Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

loading page

The Dynamics of Unlikely Slip: 3D Modeling of Low-angle Normal Fault Rupture at the Mai’iu Fault, Papua New Guinea
  • James B. Biemiller,
  • Alice-Agnes Gabriel,
  • Thomas Ulrich
James B. Biemiller
University of California San Diego, University of California San Diego

Corresponding Author:[email protected]

Author Profile
Alice-Agnes Gabriel
LMU Munich, LMU Munich
Author Profile
Thomas Ulrich
Ludwig-Maximilians-Universität, Ludwig-Maximilians-Universität
Author Profile

Abstract

Despite decades-long debate over the mechanics of low-angle normal faults dipping less than 30°, many questions about their strength, stress, and slip remain unresolved. Recent geologic and geophysical observations have confirmed that gently-dipping detachment faults can slip at such shallow dips and host moderate-to-large earthquakes. Here, we analyze the first 3D dynamic rupture models to assess how different stress and strength conditions affect rupture characteristics of low-angle normal fault earthquakes. We model observationally constrained spontaneous rupture under different loading conditions on the active Mai’iu fault in Papua New Guinea, which dips 16-24° at the surface and accommodates ~8 mm/yr of horizontal extension. We analyze four distinct fault-local stress scenarios: 1) Andersonian extension, as inferred in the hanging wall; 2) back-rotated principal stresses inferred paleopiezometrically from the exhumed footwall; 3) favorably rotated principal stresses well-aligned for low-angle normal-sense slip; and 4) Andersonian extension derived from depth-variable static fault friction decreasing towards the surface. Our modeling suggests that subcritically stressed detachment faults can host moderate earthquakes within purely Andersonian stress fields. Near-surface rupture is impeded by free-surface stress interactions and dynamic effects of the gently-dipping geometry and frictionally stable gouges of the shallowest portion of the fault. Although favorably-inclined principal stresses have been proposed for some detachments, these conditions are not necessary for seismic slip on these faults. Our results demonstrate how integrated geophysical and geologic observations can constrain dynamic rupture model parameters to develop realistic rupture scenarios of active faults that may pose significant seismic and tsunami hazards to nearby communities.
May 2022Published in Geochemistry, Geophysics, Geosystems volume 23 issue 5. 10.1029/2021GC010298