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Introduction 
 
The following supporting information offers further details on the numerical model and 
its assumptions as well as derivations of simple formulations and additional figures that 
illustrate how certain combinations of parameters control the simulation results. 
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Text S1. Numerical modeling of fluid-induced fault slip 

We model fluid injection into a fault zone and subsequent fault slip using a fully-

dynamic 2D boundary integral method capable of simulating the complete seismic cycle 

including both aseismic and seismic deformation. The model is based on an antiplane 

(Mode III) formulation in which the fault slips solely along the dip direction and variables 

vary along strike only. Fault slip is governed by the following elastodynamic equation 

(Lapusta et al., 2000):  

 𝜏(𝑥, 𝑡) = 𝜏()( + 𝐹(𝛿(𝑥, 𝑡)) −	
𝜇
2𝑐2

𝑉(𝑥, 𝑡) (S1) 

where 𝜏 is the shear stress, 𝜏()(  is the initial shear stress, 𝐹 is a linear functional which 

depends on the slip history, 𝛿(𝑥, 𝑡), 𝜇 is the shear modulus of the elastic medium, 𝑐2 is 

the shear wave speed, and 𝑉 is the slip rate. 

The fault is governed by rate-and-state friction, an empirical friction law based 

on laboratory experiments. It describes the dependence of the coefficient of friction 𝑓 

on the slip rate 𝑉 and a state variable 𝜃: 

 𝑓(𝑉(𝑥, 𝑡), 𝜃(𝑥, 𝑡)) = 7𝑓∗ + 𝑎 ln
𝑉(𝑥, 𝑡)
𝑉∗ + 𝑏 ln

𝑉∗𝜃(𝑥, 𝑡)
𝐷>?

		@ (S2) 

where 𝑎 and 𝑏 are the direct and evolutionary rate-and-state parameters and 𝐷>? is the 

critical slip distance. 𝑓∗ is the reference coefficient of friction at the reference slip rate 

𝑉∗. The reference values are usually set arbitrarily but here, by choosing 𝑉∗	to be on the 

order of the slip rate observed during the accelerated aseismic transient in the field 

experiment, we attach the following additional meaning to the value of 𝑓∗: it is 

approximately equal to the residual friction reached at the latest stage of the field 

experiment.  

 The state variable is assumed to evolve according to the aging law:  

 
𝜕𝜃(𝑥, 𝑡)
𝜕𝑡 = 1 −

𝑉(𝑥, 𝑡)𝜃(𝑥, 𝑡)
𝐷>?

 (S3) 

We prescribe the fluid pressure at the center of the fault (blue line in Figure 2A, 

top) similar to the one induced in the field experiment (black dots in Figure 2A, top) to 
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simulate the fluid injection and let the pressure diffuse axisymmetrically in the fault 

plane as follows:  

 
𝜕𝑝(𝑟, 𝑡)
𝜕𝑡 = 𝛼 F

𝜕G𝑝(𝑟, 𝑡)
𝜕𝑟G +

1
𝑟
𝜕𝑝(𝑟, 𝑡)
𝜕𝑟 H (S4) 

where 𝑟 = 	 |𝑥| and 𝛼 hydraulic diffusivity. The diffusion is numerically implemented 

using a forward finite difference scheme. We approximate the experimental injection 

pressure with a smooth parabolic function for the increasing portion of the injection and 

a linear fit for the decreasing portion. A condition of zero pressure is assumed at the 

ends of the simulated fault since the fault is dry prior to the injection. The choice of this 

boundary condition is not essential here because the fault length is larger than the 

pressure diffusion length in our simulations and simulations with longer faults produce 

nearly identical results. 

As the fault in the experiment is inactive prior to the fluid stimulation, the 

modeled fault is not loaded tectonically. Fault slip is thus purely fluid-induced, i.e., no 

significant slip would occur without the injection within the time scales considered in 

the simulations. We prescribe initial conditions that are consistent with a dormant fault 

by starting with a highly healed fault (i.e., high initial value of the state variable 𝜃()(). 

This choice of initial conditions is justified by the long-term simulations without tectonic 

or fluid pressure loading shown in Figures S1 to S4. The initial values affect some initial 

behavior/slip of the fault but, long-term, the fault heals under the near-constant values 

of shear stress, with a power-law decrease in slip rate as well as an increase in state 

variable over time; at long times, the value of the state variable is approximately equal 

to the healing time of the fault. This behavior can be predicted analytically: When the 

fault is well below steady-state (V𝜃/𝐷>? ≪ 1), 𝜃̇	~	1 and thus 𝜃	~	𝑡. Moreover, with 

shear stress being almost constant, the rate-and-state friction coefficient is fixed and 

𝑓̇ = 𝑎𝑉̇/𝑉 + 𝑏 𝑡⁄ = 0, implying that 𝑉 ∝ 𝑡PQ R⁄ . The initial conditions in the 

intermediate- and high-friction cases in this study are consistent with this behavior. In 

the low-friction case, although we do prescribe a high initial state variable and a low 

initial slip rate, the fault needs to be initially above steady state to match the measured 
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slip behavior at the injection size and therefore not consistent with the behavior 

described above.  

Finally, we also test the effect of the domain size in Figure S5. Increasing the 

domain size slightly changes the timing of earthquakes but not the overall behavior. 

 

Text S2. Controlling the timing of slip initiation and acceleration 

The slip measured at the injection site of the field experiment displays two 

distinct slip stages that we aim to reproduce in our simulations. Stage I starts when slip 

rates attain ~10-7 m/s and significant slip initiates, at about 400 s. Stage II is 

characterized by even higher slip velocities of about ~10-6 m/s, at about ~1200 s. 

Understanding how the different model parameters govern the onsets of Stages I and II 

is key to arriving at simulations that replicate the observations.  

 At the beginning of all simulations, slip rates are low and inertial effects are 

negligible. Eq. S1 and S2 then reduce to: 

 𝜏()( = 	𝑓(𝑥, 𝑡)[𝜎 − 𝑝(𝑥, 𝑡)] (S5) 

As 𝑝 is increased, the friction coefficient, 𝑓,	must increase proportionally for Eq. 

S5 to remain true since 𝜏()(  stays constant over time and the contribution of 𝐹 is 

negligible because no significant slip has occurred yet. The coefficient of friction 

continues increasing until slip becomes significant. The onset of significant slip thus 

approximately coincides with the maximum friction reached during the simulation. This 

peak friction, 𝑓V, can be approximated as: 

 𝑓V = 𝑓∗ + 𝑎 ln
𝑉2
𝑉∗ + 𝑏 ln

𝑉∗𝜃()(
𝐷>?

 (S6) 

where 𝑉2 is the threshold for significant slip, here set at 1e-7 m/s. The state variable is 

set to its initial value, 𝜃()(, because it cannot evolve significantly due to lack of slip, and 

its (large) initial value is not affected by additional healing over hundreds of seconds. 

Moreover, because the shear stress 𝜏	remains approximately constant and equal to the 

initial value until the peak friction is reached and the fluid pressure at the injection site 

is known at all times, it is possible to relate 𝑓V to the timing of slip initiation. For 
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example, for slip initiation at 𝑡2	= 300 s - at which point the injection fluid pressure is 

1.42 MPa - the peak friction at the injection site is: 

 𝑓V =
𝜏()(

[𝜎 − 𝑝(0, 𝑡2)]
= 	

2.15	
[4.00 − 1.42] = 0.83 (S7) 

It is thus possible to control 𝑡2 by computing 𝑓V with Eq. S7 and selecting 𝑓∗, 𝑎, 

𝑏, 𝜃()(  and 𝐷>?	such that Eq. S6 is satisfied.  

We find that the onset time,	𝑡R\, of the slip acceleration starting at ~1200 s (i.e., 

Stage II) coincides with the time at which steady state is reached at the injection site 

(Dublanchet, 2019). This also corresponds to the time at which the coefficient of friction 

at the injection site reaches its residual value, 𝑓]~𝑓∗, down from its peak value 𝑓V. The 

critical slip distance, 𝛿\, over which this frictional weakening occurs can be 

approximated as:  

 𝛿\ ∼
𝑓V − 𝑓∗

𝑏/𝐷>?
 (S8) 

since `a
`b
∼ Q

cde
. Furthermore, from elasticity, slip is related to stress drop by:  

 ∆𝛿 ∝
∆𝜏ℎ
𝜇  (S9) 

where ℎ is the length of the slipping zone. When ∆𝛿 = 𝛿\ at the center of the fault: 

 
∆𝜏ℎ
𝜇 ∝

𝑓V − 𝑓∗

𝑏/𝐷>?
 (S10) 

Rearranging Eq. S10, we can find the estimate of the slipping zone size, ℎR\, at which 

steady state is reached and Stage II is initiated: 

 ℎR\ ∝
𝜇	𝐷>?
𝑏

𝑓V − 𝑓∗

∆𝜏  (S11) 

Eq. S11 can be rewritten in terms of known parameters as:  

 
ℎR\ ∝

𝜇	𝐷>?
𝑏

𝑎 ln 	𝑉2𝑉∗ 	+ 𝑏 ln 	
𝑉∗𝜃()(
𝐷>?

		

𝜏()( − 𝑓∗[𝜎 − 𝑝(0, 𝑡R\)]
 (S12) 

For all the simulations presented in this work, we find that  
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ℎR\ = 3

𝜇	𝐷>?
𝑏

𝑎 ln 	𝑉2𝑉∗ 	+ 𝑏 ln 	
𝑉∗𝜃()(
𝐷>?

		

𝜏()( − 𝑓∗[𝜎 − 𝑝(0, 	𝑡R\)]
 (S13) 

provides a good estimate of the slipping zone length at which the slip transitions to 

Stage II. Note that if (𝜎 − 𝑝) remained constant throughout the simulation, Eq. S11 

would reduce to ℎR\ ∝ 𝜇𝐷>?/𝑏  which is similar to the condition for acceleration 𝑘	 <

	𝑘Q  (where 𝑘 is stiffness) in the spring-block slider model (Dieterich, 1992; Helmstetter & 

Shaw, 2009) and to the condition ℎ	 > 𝐿Q  for acceleration on continuum fault segments 

that are far above steady-state (Rubin & Ampuero, 2005). Eq. S11 is also similar to the 

findings for seismic slip nucleation in slip-weakening friction models (Uenishi & Rice, 

2003; Viesca & Rice, 2012) except that ℎR\	depends on pressure; specifically on the 

maximum value of pressure (at the injection site). The fact that this lengthscale does not 

depend - at least to first order - on the extent or shape of the pore pressure distribution 

is also consistent with prior findings (Uenishi & Rice, 2003; Viesca & Rice, 2012). At the 

same time, ℎR\	 is different from some of the discussed critical lengthscales, since it 

does not signify the transition to dynamic, inertially-controlled earthquake slip, but 

rather corresponds to the beginning of the different quasi-static slip stage in this 

particular experiment. The existence of ℎR\	 is linked to the two-stage quasi-static slip 

process in the field experiment which the simulations are trying to emulate.  The 

associated evolution of the friction coefficient - with sharp increase to a peak value, 

then near-linear decrease vs. slip with the slope of 𝑏, and then near-constant value - is 

likely related to the relatively rapid increase of the pore pressure at the injection site 

compared to the timescale of state variable evolution considered in this work.    

To demonstrate that Eq. S13 holds, in Figures S12(A-C) and S13 we show 3 

simulations in which ℎR\	is increased compared to the intermediate-friction case by 

increasing 𝜇 (pink), increasing 𝐷>? (yellow) or decreasing 𝑏 (turquoise) while keeping 𝑡2 

constant. Figures S12(D-E) and S14 show simulations in which both 𝑡2 and ℎR\	are 

increased by increasing 𝑓∗(pink) or 𝜃()(  (yellow). Figures S12(F) and S14 also show a case 

(turquoise) in which both 𝑡2 and ℎR\	are kept the same as in the intermediate-friction 
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reference case but 𝑡R\	is delayed due to the decreased hydraulic diffusivity 𝛼 which 

controls how fast the slipping zone expands during Stage I. In all cases, the onset of 

Stage II is delayed compared to the intermediate-friction reference case. Thus, 

parameters 𝜇, 𝐷>?, 𝑏, 𝑡2 and 𝛼 have a primary control on the onset of Stage II observed 

in all simulations shown in this work. 

 As for the amplitude and slope of the slip acceleration, four parameters - 𝑓∗, 𝑎, 𝜇 

and 𝛼 - have been identified to play a key role in controlling them as shown in Figures 

S15 to S19. 
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Table S1. Model parameters for the three cases presented in Figures 2-4 in the main text.  

Properties Symbol Low 
Friction 

Intermediate 
Friction 

High 
Friction 

Total fault length [m] 𝑥lml 250 250 250 
Frictional interface length [m] 𝑥no 200 200 200 
Initial shear stress [MPa] 𝜏pqp 2.15 2.15 2.15 
Initial normal stress [MPa] 𝜎pqp 4.00 4.00 4.00 
Initial coefficient of friction 𝑓pqp 0.5375 0.5375 0.5375 
Reference coefficient of friction 𝑓∗ 0.4815 0.5500 0.6000 
Reference slip rate [m/s] 𝑉∗ 10-6 10-6 10-6 
Direct effect frictional parameter 𝑎 0.01500 0.01125 0.01125 
Evolutionary effect frictional parameter 𝑏 0.01600 0.01600 0.01600 
Critical slip distance [𝜇m] 𝐷>? 16.75 16.75 16.75 
Hydraulic diffusivity [m2/s] 𝛼 0.04 0.20 0.85 
Initial state variable [s] 𝜃pqp  1.21e12 2.38e12 7.00e12 
Shear modulus [GPa] 𝜇 10 10 10 
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Figure S1. Simulations that illustrate long-term fault healing in the absence of slip, with 𝑓∗ = 0.550, 
𝑓()(  = 0.525, 𝑎 = 0.011, and 𝑏 = 0.016, varying the initial closeness to steady state (Ω()( =
𝑉()(𝜃()(/𝐷>?). No matter what the initial values are, all cases eventually undergo a logarithmic 
decrease in slip rate and an increase in state variable with time. Note that the time axis is 
logarithmic. The thick dashed lines indicate the slopes discussed in the Text S1. 
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Figure S2. Simulations that illustrate long-term fault healing in the absence of slip, with 𝑓∗ = 0.550, 
𝑓()(  = 0.575, 𝑎 = 0.011, and 𝑏 = 0.016, varying the initial closeness to steady state (Ω()( =
𝑉()(𝜃()(/𝐷>?). No matter what the initial values are, all cases eventually undergo a logarithmic 
decrease in slip rate and an increase in state variable with time, even the initially above steady-
state case which experiences a run-away earthquake a few minutes into the simulation. Note that 
the time axis is logarithmic. The thick dashed lines indicate the slopes discussed in Text S1. 
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Figure S3. Simulations that illustrate long-term fault healing in the absence of slip, with 𝑓∗ = 
0.550, Ω()(  = 1, 𝑎 = 0.011, and 𝑏 = 0.016, varying the initial friction coefficient, 𝑓()(. No matter 
what the initial values are, all cases eventually undergo a logarithmic decrease in slip rate and an 
increase in state variable with time. Note that the time axis is logarithmic. The thick dashed lines 
indicate the slopes discussed in Text S1. 
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Figure S4. Simulations that illustrate long-term fault healing in the absence of slip, with 𝑓∗ = 0.550, 
𝑎 = 0.015, and 𝑏 = 0.016, varying the initial closeness to steady state (Ω()( = 𝑉()(𝜃()(/𝐷>?) and 
initial friction coefficient 𝑓()(. No matter what the initial values are, all cases eventually undergo 
a logarithmic decrease in slip rate and an increase in state variable with time, even the initially 
above steady-state case which experiences a run-away earthquake a few minutes into the 
simulation. Note that the time axis is logarithmic. The thick dashed lines indicate the slopes 
discussed in Text S1. 
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Figure S5. Prolonged injection simulations with domain sizes of 250 m (solid lines) and 300 m 
(dashed lines). Changing the domain size slightly changes the timing but not the overall behavior.  
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Figure S6. Simulated temporal evolution of several quantities at the injection site for the cases of 
Figure 2A in the main text. From top to bottom: the normalized effective normal stress, slip, 
normalized slip rate (𝑉st) = 10-2 m/s), state variable, friction coefficient, normalized shear stress 
and closeness to steady state at the injection site. Note that no earthquakes occur in these 
simulations as opposed to cases in which the pressure is kept constant at the injection site (Figure 
4 in the main text). 
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Figure S7. Same as Figure 3 in the main text but including the depressurization stage.  
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Figure S8. Spatial and temporal evolution of the same quantities as in Fig. S6 for the low-friction 
case (plotted every 2000 time steps).   
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Figure S9. Spatial and temporal evolution of the same quantities as in Fig. S6 for the intermediate-
friction case (plotted every 6000 time steps).   
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Figure S10. Spatial and temporal evolution of the same quantities as in Fig. S6 for the high-friction 
case (plotted every 20000 time steps).   
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Figure S11. Same as Figure 4C-E in the main text but up to 2500s to enable direct comparison with 
Figures S12 and S19.  
 

 
Figure S12. Spatial and temporal evolution of slip rate for prolonged injection (as in Figure S11) 
but for cases modified from the intermediate-friction case (Figure S11B) in which the onset of 
Stage II is delayed by (A) increasing 𝜇, (B) increasing 𝐷>?, (C) decreasing 𝑏, (D) increasing 𝑓∗, (E) 
increasing 𝜃()(, (F) decreasing hydraulic diffusivity 𝛼. Note that ℎR\ provides a good estimate of 
the extent of the sliding region before the onset of Stage II in all these cases.    
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Figure S13. Temporal evolution of quantities at the injection site and friction vs. slip for the 3 
cases shown in Figure S12(A-C) in which 𝜇 is increased (pink) or 𝐷>? is increased (yellow) or 𝑏 is 
decreased (turquoise) compared to the intermediate-friction reference case (green). Note the 
delay in the transient acceleration compared to the reference case.  
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Figure S14. Temporal evolution of quantities at the injection site and friction vs slip for the 3 cases 
shown in Figure S12(D-F) in which 𝑓∗ is increased (pink) or 𝜃()(  is increased (yellow) or 𝛼 is 
decreased (turquoise) compared to the intermediate-friction reference case (green). Note the 
delay in the transient acceleration compared to the reference case.  
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Figure S15. Temporal evolution of quantities at the injection site and friction vs slip of 2 cases 
showing the effect of varying 𝑓∗ while keeping 𝑓V	constant. Increasing 𝑓∗ reduces the amplitude 
and slope of the transient acceleration.    
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Figure S16. Temporal evolution of quantities at the injection site and friction vs slip of 2 cases 
showing the effect of varying 𝑎. Increasing 𝑎 reduces the amplitude and slope of the transient 
acceleration.    
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Figure S17. Temporal evolution of quantities at the injection site and friction vs slip of 2 cases 
showing the effect of varying 𝜇 while keeping ℎR\ and 𝑓V  constant. Increasing 𝜇 reduces the 
amplitude and slope of the transient acceleration.    
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Figure S18. Temporal evolution of quantities at the injection site and friction vs slip of 2 cases 
showing the effect of varying 𝛼 while keeping 𝑡R\  and 𝑓V  constant. Increasing 𝛼 increases the 
amplitude and slope of the transient acceleration.    
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Figure S19. Spatial and temporal evolution of rate for the cases shown in Figures S15 – S18 in 
which the slope and/or amplitude of the transient acceleration is altered by varying (A,C) 𝑓∗, (D,F) 
𝑎, (G,I) 𝜇 and (J,L) 𝛼. Panels B, E, H and K all show the reference intermediate-friction case for 
comparison purposes.  
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Figure S20. Simulated temporal evolution of several quantities at the injection site for the cases 
of Figure 4A in the main text. From top to bottom: the normalized effective normal stress, slip, 
normalized slip rate (𝑉uvq = 10-2 m/s), state variable, friction coefficient, normalized shear stress 
and closeness to steady state at the injection site.  
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Figure S21. Spatial and temporal evolution of the same quantities as in Fig. S6 for the low-
friction prolonged injection case (plotted every 7000 time steps for	𝑉 < 𝑉dyn and every 2000 
time steps for 𝑉 > 𝑉dyn).    
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Figure S22. Spatial and temporal evolution of the same quantities as in Fig. S6 for the 
intermediate-friction prolonged injection case (plotted every 15000 time steps for	𝑉 < 𝑉dyn and 
every 1000 time steps for 𝑉 > 𝑉dyn).    
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Figure S23. Spatial and temporal evolution of the same quantities as in Fig. S6 for the high-friction 
prolonged injection case (plotted every 35000 time steps for	𝑉 < 𝑉dyn and every 750 time steps 
for 𝑉 > 𝑉dyn).    
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Figure S24. Effect of varying pressurization rate on the intermediate-friction case. The timing of 
events is altered but not the overall behavior, i.e., all simulations still show a transient 
acceleration followed by a run-away dynamic event.   
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Figure S25. Effect of varying depressurization rate on a case similar to the low-friction case but 
with an even lower 𝑓∗of 0.46. In this case, the depressurization applied as in Figure 2 in the main 
text is not sufficient to prevent earthquake nucleation (blue curve). The other two faster 
depressurization rates successfully suppress the earthquake (yellow and pink curves).   
 
 


