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Key points: 

 Position offsets attenuate most of the power spectrum at long periods and severely impact 

velocity estimates and their uncertainties. 

 If the impact of offsets is not considered, the best-fitting noise color changes from flicker to 

Gauss-Markov. 

 Position offsets reduce the chances of detecting random walk noise and long-period Earth 

deformation signals in long GPS series. 

 

Abstract 

It has been standard practice for about two decades to compute GPS-based station velocity 

uncertainties using the apparent noise statistics of the non-linear position residuals rather than 

assume white noise (WN) behavior. The latter choice would yield unrealistic velocity uncertainties. 

The most common noise types used are power-law, usually close to flicker noise (FN), over most 

frequencies mixed with WN at the shortest periods. The complicating impact of offsets in the 

position time series, mostly caused by equipment changes or tectonic events, has not been fully 

appreciated. These are far less benign than recently suggested. In addition to contributing a pseudo-

random walk noise (RW) component to the velocity errors, estimating offset parameters changes the 

apparent noise color towards whiter. Spectral power is effectively drained by offsets at periods 

longer than roughly the mean span between them. This consequently promotes a Gauss-Markov 

process as the apparently preferred noise model and, importantly, obscures the presence of RW and 

long-period Earth deformation in the series. Both effects can lead to potentially under-estimated 

velocity uncertainties. The full value of decadal-long GPS time series for geodynamical applications is 

thereby greatly eroded by recurring offsets, especially when they occur quasi-regularly. In addition, 

contrary to common assumption, the noise color is generally not fixed with time, but clearly becomes 

whiter in more recent data. The origin of the colored noise and its whitening over time remain 

elusive.  
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1. Introduction and motivation  

This paper addresses the central problem of GPS time series analysis: the separation of what is 

considered signal, i.e., the systematic variations, from what is considered to be noise, i.e., the 

random variations of usually unknown origin. A functional model is commonly fit to a GPS position 

time series to represent the signal, consisting of a linear trend, periodic variations, and irregularly 

timed position offsets as needed. It was realized in the 1990s that weighted least-squares fitting for 

the functional model with formal error propagation yields highly optimistic uncertainties for geodetic 

parameters. Then the discovery that the GPS-based errors are correlated both spatially (Wdowinski 

et al., 1997) and temporally (Zhang et al., 1997) led to more robust methods to assess and quantify 

the levels and types of noise in time series of GPS station positions (Mao et al., 1999). The main goal 

was to obtain more reliable uncertainties for GPS-based velocities, which are needed for many 

geodynamical studies such as measuring intra-plate tectonic stability and correcting vertical land 

motion from tide gauge records. A general consensus quickly emerged that GPS time series errors 

combine mostly white noise (WN) at shorter periods, typically less than a month, with flicker noise 

(FN) or similar power-law noise (PL) over longer spans, from monthly up to decadal periods (Mao et 

al., 1999; Zhang et al., 1997), although some level of background random walk (RW) error cannot be 

excluded. Consequently, velocity uncertainties can be under-estimated by as much as an order of 

magnitude if WN alone is assumed (Mao et al., 1999). 

Development quickly followed of several mathematical tools to enable users to evaluate models of 

alternative noise types and amplitudes in observed GPS time series (Amiri-Simkooei et al., 2007; Bos 

et al., 2013; Langbein, 2004; Williams, 2008), which have been widely adopted for published noise 

analyses. One of the most common mathematical approaches found in the literature is the maximum 

likelihood estimator (MLE) which is well adapted to fit any noise model or combination of noise 

models to univariate time series. In order to discriminate the best-fitting noise model, the estimated 

likelihood differences (dML) are often used after accounting for the different degrees of freedom of 

each noise model. Very recently, this approach has been extended to analyze spatial common-mode 

noise models from regional GPS networks (Dmitrieva et al., 2015). 

In this study, we analyze the impact the functional model, particularly position offsets, has on the 

apparent color of the noise model fitted to the position time series. Two very recent papers have 

raised questions about the orthodox interpretation of the long time series that are increasingly 

available nowadays. He et al. (2019) conclude that GPS noise does not flatten at low frequencies 

while assuming that the noise properties are stable over time, which we will reiterate below is not 

justified, in part due to the effect of occasional position offsets. Meanwhile, Wang and Herring (2019) 

attempt to show that the impact of position offsets is less serious than previously thought. These 

authors base their conclusions on serious misrepresentations. It is the objective of this contribution 

to clarify these points and to offer new perspectives on the information obtained from the colored 

noise in GPS position time series. 

2. Background 

2.1 Basics of time series computation 

Most studies of GPS noise start with some particular set of time series with little or no regard for the 

process that was used to generate them or how alternative results might compare. It is, however, 

instructive to first consider the processing steps that produce observed GPS time series as this affects 



their noise content. “GPS” in the following can increasingly be regarded generically as “GNSS”, but in 

actual fact, for the long time series considered here, GPS observations have been used exclusively. 

Three types of GPS data processing can be distinguished that produce time series of station 

positions: 1) full global network solutions free of any a priori over-constraints; 2) precise point 

positioning (PPP) of several sorts; and 3) regional network solutions. The International GNSS Service 

(IGS) and its Analysis Centers (ACs) are the prime examples of global network providers. Their 

occasional IGS reprocessing campaigns generate the GNSS inputs for the International Terrestrial 

Reference Frame (ITRF; Altamimi et al. 2016) and for many PPP solutions. PPP allows a single GNSS 

station to be positioned by assuming a priori satellite orbits and clocks from some given global 

solution provider (Zumberge et al., 1997). This is an efficient and autonomous method to densify a 

global solution that is usually limited in size by CPU constraints. The quality of PPP solutions is poorer 

when integer phase ambiguities are not fixed, but improves notably, especially in the east 

component, when double-differenced or one-way ambiguities are resolved, which is the usual case 

today. Regional networks are processed for many local or national applications requiring dense 

coverage, and can yield highly precise differential positions due to the natural rejection of common-

mode errors. 

The assignment of absolute geocentric coordinates to estimated station positions depends on the 

type of processing used. The IGS global network positions are realized, after combining independent 

AC solutions, by aligning each unconstrained daily frame via no-net-rotation (NNR) to the current 

linear ITRF coordinates using a "core" subset of well-distributed and reliable reference stations, 

typically numbering between about 40 and 80 (Rebischung et al., 2016b). This alignment process 

unavoidably redistributes non-linear displacements, both genuinely physical as well as technique 

artifacts, among the reference stations to all other network members (Collilieux et al., 2012). By 

including as many reference stations as possible, as uniformly spaced as possible, the net alignment-

induced scatter should be much less than if only a few fiducials were used. Ray et al. (2017) showed 

that the long-term weighted root-mean-square (WRMS) of this rotational scatter is about 25 to 30 

µas, equivalent to about 0.8 to 0.9 mm of equatorial motion, which corresponds to the estimated 

accuracy of daily IGS polar motion measurements. This same level of scatter also matches the 

observed WRMS error floor for daily IGS horizontal GPS positions after removing periodic variations, 

actually, about 0.9 and 0.8 mm for North and East components, respectively. Individual stations 

often display scatter that is considerably larger than these floors due to a variety of local effects. Ray 

et al. (2017) also found a WRMS error floor for non-periodic GPS station heights of 3.0 mm, which is 

commensurate with the usual ratio of GPS vertical to horizontal errors. The spectral qualities of the 

net frame alignment scatter were not studied by Ray et al. (2017) except to describe them as 

broadband and with more power at longer periods, i.e., reddish noise. 

At a minimum, time series of PPP estimates inherit the net noise properties of their reference global 

network solution, and its ITRF alignment, that have been fixed in the processing. In fact, contrary to 

assertions by Zumberge et al. (1997), the actual performance of a PPP solution must always be 

degraded somewhat by loss of the full solution covariance information and by any potential 

deviation from identical modeling applied in the global network versus the PPP data reductions. (See 

further points in section 4.1). 

Regional network solutions are particularly effective in estimating very precise horizontal positions 

and velocities by innately suppressing spatially coherent errors and by being generally less sensitive 

to large-scale effects, e.g., orbit errors. But they do not provide reliable absolute geocentric heights 

for the same reason and long-term alignments of regional frames to ITRF are subject to significant 

biases (Legrand et al., 2010). 



2.2 Analysis effects in GPS noise 

There have been few quantitative comparisons between the GPS noise characteristics from different 

IGS ACs or from different types of computation strategy (global, PPP, regional). Using the AC-specific 

station residuals from continuously updated operational IGS combined products might be instructive 

to some extent, but the interpretation is confused by comparison to the weighted AC mean. To 

address this concern, Rebischung et al. (2016a) formed individual long-term solutions for each AC in 

the second IGS reprocessing campaign (i.e., Repro2) and examined the station residuals. There was a 

large variation among ACs in the number of stations processed, but the quality of solutions was 

generally rather similar. The background non-periodic power is well described, except for JPL, as 

high-frequency WN plus a PL with spectral index near -1 for North and East and near -0.8 for up. The 

JPL behavior differs in having less WN, which is undetectable for heights, and having smaller PL 

spectral indices of -0.72 to -0.74 for North and East and -0.52 for up. 

On the surface this result seems to imply that WN is largely a product of data analysis and not 

derived from GPS observational noise. But that conclusion could be undermined by the facts that the 

JPL Kalman filter processor might simply absorb WN into its parameter estimates or that the JPL use 

of data arcs that overlap by 3 hr with adjoining days before and after could exert a strong smoothing 

effect. EMR/NRCan is the only other IGS AC using the JPL Kalman filter but they fit strict 24-hr arcs 

and have noise properties similar to the other non-JPL ACs, which supports the second possibility of 

implicit smoothing.  

The attenuation of WN is at least partly produced by the implicit smoothing effect of including 3 hr 

overlaps from the previous and the following daily observations. This is the case in the JPL 

processing, but it is less clear how any difference of the JPL analysis scheme can reduce their spectral 

indices by ~0.3. After all, the geophysical processes that affect GPS data and positions, such as 

surface pressure loading, contribute effects that have distinctly red spectral variations, at least up to 

periods of a year or longer. One guess is that the critical element might involve JPL's estimation of 

satellite solar radiation pressure (SRP) variations as 3D stochastic offsets rather than as harmonic 

parameters, as most ACs do, but EMR also uses 3D stochastic SRP estimation. 

Concerning position offsets, Williams (2003) showed that the presence of undetected and 

unmodeled position offsets in GPS time series contributes a RW noise component. He also evaluated 

the impact of adding offset parameters to the functional model, for various background noise types. 

Griffiths and Ray (2016) quantified the magnitude of the RW-like noise due to adding position offsets 

in an ITRF-type global network solution. Under these circumstances and because some station 

hardware changes cause discontinuities while others do not, different ACs are expected to introduce 

varying amounts of RW noise when they use incomplete metadata for the station equipment 

changes. This effect is probably not dominant among AC noise differences, however. 

2.3 Assumptions of noise analysis and the evolution of colored noise 

In constructing analytical methods to evaluate GPS positional noise, a number of assumptions must 

be made, some of them by implication only. Basic is the natural notion that the total observed GPS 

noise is a superposition of different physical processes each with its own spectral characteristics. 

Some processes might be so slight, compared to others, that their noise effects cannot be detected 

directly or the data span that would be needed is very long, e.g., RW. Under these circumstances, it is 

not generally possible to invert a GPS spectrum to infer its constituent noise components. Instead, 

forward modeling of a range of possible noise types and amplitudes is usually performed and tested 

by best-fitting against the observations, which is of course non-unique and prone to subjectivity. 



Another key assumption almost always made is that the mix of noise characteristics for any given 

time series is constant over time, despite observations of Williams et al. (2004) and Santamaría-

Gómez et al. (2011) to the contrary. Time series, especially long ones, often display non-stationary 

noise properties that are evident to the eye. For some examples, please consider the residual JPL PPP 

series for these long-running stations: ALIC, CAS1, CHUM, COCO, DAV1, GENO, KIR0, KIRU, MAS1, 

MATE, MEDI, NRC1, ONSA, PIN1, RAMO, SFER, TOW2, UCLU, ZIMM. There has been an overall trend 

towards improved GPS tracking hardware and more robust ground networks on the one hand, but 

degradations and gradual failures at individual stations can happen at any time. This is why visual 

inspection of the series, as done in this study, is of uttermost importance to support the conclusions 

of a given analysis. The JPL plots also illustrate the pervasiveness of position offsets in any GPS 

solution, which average about 0.9 per station per decade in the IGS Repro2 global analysis 

(Rebischung et al., 2016b), the dataset used by Griffiths and Ray (2016). 

2.4 Comments on Wang and Herring (2019) 

Partly to address objections raised by an anonymous reviewer #1 (AnR1), we review here results 

from Wang and Herring (2019) [WH19]. This is done reluctantly for fear of appearing to limit the 

scope of this contribution to a mere rebuttal, which is not our intent. This does give us a chance, 

however, to introduce several important themes that recur later in our own results. 

Amidst the ponderous formalism and numerous noise models considered by WH19, one could easily 

overlook the simple fact that any connection between their simulations and real-world GNSS analysis 

is not obvious. Each of their 22 different noise models, mostly quite unrealistic, is simulated with 

known covariances and then the impact of position offset parameters on formal velocity 

uncertainties is assessed by least-squares solutions using the same known covariances. Such a 

circumstance never arises with real data where the contributing errors are unknown in type and 

magnitude. As mentioned in the previous section, a range of error models is normally tested while 

estimating the deterministic parameters and their uncertainties, in search of a maximally likely 

outcome. 

Meanwhile, adding offset parameters to the functional model itself, while commonly assuming WN 

series, changes the noise color of the residual series by removing progressively more low-frequency 

power, as we show in section 4.2. So the true power spectrum becomes more obscured and 

distorted as the number of offsets per unit time increases, putting the ideal world simulated by 

WH19 ever farther out of reach as offsets accumulate. Nonetheless, AnR1 asserts that this, our core 

finding, "is not anything new" even though this phenomenon is never mentioned by WH19 and it 

rules out any practical utilization of the WH19 approach using real data with offsets. We found only 

one prior study of the noise "whitening" effect of adding position offset parameters, the simulation 

by Chen et al. (2018). Position offsets were one of several analysis options they examined, obtaining 

median impacts consistent with ours but with more limited insight into the underlying dynamics of 

the problem, which is our prime interest here. 

WH19 take pains to aggressively dismiss the earlier study by Griffiths and Ray (2016) [GR16] of the 

effects of position offset parameters, while repeatedly misstating their analysis, such as by equating 

"adding one additional offset parameter" to the doubling of offsets per unit time discussed by the 

latter authors. GR16 never considered the estimated velocity uncertainties whatsoever, contrary to 

multiple WH19 assertions, but instead they examined the increase in dispersion of actual rate 

estimates, not simulated data series, as offset parameters were added artificially to a long-term 

global reference frame solution. WH19 and AnR1 both claim that the rate error scatters obtained by 

GR16 were biased by not having included full temporal noise correlations. The impact of a given 



process noise on velocity estimates has been simulated by WH19 (their Fig. 7). However, they 

assumed an unrealistic RW process noise for the actual GPS data. If one instead considers realistic PL 

noises with spectral indices close to FN, then the scatter of velocity estimates is negligibly impacted, 

consistent with GR16. These points are reiterated in more detail in section 5.2. 

Most offensive of all is the cavalier repudiation by WH19 of pleas by Williams (2003a) and GR16, 

which we also support in this contribution, for station operators to maintain the strictest possible 

configuration control of GNSS reference stations to minimize the occurrence of position offsets and 

to maximize the geodynamical value of long GNSS time series. 

3. Data and methods 

In this study we used residual daily GPS position time series from the JPL online service 

(https://sideshow.jpl.nasa.gov/post/series.html; accessed in May 2019). These series are estimated 

using the PPP technique with phase ambiguity resolution and JPL final orbits and clocks products. The 

daily PPP frames were NNR-aligned to the IGS14 realization of ITRF2014 (Rebischung et al., 2016b) 

using transformation parameters estimated at the same time as the orbit/clock products in a full 

global network solution. JPL data reduction models and procedures were updated following Repro2 

(IGS Mail 7637, 5 June 2018) and applied in the network solution and in the PPP processing, including 

antenna calibrations consistent with the IGS14 frame. This latest JPL PPP reprocessing ensures the 

temporal coherence of the historic series with their current operational products.  

The residual series were obtained by JPL after removing linear trends, seasonal variations, position 

offsets, and outliers. JPL uses an automatic offset detector that Gazeaux et al. (2013) ranked as the 

second-best automatic solution in their study. 

From the initial set of 2567 stations available, we retained 137 stations having at least 20 years of 

data since 1999, less than 10% of missing points, and gaps not longer than 5 months. These 137 

stations were screened for quality using SARI (Santamaría-Gómez, 2019) in which we removed 

several outliers most probably caused by snow/ice on the antennas. In addition, we added position 

offsets for 8 stations that were visually identified and judged to be significant against the colored 

noise content in the series. After this check, we rejected 10 more stations having unusual residual 

distributions or strong changes in their variability, leaving 127 long, high-quality stations for this 

study (see all the information in the supplemental material). We observed a very irregular temporal 

sampling for some of these stations with, occasionally, multiple points estimated on the same day 

separated by only a few hours. This might be caused by JPL merging their global network and PPP 

estimates for the same station. To avoid this, we removed the daily estimates with epochs before 6 h 

UTC or after 18 h UTC. We also note there are more than 3 offsets per station per decade on average 

among the selected 127 stations, which is particularly large compared to the value for the IGS Repro2 

series. 

We acknowledge the JPL PPP series have distinct noise characteristics compared to other GPS 

position series, especially if they are derived from a filtered regional solution. However, the JPL series 

provide the longest homogeneously reprocessed residual series to date, before the next IGS 

reprocessing campaign, and for an extensive number of global stations. Judging from IGS 

combination reports (see weekly orbit and frame combination summaries at 

https://lists.igs.org/pipermail/igsreport/), the JPL analysis quality is outstanding also. This dataset is 

therefore the best available for addressing several points concerning the noise content and the 

impact of position offsets. 

https://sideshow.jpl.nasa.gov/post/series.html


In the following, we used the Lomb-Scargle periodogram (Scargle, 1982) to represent the error 

power spectra and the Create and Analyze Time Series (CATS) software (Williams, 2008), which 

implements MLE, for the estimation of the power spectra of a noise model. Here, we define, on one 

hand, the noise power spectrum as the power spectrum that is obtained by fitting a pre-defined 

noise model that is conveniently used to assess the formal errors of a functional model, especially 

linear trends. On the other hand, we define the error power spectrum as the power spectrum that is 

actually observed in residual GPS series. In other words, the error spectrum represents the spectral 

distribution of the variance that is not explained by the reduction of the raw GPS observations nor by 

the fitted model to the series, and it includes random and systematic variations, both physical and 

spurious. Generally speaking, the noise spectrum is obtained by fitting the error spectrum with a 

particular stochastic process or mix of processes. Ideally, the noise spectrum and the error spectrum 

should be very similar, but we show in the next section that this is not always the case and that a 

distinction between them needs to be recognized.  

JPL obtained their position residual series by assuming WN series, as is common practice. Therefore, 

in order to avoid biasing the estimates of the noise spectrum, we fitted the residuals with their 

corresponding functional model in CATS. This provides the same noise parameters as if the original 

series were used, i.e. before removing the functional model, while allowing us to use exactly the 

same input residual series to compute a consistent error power spectrum with the periodogram. In 

addition, we also included up to the 10th harmonic of the 1.04 cpy draconitic oscillation that was not 

removed by JPL. 

4. Results  

4.1 Noise types in the JPL PPP series 

Before testing the validity of candidate noise models for the 127 residual JPL series, we shall evaluate 

first the GPS error power spectra, which are shown in Fig. 1. Overall, the error spectra have a 

Figure 1. Stacked error spectra of the 127 selected JPL series for the three coordinate components. 
The spectra are shifted for the sake of visibility. The thick solid black lines represent the smoothed 
spectra. The thin dotted black line represents a pure flicker noise process. 



crowbar shape that could be described by a power-law process up to periods of ~5 years. The slope 

of the power-law is clearly lower than FN, especially in the vertical component. Beyond 5 years, the 

power spectra decay significantly in all the components. The loss of power at long periods is further 

examined in Section 4.2. At the shortest periods, we observe that WN in not visible in any coordinate 

component. The PL clearly dominates the stacked spectra even at high frequencies of at least 100 

cycles-per-year (cpy) or more. To quantify an upper bound of the WN amplitude, we assume the PL is 

actually dominated by FN, which is likely for the horizontal components, but not so much for the 

vertical component as we discuss later on. Considering a typical FN amplitude for the daily JPL series 

of 4 mm yr-0.25 for the horizontal and 11 mm yr-0.25 for the vertical component (values estimated with 

CATS), and a cross-over period from FN to WN of less than 4 days, we bound the maximum white 

noise level to be 0.4 and 1.1 mm for the horizontal and vertical components, respectively. This is 

much lower than the WN reported for the other AC solutions of the last IGS Repro2 (Rebischung et 

al., 2016a) and reflects the smoothing inherent in the JPL global processing used for their PPP series. 

In addition, Ray et al. (2013) and Amiri-Simkooei et al. (2017) have found spurious ~5 d signals in the 

preceding JPL PPP time series that are not present in their corresponding global solutions, the source 

of which was unknown. The ~5-day signals reported in those past studies are not visible in this latest 

JPL solution, but nevertheless we still note a bump around 5.5 days (~65 cpy) common to all the 

components and of unknown origin, but possibly related to the overlapped 3 + 24 +3 hr data arcs 

used by JPL. The power spectrum decays faster for periods shorter than 5.5 days in the vertical 

component only. 

Figure S1 in the Supporting Information shows the distribution of the 127 stations used in this study. 

Most of the stations are concentrated in Europe, Australasia and, especially, Western USA. To 

explore to what extent the stacked error spectra of Fig. 1 could be biased by the geographic 

distribution of the 127 sites, we computed two additional smoothed stacked spectra corresponding 

to the stations located in Western USA (62) and Europe (36). Figure S2 in the Supporting Information 

shows that, while the spectra from the regional subsets are more variable due to the smaller number 

of sites, their general shapes are consistent. 

Because white noise obviously does not play a part in the background error spectrum, in the 

following noise analysis we average the daily series into weekly series in order to speed up the 

processing without losing information on the colored noise content. 

Using CATS, we estimated the type and amplitude of the colored noise that best describes the error 

spectra of the individual series. To assess the impact of offsets in the noise analysis, we assume the 

background noise content of the series is constant over time and can be described by a unique noise 

model. We will demonstrate later that this hypothesis, commonly applied in most noise analyses, is 

not valid. At least we can assess how well a single model describes the background noise because all 

our series are available for the same period of time. Four noise models were tested: FN, PL, flicker 

plus random walk noise (FNRW) and a generalized Gauss-Markov noise model (GM), which includes a 

PL process at high frequency and a WN process at low frequency (Langbein, 2004). 

In order to discriminate the goodness of fit for each model, we used the differences of the estimated 

maximum likelihood (dML) plus an empirical threshold that accounts for the different degrees of 

freedom of each noise model with respect to FN, which is selected as the null hypothesis for the 

noise model. Using 1000 20-year-long synthetic weekly FN series, the empirical dML thresholds were 

set as the 95 % percentile of the dML values between FN and the other three model candidates. 

Together with the noise model, the synthetic series were fitted by a model including a linear trend, 

annual and semi-annual variations plus draconitic harmonics up to the tenth. In addition, several 

dML thresholds were estimated for each candidate noise model corresponding to 6 different 



numbers of estimated offsets, from 0 up to 9 equally-spaced offsets, as suggested by John Langbein 

(personal communication). Based on the dML values obtained for different numbers of offsets, an 

empirical model was fitted and presented in Table 1 as a function of the offset rate (r), i.e., the 

number of offsets per year. For the PL and the GM models, the dML values increase following an 

exponential function with the addition of position offsets, with a larger increase for GM than PL. 

Conversely, the dML values for the FNRW model are significantly smaller than that of PL and GM and, 

importantly, they are insensitive to the rate of offsets in the series. We also note that, as the number 

of offsets increases in the series, the number of synthetic series for which a false positive RW was 

found by chance decreases significantly; from around 10 % in case of no offsets down to 0.5 % in case 

of one offset every 2 years. The reduction in the number of RW false positives with the number of 

offsets indicates that offsets have a negative impact on our ability to detect RW in the series. We 

further develop this issue in Section 4.3. Since the dML values have a long-tail distribution, in order 

to have enough dML values to compute a reliable 95 % threshold, we increased the number of 

synthetic series to 10,000 for the FNRW model only. The dML thresholds at the 99 % percentile are 

also provided in Table 1. The extreme 99 % dML value could be used for instance to account for an 

extremely irregular distribution of offsets in the series. 

Table 1. Empirical maximum likelihood differences (dML) of the power-law (PL), general Gauss-Markov (GM) and flicker plus 

random walk (FNRW) noise models with respect to a flicker noise null hypothesis. The expressions correspond to the model 

fitted to different dML values, at the 95 % or 99 % percentile, as a function of the offset rate (r) in the series. 

 95 % 99 % 

PL 4.0 e0.9r 5.8 e1.0r 

GM 5.8 e1.5r 8.2 e1.1r 

FNRW 2 3 

 

Taking into account the 95 % dML thresholds of Table 1, the distribution of the best fitted noise 

model per component (labelled “Full series”), the noise model parameters and its degrees of 

freedom are given in Table 2. The FN model is selected for most of the series in both horizontal 

components with amplitudes of around 2 mm yr -0.25, followed by the GM model. In the vertical 

component there is no single noise model clearly dominating among the series, though GM is more 

common than PL or FN. The PL model, being selected two times more often in the vertical than in the 

horizontal, exhibits values of the spectral index significantly whiter than FN, consistent with the 

qualitative assessment from the stacked periodogram (Fig. 1). The FNRW noise model (2 degrees of 

freedom) is not included in Table 2 because it was not selected as the preferred noise model in any 

of the series. We observe that the spectral index of the GM process is much closer to FN than RW, 

which is also consistent with the error spectra shown in Fig. 1, and indicates that the first-order GM 

(FOGM) noise process used by WH19, which combines WN at long periods with RW at shorter 

periods, may not be the best model to describe the noise in most of the series. We note however 

that WH19 used the series issued from a regional solution (Herring et al., 2016), which are certainly 

different from the JPL series and probably even less consistent with a FOGM model. A similar 

observation was recently made by Langbein (2020) .The selected noise model for each series and 

coordinate component are included in Table S1 of the Supporting Information. Together with the 

selected noise model, we provide the dML value obtained with respect to the FN null hypothesis. 

Generally, the GM has a typical dML value clustered around 3 and 5 for the horizontal and vertical 

components, respectively. The PL model has median dML values around 4 and 10 for both 

components, respectively. For completeness, many of the obtained dML values were close or less 

than 1. If we use the dML thresholds at 99 % from Table 1, the percentage of selected FN series in 

Table 2 increases by an average of 10 % for the three components. 



Table 2. Percentage of the best fitted noise model per component. The percentage in parenthesis corresponds to the use of 

dML thresholds without considering the impact of offsets. The numbers in parenthesis after the noise model name in the 

first column provide the degrees of freedom. The values for relevant noise model parameters for the selected fits (σ for 

variance in mm, k for spectral index and β for cross-over period in years) are provided at the 5%/50%/95% percentiles. Note 

that the variance corresponds to weekly sampled series. 

 East North Up 

FN (1) 

Full series 
60% (39%) 

σ=1.9/2.2/3.0 
58% (23%) 

σ=1.9/2.5/3.4 
20% (4%) 

σ=6.3/7.2/9.4 

Segments 
41% 

σ=1.7/2.0/2.8 
43% 

σ=1.7/2.1/2.8 
11% 

σ=5.8/7.1/13.2 

PL (2) 

Full series 
16% (13%) 

σ=1.9/2.0/4.0 
k=-0.56/-0.71/-1.37 

14% (8%) 
σ=1.8/2.4/4.6 

k=-0.54/-0.67/-0.77 

37% (20%) 
σ=4.7/6.0/7.7 

k=-0.56/-0.66/-0.78 

Segments 
42% 

σ=1.2/1.5/2.1 
k=-0.43/-0.66/-0.77 

39% 
σ=1.2/1.7/2.5 

k=-0.42/-0.66/-0.74 

68% 
σ=3.8/4.9/6.8 

k=-0.44/-0.63/-0.75 

GM (3) 

Full series 
24% (48%) 

k=-0.95/-1.25/-2.57 
β=0.2/0.5/1.6 

28% (69%) 
k=-1.12/-1.17/-2.60 

β=0.2/0.6/1.2 

43% (76%) 
k=-0.81/-1.01/-1.96 

β=0.3/0.6/1.4 

Segments 
17% 

k=-0.90/-1.58/-3.63 
β=0.1/0.3/0.8 

18% 
k=-0.86/-1.25/-3.64 

β=0.1/0.7/1.5 

21% 
k=-0.70/-1.03/-3.59 

β=0.1/0.3/2.3 

 

4.2 Loss of low-frequency power 

Table 2 also shows in parenthesis the distribution of the selected noise models that would result if 

the impact of offsets were not taken into account in the estimation of the dML thresholds, i.e. r = 0 in 

Table 1. In that case, the apparent noise type that clearly dominates is a GM, especially in the North 

and Up components. The effect of including the offsets in the dML thresholds effectively transfers 

the selected noise model from GM to FN, with a reduction/increase of the GM/FN ratios by a factor 

~2, respectively. This would be consistent with the estimated error spectra in Fig. 1, i.e., among the 

tested noise models and in the absence of additional constraints, GM would be the one that better 

approximates the observed crowbar shape of the power spectrum. However, the GM noise power 

spectrum at long periods is given by a frequency-independent WN process, which does not explain 

the sharp loss of low-frequency power observed in the error spectra of Figure 1. It is known that the 

trend estimation absorbs part of the colored noise at the longest period and that the estimated 

colored noise from the residual series is biased low for short series (Langbein & Johnson, 1997). Here 

we argue that when the functional model is fitted assuming WN series, which is standard practice, a 

major amount of the low-frequency power spectrum is also absorbed by the estimated position 

offsets. 

To demonstrate this, we first reran the noise analysis, but using this time the continuous segments of 

the series between each pair of estimated offsets. From our initial 127 series of 20 years, we 

extracted 162 segments longer than 5 years with a median length of almost 9 years. We used the 

dML thresholds in Table 1 with r = 0 and the results are shown in Table 2 (labelled "Segments"). 

Compared to the results from the full series with r = 0, the GM is not the dominant selected noise 

model anymore; in the vertical component it is now PL, and in both horizontal components GM has 

been replaced by FN and PL with similar scores. We note however that it is difficult to reach firm 

conclusions about the general noise model that best describes the error spectrum when the series do 

not have the same length nor cover the same period of time. For instance, by comparing the ratio of 

the selected GM models between the “Full series”(with r = 0) and the “Segments” runs in Table 2, 

one would be tempted to state that the effect of offsets is to triple the chances to select a GM 



model, while we already show this factor is actually closer to 2. This difference could be attributed to 

the popular approach of comparing the noise content between series having different lengths, or 

with similar lengths but not covering the same period. This exercise at least confirms that the GM 

model is apparently promoted by the effect of estimated position offsets in long discontinuous 

series. 

A more rigorous approach that could be applied, especially when comparing noise levels from 

different sets of series, is to use continuous segments of the same length and period, at the expense 

of reducing the number of exploitable series. Since that was not possible in this case, we carried out 

another test to demonstrate the impact of the offsets in the error spectrum by creating synthetic 

series with the same sampling as our 127 original series and different amplitudes of FN from the 

ranges in Table 2. These series were then fitted with a linear trend and the same offsets as in the 

original JPL series. Figure 2 (black curves) shows how the FN power spectrum is absorbed at long 

periods slightly by the trend and mostly by the offsets. The simulated FN power spectrum starts 

flattening around a period of 3 years and the power starts dropping around a period of 7 years, 

which lies close to the median offset separation of the dataset of 8.2 years. The decay follows the 

crowbar shape of the real error spectra reasonably well. This indicates that, very likely, the error 

spectra of the GPS series actually would not decay or flatten if the series were continuous, which 

partly supports the use of the FN as the null hypothesis for testing alternative candidate noise 

models. In practice however, the lack of observations in that part of the spectrum restrains us to 

better constraint the null hypothesis to be used. 

Using these synthetic FN series, we estimated the sensitivity of estimated noise parameters of FN 

and PL noise models to the addition of the JPL offsets. We observe a small whitening of the 

estimated PL spectral index of about 5% in average. The estimated FN amplitude also reduces 

marginally with the offsets by around 0.1 mm yr-0.25. 

Figure 2. Comparison of simulated (in black color) and real (in colors) smoothed error power 
spectra. The real spectra for East, North and Up are the same as in Figure 1. The simulated spectra 
includes flicker noise (dashed), flicker noise with trend estimation (dotted) and flicker noise with 
trend and offsets estimation (solid). 



4.3 Detectability of RW noise 

The loss of power at long periods caused by estimating offsets hinders the analysis of the error 

sources that may contribute in that part of the spectrum, for instance, the RW noise. In addition to a 

RW contribution due to remaining offsets in the series (Williams, 2003a), it has been suggested that 

the instability of the antenna monument introduces some level of RW process noise in all series 

(Johnson & Agnew, 1995). For the best geodetic-class monuments, the amplitude of RW is expected 

to be several times smaller than the amplitude of FN and, therefore, it can only be detected in very 

long series or when the spatially-correlated FN is reduced, for instance in regional solutions and in 

short-baseline solutions (Dmitrieva et al., 2015; Hill et al., 2009; King & Williams, 2009; Langbein & 

Svarc, 2019). In our dataset of 127 stations of 20 years length we did not detect RW being 

significantly present in any of the series. Recent studies using network or PPP global solutions also 

report that RW does not play a significant role in the error spectrum (e.g., He et al. 2019). 

The low proportion of detected RW in global solutions has been attributed to the dominance of FN 

and the series not being long enough (Williams et al., 2004). For instance, in order to detect the RW 

component over WN in the series, Langbein and Johnson (1997) determined that a series should be 

at least 5 times longer than the RW/WN cross-over period. The cross-over period between two noise 

processes depends on the series sampling and on the relative variance of each process. Following the 

equation of the PL noise power spectrum (Williams, 2003b), the cross-over period for weekly time 

series having FN amplitude of 2 mm yr -0.25 and RW amplitude of 0.5 mm yr -0.5 is around 14 years. 

Using the same equation, we obtain that for a 20-year-long weekly series with 2 mm yr -0.25 FN, the 

theoretical maximum RW amplitude detectable would be around 0.4 mm yr -0.5, which represents a 

FN/RW amplitude ratio of near 5. 

Since the estimated position offsets absorb significant amounts of power in the band of the error 

spectrum where we expect RW to emerge, our chances to detect RW in long series are reduced. A 

lower probability to detect RW implies that the amount of RW potentially being hidden in the series 

could be quite large relative to the amount of FN. To quantify this, we ran a new noise analysis using 

1000 synthetic weekly series of 20 years having FN+RW in different ratios, from 1 up to 6, and 

including different offset rates, from none up to one every two years. For different combinations of 

FN/RW ratios and offset rates, we computed the percentage of series for which the RW component 

was detected over the FN (true positives), which was still considered as the null hypothesis, using the 

dML threshold at 95 %. The obtained success rates were then interpolated to create a continuous 

representation in Figure 3. The sampled success rates are shown by cyan circles in Fig. 3. This figure 

shows that the success rate of detecting RW is strongly affected by the amplitude ratio FN/RW, as 

expected due to the spectral limitation imposed by the series length. The RW success rate estimated 

by MLE is close to zero for FN/RW ratios of 5.5, very close to the FN/RW theoretical limit of our 

synthetic series (cyan line in Fig. 3). This upper FN/RW bound decreases towards 4 as the offset rate 

increases. The offsets play a significant role in reducing the chances of RW detection, especially when 

the FN dominates over the RW with FN/RW ratios of 2 or higher. As an example, for a series having 

an offset rate between 0.3 and 0.4, which is a common scenario in the JPL series, a weekly series 

could accommodate a RW amplitude equal to 1/3 of the FN amplitude, i.e., typically ~0.7mm yr -0.5 

for the horizontal components and more than 2 mm yr -0.5 for the vertical component, and yet, we 

will have around 20 % chance to detect this RW component. The success rate would rise up to more 

than 40 % in case r were 0, which represents an average probability reduction of around 4 % per 

offset. Lower RW amplitudes than these values have been reported in past studies (King & Williams, 

2009), which implies even less chances to detect it; for instance, less than 5 % for a RW amplitude of 

0.5 mm yr -0.5 and 0.3 offsets yr -1. Based on these results with synthetic series, we determined that 



the estimated formal uncertainty of the trend would increase by a factor between ~2 and ~3, with 

r = 0.45 and r = 0, respectively, if a RW amplitude of 0.5 mm yr -0.5 were to be detected over a FN 

amplitude of 2 mm yr -0.25. Finally, we observed that there were up to 15 % of the series, mostly with 

a FN/RW ratio between 2 and 4, for which a significant non-zero RW amplitude was estimated. These 

results were however rejected (false negatives) because the penalized dML was not high enough to 

select the FN+RW model over the favored FN null hypothesis. 

4.4 Impact of frame alignment on error spectra 

It is clear that the functional model can severely alter the power spectrum of the residual series. 

Therefore, a natural question arises as to what would be the effect of the frame alignment on the 

colored noise of the series. The frame alignment is part of the functional model in any network 

solution and is also implicitly applied to any PPP solution via the fixed orbit and clock products from 

the network solution. To answer this question, we used 20 years of weekly IGS SINEX files starting in 

1999. We modified the SINEX files by extracting the IGS14 core stations and replacing their weekly 

station coordinates by their linearized positions, extracted from the mean position and velocity of 

the IGS long-term frame, plus a synthetic FN series for each station. The idea is to quantify how much 

the FN series change after the frame alignment process. 

The variance-covariance of the weekly network solutions was left intact in the SINEX files. By doing 

this, we assume the spatial correlation of position errors and its changes through time are 

independent of the temporal correlation of each individual station. This hypothesis was necessary as 

it is not practically possible to synthetize a covariance matrix that accounts for FN in both the 

Figure 3. Success rate of random walk detection (RW) over flicker noise (FN) as a function of the amplitude 
ratio FN/RW (y-axis) and as a function of the rate of offsets per year (x-axis). The cyan line represents the 
maximum theoretical FN/RW ratio detectable in the synthetic series. The cyan circles represent the locations at 
which the RW success rate was sampled 



temporal and spatial domains at the same time in a least-squares network solution (Benoist et al., 

2020). In addition, this assumption is commonly applied in most studies when the colored noise 

content in a given series is estimated with no regard for its spatial correlation. 

We performed two cumulated solutions using CATREF (Altamimi et al., 2016) on these modified 

SINEX files, with and without the estimation of the transformation parameters of the frame 

alignment. In addition, we examined the impact of including/excluding a weekly scale offset and also 

the impact of the full/diagonal covariance matrix of the SINEX files, i.e., the spatial correlation. Our 

results indicate that neither the frame alignment nor the consideration of the spatial correlation 

have a significant impact on the retrieved FN series. The velocity estimation absorbs a small amount 

of the FN variance at the longest period, as expected, but the estimation of the transformation 

parameters does not alter significantly the background error spectrum of the residual series after the 

alignment (Fig. S3). This result also validates the hypothesis that the temporal and spatial 

correlations can be considered independently when analyzing the noise content of individual series. 

On a series-by-series basis, the FN amplitude changes typically less than 0.1 mm yr-0.25 for both 

horizontal and vertical components, even if the added FN amplitude was ~3 times larger in the 

vertical component. The FN change is marginally larger in the vertical component if the scale 

parameter is estimated. For most of the stations, the FN amplitude increases in the horizontal 

component and decreases in the vertical component. 

These results are considerably different to those recently obtained by Chen et al. (2018) who 

reported PL amplitude changes at least 2 times larger, while still considering they used daily series 

instead of weekly as in our case. They noted a clear spatial dependence of the PL changes, with the 

largest PL reduction in areas of high density of stations and a PL increase elsewhere. Since Chen et al. 

(2018) used the full IGS network to compute the transformation parameters, their result reflects a 

network effect, i.e., the transfer of common-mode PL noise between different areas of the network. 

Such a strong network effect was demonstrated by Ray et al. (2017) for the frame rotations. Our 

assessment of the alignment impact should be considered more robust as we used the well-

distributed IGS14 core network instead of the full IGS network specifically for this reason. 

4.5 Evolution of noise types over time 

Concerning changes of the colored noise content with time, Williams et al. (2004) and Santamaría-

Gómez et al. (2011) showed that the amplitude of the PL noise in the series is generally getting 

smaller with time. Bos et al. (2010) also questioned the hypothesis that noise properties are constant 

over time. In that case, the estimated noise content of a given series will depend on the period of 

time chosen. This dependency can void the conclusions from separate studies about the average 

noise level in a particular set of series if they do not cover the same time period. It could also have a 

significant impact on comparisons of noise levels between different sets of series (Amiri-Simkooei et 

al., 2017; Langbein & Svarc, 2019). 

Here, we revisit this issue by using our selection of 127 series from the last JPL PPP solution having 

the same length, minimum gaps, homogeneous good-quality data from 1999 onwards, and almost 

twice as long as those in Santamaría-Gómez et al. (2011). We split the original 20-year series into 4 

segments of 5 years each and ran separate noise analyses for each segment including the same 

functional and noise models as for the full JPL series. The selection of the noise model was done 

using the estimated dML thresholds at 95 % of Table 1. 



We observe a change in the noise color throughout the last 20 years of GPS observations (Fig. 4). The 

proportion of selected FN series is progressively falling in favor of a PL with a spectral index 

considerably close to WN (Table 3). While it is difficult to extract a clear trend in the estimated noise 

parameters between the four segments, it is clear that the colored noise is whiter in the second half 

of the total period. Offsets are more frequent in the first half of the series than in the second, 

particularly before 2005. For instance, in 2002 and 2004, around 60% of the stations had at least one 

estimated offset. After 2005, the number of removed offsets stabilizes. If the noise amplitude and 

type were constant, we should expect the noise to get redder if less offsets were removed in the 

second half of the series, but we observe the contrary. This result confirms earlier findings that 

colored noise is becoming whiter for newer observations, but in a more general framework, i.e., 

considering also changes in the preferred noise model from FN towards PL. The whitening of the 

noise color can also be seen in the reduction of the median formal velocity uncertainties obtained 

exclusively from the parameters of the fitted noise models in each segment and component, i.e., not 

considering here the contribution of offsets to the uncertainty (Fig. 4d). We also note that in the 

segmented series, the GM model is much less present than the FN and PL models. 

Table 3. Percentage of selected PL and FN models, with the median noise amplitude in mm (σ) and spectral index (k), for the 
four segments of 5 year length as in Figure 4. Values in red are computed from less than 30 series. 

 
East North Up 

% σ k % σ k % σ k 

PL 

1999-2004 28 1.7 -0.47 17 1.6 -0.45 35 4.6 -0.47 

2004-2009 42 1.3 -0.55 44 1.3 -0.53 55 4.3 -0.47 

2009-2014 53 1.1 -0.43 53 1.2 -0.50 54 4.0 -0.47 

2014-2019 44 1.3 -0.54 56 1.3 -0.54 85 3.9 -0.43 

FN 

1999-2004 65 2.5 -1 75 2.7 -1 57 7.7 -1 

2004-2009 50 2.0 -1 44 2.0 -1 31 6.5 -1 

2009-2014 37 2.0 -1 38 2.1 -1 35 6.7 -1 

2014-2019 50 1.9 -1 37 2.0 -1 13 7.7 -1 

Figure 4. Distribution of the preferred noise model in the JPL series for 4 periods of 5 years each (x-axis) for the a) East, b) 
North and c) Vertical components, together with the d) distribution of offsets per year and the median formal uncertainty of 
velocities from the noise estimates for each period and component. 



5. Discussion  

5.1 Impact of offsets on the noise color 

It is clear that offsets should be, first, avoided as much as possible and, second, removed from the 

series in order to get the least biased estimate of the velocity. The main limitation for reaching the 

second goal is that offsets are usually mixed and hidden by other features in the series, including 

colored noise. Manual offset detection by expert analysts generally outperforms automatic 

algorithms which tend to over-fit the series with spurious offsets (Gazeaux et al., 2013). Despite this 

finding, with the increasing number of series available and also their length, automatic offset 

detection is being used nowadays by many scientists as a purely practical matter and it is very likely 

that this trend will continue. 

Leaving aside the question whether the removed offsets are correctly timed or not, we demonstrate 

how the offset estimation absorbs most of the low-frequency colored noise in the series, depending 

on the separation between the offsets. This translates into a different shape of the error spectrum 

and, if the effect is not accounted for, it would bias estimates of the colored noise content and hence 

velocity uncertainty. The impact is most dramatic in the case of a series with regularly spaced offsets 

every N years. In that case, the colored noise content of the series becomes unobservable beyond a 

period of approximately N years. For an irregular distribution of offsets, if their impact is not taken 

into account, the fit of a noise model will provide, at best, a biased lower noise amplitude and, at 

worst, it will indicate that the best fitted model is much whiter, for instance a PL model with spectral 

index closer to zero or even a GM model where the spectral index is zero at the longest periods. 

These results confirm the more limited observations recently made by Chen et al. (2018). These 

authors considered changes in the estimated PL noise amplitude and spectral index as offsets were 

added to synthetic series of different length. Our results indicate an increase of the estimated PL 

spectral index, i.e. closer to zero, and a reduction of the colored noise amplitude of the same order 

as theirs. However, they did not investigate how the offsets affect the selection of the noise model. 

We also note that PL is not ranked as the best noise model describing our series, especially in the 

horizontal components, even if the impact of offsets in the dML values is not taken into account. 

We observed that, even after taking into account the effect of offsets in the dML thresholds, about a 

quarter of the horizontal series, and half the vertical series, prefer a GM model (Table 2). We 

recognized in Section 2 that noise levels and types may vary among the series, which could partially 

explain the selection of the GM model in some series. However, this result may also be partly due to 

the limitation of the MLE method itself. Between the FN, PL or FN+RW noise models and a GM noise 

model, the MLE tends to favor the GM model, which is the one that provides the lowest noise power 

spectrum at long periods. A lower noise power spectrum at long periods produces a narrower variety 

of possible outcomes, and therefore, a higher probability of fitting the observed series. This situation 

is worsened by the presence of position offsets, which essentially reduce the longest periods 

observable in the series, increasingly favoring the GM model. Offsets reduce our ability to determine 

precisely the goodness-of-fit of competing noise models as reflected by the increased dML 

thresholds with the offset rate in Table 1. An additional limitation of the MLE method concerning the 

GM model is the unrealistically low velocity uncertainty it provides, which is likely caused by 

unaccounted correlation between the functional and the noise model parameters, especially the 

cross-over period (Langbein, 2020). 

In their recent study, He et al. (2019) analyzed 110 series of at least 12 years length to investigate 

whether the power spectrum flattens at the longest periods. They found that for 90 % of the series, 



the noise could be described by a GM process. This figure dropped to 5 % of the horizontal and 13 % 

of the vertical series when excluding the GM fits having a cross-over period between the Gaussian 

and the Markov-like processes smaller than 1 year. From the JPL series in our study, we find that, 

depending on the coordinate component, between 48 % and 76 % of the series would be better 

described by a GM process if the impact of offsets in the dML thresholds were not accounted for 

(Table 2). These numbers are reduced to 27 % and 35 %, respectively if we exclude the GM fits having 

a cross-over period smaller than 1 year. These results are comparable to those we obtained with the 

dML thresholds at 95 % including the offset effect (Table 2), which would support the arbitrary 

threshold on the cross-over period applied in past publications (He et al., 2019; Santamaría-Gómez et 

al., 2011). However, the percentage of series preferring a GM noise model is still 3 to 5 times larger 

in our results compared to those from He et al. (2019). To choose the best-fit model, He et al. (2019) 

used a modified Bayesian Information Criterion penalty function that was added to the logarithm of 

the maximum likelihood estimate. This penalty function is slightly different than the empirical log-

likelihood thresholds that we used when the offset impact is not accounted for (r = 0 in Table 1), 

which would not explain these differences. 

We may instead explain the difference of our results with those from He et al. (2019) due to a 

combination of the following reasons. First, they considered series of different lengths and only 20 

out of their 110 stations had the maximum length of 20 years, compared to all 127 in our study. If we 

consider that the GM model was mainly retained in their longest 20 stations, then their GM ratios 

would rise closer to our results. Second, it is very likely that their series had a different set of 

estimated offsets than those in our series. Since almost all of their fitted GM models had a cross-over 

period shorter than a year, it would indicate that the power in many of their error spectra was 

decaying at shorter periods than our spectra, i.e., their series may have been fitted by more offsets 

than ours. Third, they used a different software for the noise content analysis that provides slightly 

lower spectral indices for short series (Bos et al., 2013). It is unknown to us if their software would 

also provide shorter cross-over periods for the GM model. Fourth, they analyzed PPP series from an 

older version of the same GNSS software with, importantly, obsolete orbits and clock products 

consistent with the IGS 1st reprocessing campaign. Those products may possess higher levels of FN 

(Amiri-Simkooei et al., 2017). 

Since offsets can potentially bias the observed noise amplitude and even the noise color, if not 

accounted for, they might negate the conclusions drawn from the comparison of noise levels 

between different solutions (Amiri-Simkooei et al., 2017) or different monument types (Langbein & 

Svarc, 2019). In order to obtain comparable noise levels between different series, we recommend 

using similar sampling, including the series length and gaps, and also, if possible, the same set of 

offsets. The latter may not be possible if an offset is generated by incorrect metadata during the 

reduction of the GPS observations or if the series belong to different instruments with different 

antenna monuments and tracking histories. 

We foresee that, if the current frequency of estimated position offsets does not change or even 

increases in the future, as the series get longer the error power spectrum will continue to drop at 

long periods as we have shown in Fig. 2, i.e., the longest period available to estimate the noise 

variance will not follow the increasing series length. This will prevent us from obtaining further 

information on the interannual to decadal error band compared to the information we already have 

today. Like a chameleon, we will never see the true noise color of the GPS position errors at such 

long periods. For instance, the power spectrum drop caused by the estimated offsets seriously limits 

our ability to address relevant scientific questions such as the expected periodic Earth deformation at 

long periods recently modelled by Ding et al. (2020). A signal with a period of ~5.9 years lies very 



close to the period where the power spectrum is mostly flat and starts decaying in the best and 

longest JPL series available today. We have not been able to find any sign of a significant spectral 

peak emerging out of the noise in this band in any coordinate component (Fig. 1), which confirms a 

recent modeling of the mechanism of this signal (Gillet et al., 2020). 

In addition, due to the presence of offsets, the resulting error spectrum significantly deviates from 

the expected null hypothesis of a FN. The consequence is that since the error spectrum is not 

observable at the longer periods, the null hypothesis for the background noise cannot be well 

defined. We lack enough offset-free series that would indicate whether the GPS error spectra deviate 

from a FN process at the longest periods: the error spectrum could continue unabated, still following 

a FN process; it could flatten, indicating that the process generating the FN ceased being dominant; 

or it could become steeper, indicating that another process noise overcomes the FN, for instance RW 

noise caused by the monument instability.  

A consequence of this is that it will be necessary to use a heuristic null hypothesis for the noise 

model, not entirely supported by the observations, in order to obtain less biased velocity uncertainty 

estimates. Somehow, we are already seeing this scenario today when the impact of offsets is not 

fully accounted for and the best fitting model is a GM process that is arbitrarily rejected because of 

the unrealistically low formal velocity uncertainty it provides. The estimated position offsets also 

contribute to hide relatively small RW amplitudes in global GPS solutions as shown in Fig. 3. To avoid 

this situation, a more conservative approach to estimate the velocity uncertainty would be to fix the 

noise model to FN and also adding a relatively small amount of RW, compared to the estimated FN, 

to compensate to some extent for both the unobserved RW noise and also the small reduction of the 

estimated FN amplitude by the offsets. 

5.2 Impact of offsets on velocities 

Beyond the impact on the estimated noise level and color, the offsets also have a significant impact 

on the estimated velocity. Indeed, there exists a threshold on the offset size below which correcting 

the offset may produce a larger velocity error than if the offset was left uncorrected (Gazeaux et al., 

2013; Griffiths & Ray, 2016). Williams (2003) demonstrated that an offset in the middle of the series 

introduces the largest velocity error compared to a different location in the series. If the offset is 

located near the beginning or end of the series, the velocity error being added becomes negligible 

compared to the velocity error without the offset. A similar scenario results if more than one offset is 

added very close to the beginning or end of the series, provided the length of the series before or 

after the offsets does not change significantly. In other words, the velocity error obtained from the 

fitted functional model is inversely proportional to the length of the continuous series between the 

offsets and not proportional to the number of offsets in the series. Certainly, when the offset is in the 

middle, the longest continuous segment of the series is the shortest of any other offset location 

possible, and therefore the velocity error is the largest possible. 

In the case of a series free of offsets for N years, adding a new offset at the end will barely affect the 

present velocity error. However, after adding an offset, as the series length continues to grow, the 

velocity error will decrease much slower than if the offset had not been added. The maximum impact 

of the added offset on the velocity error will occur approximately when the series reaches a length of 

twice the current length (2N years), or slightly earlier in case the series is dominated by FN according 

to Williams (2003). The actual velocity error added by the offset will be indirectly proportional to the 

length N. From the epoch of maximum impact around 2N, as the series gets longer, the velocity error 

will decrease until the impact of the added offset vanishes more than 4 or 5 times N years in the 

future. Therefore, when planning a configuration change that would likely introduce a new offset 



into a series, the station manager should consider the increased velocity error that will result in the 

long-term, especially when the series is approximately twice the current length. For series having 

several offsets, the velocity error will accumulate the effects of the different offsets. 

When the offsets are equally spaced in the series, as typically in simulation studies, both the 

separation between the offsets and number of offsets provide equivalent assessments of the velocity 

errors created by offsets, though their representation is still different and may lead to confusion. 

Figure 5 shows different metrics for the velocity errors from zero-trend synthetic FN series having 

different numbers of estimated offsets. This figure shows that in the case of considering the total 

number of equally-spaced offsets (right panel), the velocity error increases linearly. However, in case 

of considering the equivalent separation between equally-spaced offsets (left panel) the velocity 

error increases similarly to a RW process generated exclusively by the functional model being fitted. 

We note that the same velocity errors from the same set of offsets are shown in both panels of Fig. 

5, only the independent variable in the X axis of the panels is different. The functions used to predict 

the increase of the velocity error with offsets are different depending on the chosen independent 

variable, i.e., quadratic or linear. This reconciles the apparently contradictory results from WH19, 

who considered the total number of offsets in the series, with those obtained earlier by GR16, who 

consecutively split the available series in half and considered the rate of offset occurrence, i.e., the 

inverse of their separation. 

Another major difference between the findings by GR16 and those by WH19 is that while the former 

discussed the impact of offsets on the reference frame realization via a full network inversion 

assuming WN data, the latter discussed the impact of offsets on the formal velocity errors while 

using different hypotheses for the noise model. To explain their different results, WH19 emphasized 

the importance of considering colored noise against WN when estimating the formal velocity error 

and its change with offsets. They created synthetic series with different types of noise processes, 

some of which, for instance WN or RW series, are not reasonable examples of actual GPS series. They 

concluded that, depending on the noise type of the series, the impact of adding a single offset on the 

formal velocity errors can be quite different. The actual velocity errors are dependent on both the 

number of offsets and the type and amplitude of the colored noise, which should be generally 

consistent with a power-law noise spectrum close to FN. In their study, GR16 employed actual IGS 

series, which contain FN, to observe how the estimated velocity changes by increasingly doubling the 

rate of artificially inserted position offsets. When the number of offsets in the series is relatively high 

the scatter of the velocity estimates depends little on the type and amplitude of the colored noise 

Figure 5. Velocity errors from 1000 synthetic series of 20 years having 6 mm yr -0.25 of FN as a function of a) the separation 
between offsets of 2, 4, 6, 8, 10 and 20 years, and b) their equivalent number of total offsets in the series, i.e., 9, 4, 3, 2, 1 
and 0 offsets (right). Velocity errors are provided from the scatter of the velocity estimates (SD velocities) or from the formal 
velocity uncertainties from a FN model only (noise) and the FN model plus the functional model (trend+offsets). 



used to estimate the velocity and its formal error, provided the noise type is consistent with FN. This 

is due to the larger contribution to the velocity error by the offsets than by the colored noise. This 

fact is not observed if the noise in the series is consistent with RW, which, we insist, is not a realistic 

noise model to describe real GPS series. In addition, in their analysis with the simulated series, WH19 

estimated the impact of offsets on the formal velocity errors without re-estimating the apparent 

change of the noise type and its parameter values after adding the offsets; they used the same 

covariance matrix as the one used for creating the synthetic series in the first place. Therefore, their 

estimated formal velocity errors do not account for the fact that the error power spectrum at long 

periods is severely reduced by the added offsets as we have demonstrated in this study. For instance, 

we show in Fig. 5 that, while the scatter of the estimated velocities assuming WN increases with the 

number of offsets, the contribution of the colored noise to the formal velocity error decreases 

because the fitted noise model is progressively whiter. This means that the findings by WH19, with 

respect to the synthetic series, do not describe the complete impact offsets have on GPS velocities as 

we do in our study.  

By adding equally-spaced artificial offsets into real IGS position series, GR16 found that the velocity 

error due to the actual rate of offsets removed from the series, i.e., their average span separation, is 

at the level of 0.09 and 0.34 mm yr -1 for the horizontal and vertical components, respectively. These 

values correspond to the average IGS rate of offset occurrence at that time. In our study, using 

synthetic FN series that reasonably match the JPL PPP series (Fig. 2), we find velocity errors at the 

level of 0.08 and 0.21 mm yr -1 due to the offsets that JPL removed from the series. These values 

were obtained from the scatter of the fitted trends with and without the JPL offsets while also fitting 

the parameters of a FN process. If we consider WN instead of FN, as GR16 did, the scatter of 

velocities changes by less than 0.02 mm yr -1, supporting the quantification of velocity errors by 

GR16. Our numbers are smaller most probably due to the fact that colored noise in the JPL series is 

lower than in the IGS series, and also due to the fact that we considered synthetic series with real 

irregularly-distributed offsets, while GR16 considered real series with artificial equally-spaced offsets, 

which tends to increase the error. For completeness, the median formal velocity uncertainty of the 

real JPL series used in this study, taking into account the offsets and also a FN model, is at the level of 

0.09 and 0.29 mm yr -1, respectively. These number were obtained from the real series instead of the 

synthetic FN series, but very likely, most of the estimated formal error could be explained by the 

above-mentioned contribution of the offsets alone and marginally by the contribution of the noise 

model, contrary to the conclusions by Wang and Herring (2019). 

Also importantly for velocity estimates is that, due to the removed trend and offsets, it is very 

difficult to say how much RW truly contributes to the series variance. At most, given the separation 

between offsets in the series, we provided in Fig. 3 the probability that the RW does not exceed a 

given threshold. Inversely, by setting a detection threshold, we can assess the maximum amount of 

RW that could be present in the series. An alternative approach was followed by Langbein (2012) 

who estimated the upper bound of the RW variance by sequentially increasing it until the dML value 

of a FN+RW model with respect to a FN model exceeded the value of 2.6. This dML threshold agrees 

well with our values in Table 1. At the end, the estimated formal uncertainty of the velocity becomes 

a subjective choice, i.e., depending on how conservative velocity uncertainties one prefers to obtain, 

a different amount of RW noise could be assumed up to a reasonable limit. Despite RW noise having 

been detected in several regional or very-short baseline solutions, most of the studies using global 

GPS solutions have chosen to not consider RW noise in the velocity uncertainty budget, certainly 

because it has not been detected as a main contributor of the error spectrum. A remarkable 

exception is Langbein (2012) who proposed using a noise model composed of FN and RW noises 

instead of the typical PL noise model to obtain a more conservative velocity error budget. We argue 



that, with the state-of-the-art GPS series in our study, we cannot rule out the possibility that the RW 

noise is indeed affecting the velocity estimates even if we were not able to detect it. The GPS velocity 

errors of a global solution would be much larger if RW noise were to be considered, especially in the 

vertical component where the larger series variability allows for a larger RW noise to pass 

undetected. The potential geophysical consequences include, for example, the long-term stability of 

the terrestrial reference frame (Altamimi et al., 2016), assessing recent sea-level changes 

(Santamaría-Gómez et al., 2017) or our understanding of the Earth rheology and the glacial history 

(Schumacher et al., 2018) rely on accurate GPS velocity errors. 

In light of the broad impact that offsets have on the GPS velocities as shown for the first time in this 

study, our recommendation is that if the station manager wants to change an already running GPS 

antenna, for instance to augment the tracking capabilities of the station, the antenna change should 

be made immediately after an unplanned offset occurred, e.g., an earthquake that displaced the 

antenna. Otherwise, we recommend installing a new station nearby to benefit from the already 

existing infrastructure like access, security, power, communications, etc. As a general rule, a 

functioning antenna must never be touched for the interest of science, contrary to the advice of 

WH19. 

5.3 Origin of colored noise 

The underlying physical origin of colored GPS noise and its change in time is still an open question. 

Santamaría-Gómez et al. (2011, 2013) investigated the impact of the evolving tracking network, the 

evolving satellite constellation and the evolving rate of fixed phase ambiguities. None of these effects 

could explain the observed decrease in colored noise amplitude with time. Here we have 

demonstrated that the frame alignment process also cannot explain either the observed colored 

noise or its change with time. 

Using synthetic series with different proportions of FN, we were unable to explain the stacked error 

spectra resulting from the JPL residual series. The real series exhibit spectra that are significantly 

lower in power at the longest periods even if we account for the damping of the colored noise 

caused by the estimation of position offsets. The mismatch between the real stacked spectra and the 

simulated FN spectrum is more evident for the vertical component than for the horizontal (Fig. 2). 

Spectral indices of the horizontal components have been reported to be closer to flicker noise than 

the vertical component (Rebischung et al., 2016b; Santamaría-Gómez et al., 2011; Williams et al., 

2004). Although surface load mass variations can introduce significant colored noise in the vertical 

component (Santamaría-Gómez & Mémin, 2015), the fact that flicker noise is visible more clearly in 

the horizontal component argues against the hypothesis of flicker noise being mainly created by 

surface mass load variations, which are significantly more important on the vertical component than 

in the horizontal. Another concurrent indication is the fact that the colored noise content is getting 

whiter with time even if non-tidal loading corrections are not currently included in the conventional 

corrections applied to the series and their effects are most likely not decaying with time. 

What causes a spectral index that is whiter than flicker is as intriguing as what causes the FN itself. 

This situation can probably only be explained by a combination of different error sources, i.e., we are 

looking for a process that dampens FN in the vertical component while having minimal impact on the 

horizontal components. We demonstrated that the frame alignment process certainly contributes in 

the same direction, but its magnitude is rather negligible. Actually, surface mass load variations are a 

good candidate for such a process. Santamaría-Gómez and Mémin (2015) showed that the 

combination of modeled atmospheric, oceanic and hydrologic load variations results in colored noise 

that can be described by a PL with a spectral index varying spatially from WN to RW (see map of 



figure S1 in Santamaría-Gómez and Mémin (2015)). The median spectral index of the modeled load 

variations for the vertical component at the 127 JPL series used in this study is −0.7, i.e. significantly 

whiter than a flicker process. In addition, the median amplitude of the colored noise obtained from 

the modeled surface loads at the 127 stations and scaled to weekly sampling is ~4 mm. This equals 

almost two-thirds of the observed PL amplitude of ~7 mm in the residual weekly vertical JPL series, 

which implies that the surface mass load variations add noise to the series, mostly on the vertical 

component, but the noise added is whiter than FN. One may conclude that the surface mass loads, 

contrary to causing the FN observed in the series, probably contribute to hide it, making the vertical 

series appear whiter than the horizontal components. 

6. Conclusions 

Offsets in GPS position time series are one of the biggest limitations concerning the precision of the 

estimated GPS velocities. Yet, the best GPS series are populated with offsets, many of which are 

related to equipment testing and upgrading which are avoidable. The use of algorithms for automatic 

offset detection may even increase the number of spurious offsets that are included in the model 

fitted to the GPS series. Here, we address for the first time the complete impact that estimated 

position offsets have on the GPS velocities, their uncertainty and the colored noise of the residual 

series. 

We have shown how the estimated offsets absorb most of the series variability at periods longer 

than their average spacing. The result is that at interannual to decadal periods, the noise power 

spectra of the GPS position time series changes color, like a chameleon, and becomes 

uninterpretable as a quantitative measure of the contributing noise processes. The more offsets 

introduced into the series, the less information is obtained from the error spectrum. This could 

severely affect our ability to objectively provide a noise model that fully describes the temporal 

correlation of the GPS series. We have shown how the offsets effectively increase the degrees of 

freedom of the model fitted to the series, resulting in an inflated dML threshold necessary to reject 

the flicker noise null hypothesis. If the correct dML threshold is not used, any colored noise model 

fitted to GPS series having offsets will be biased low, i.e. towards WN, and the preferred noise model 

may even be wrongly selected, e.g. a Gauss-Markov process instead of a flicker or power-law 

process. As a result, the estimated formal velocity uncertainty will be biased low. If one is interested 

in obtaining conservative formal velocity uncertainties, it is necessary to subjectively choose a noise 

model that is not clearly supported by the observed error spectra, for example a FN model topped 

with a relatively small amount of RW. 

The subjectivity to choose a more accurately representative noise model also concerns the amount 

of RW that the analyst is willing to add to the velocity uncertainty budget. On most past studies using 

global network or PPP solutions, the RW has never been included in the velocity error budget 

because it has not been detected over other noise types. We have shown how the inclusion of 

offsets in the series renders the detection of RW even more difficult in long series that actually 

contain RW. We conclude that the common assumption that RW does not contribute to the velocity 

error is questionable, especially considering that RW has been detected in regional or short-baseline 

solutions with greater sensitivity due to spatial filtering. The addition of a small quantity of RW, even 

if not observed directly, will significantly raise the GPS velocity uncertainty and especially in long 

series with frequent offsets where the amount of RW that could be allocated in the error budget is 

larger. 



The unobservability of the noise power spectra at long periods caused by the estimated position 

offsets also has severe consequences for our ability to observe and discover long-period Earth 

deformation signals. A periodic Earth deformation signal with a period of ~5.9 years has been 

suggested in recent literature. This period is exactly located where the error spectrum is obscured by 

the estimated position offsets in the best and longest JPL series to date used in this study. Despite 

recent claims for the detection of this signal, we were unable to find any sign of a significant signal 

emerging out of the noise in this band in any coordinate component. 

The origin of colored noise in GPS position time series and its change with time is still an open 

question. We have demonstrated how the frame alignment process, that is inherent to the 

construction of any GPS series, does not play a significant role if it is realized in an optimal way by 

minimizing the network effect. Surface mass loads could at least partly explain why the noise is 

whiter in the vertical component than in the horizontal, but they cannot explain why the noise color 

is becoming whiter in the most recent data. In addition, the offsets already present in the GPS series 

prevent us from observing the properties of the colored noise at long periods. If offsets continue to 

appear in the series at the current rate, they will represent a major limitation for our understanding 

of the GPS error spectrum reducing the value of longer series in the future. 
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