach would improve our current understanding of controls and feedback at the biosphere-atmosphere interface in the current Earth system models.

Chunhui Zhan

and 7 more

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate change, is primarily attributed to the CO₂ fertilization effect on global gross primary productivity (GPP). However, direct observational evidence of this effect remains scarce, hampered by challenges in disentangling the CO₂ fertilization effect from other long-term drivers, particularly climatic changes. Here, we introduce a novel statistical approach to separate the CO₂ fertilization effect on GPP and daily maximum net ecosystem production (NEPmax) using eddy covariance records across 38 extratropical forest sites. We find the median stimulation rate of GPP and NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO₂ across these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial simulations of an ensemble of process-based land surface models. We acknowledge that additional factors, including nitrogen deposition and land management, may impact plant productivity, potentially confounding the attribution to the CO₂ fertilization effect. Assuming these site-specific effects offset to some extent across sites as random factors, the estimated median value still reflects the strength of the CO₂ fertilization effect. However, disentanglement of these long-term effects, often inseparable by timescale, requires further causal research. Our study provides direct evidence that the photosynthetic stimulation is maintained under long-term CO₂ fertilization across multiple eddy covariance sites. Such observation-based quantification is key to constraining the long-standing uncertainties in the land carbon cycle under rising CO₂ concentrations.