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Key points: 

 Position offsets attenuate most of the power spectrum at long periods and severely impact 

velocity estimates and their uncertainties. 

 Due to estimated position offsets, the best-fitting noise color changes from a pinkish power-

law to a white Gauss-Markov process. 

 Position offsets severely reduce the chances of detecting random walk noise and long-period 

Earth deformation signals in long GPS series. 

 

Abstract 

It has been standard practice for about two decades to compute GPS-based station velocity 

uncertainties using the apparent noise statistics of the non-linear position residuals rather than 

assume white noise (WN) behavior. The latter choice would yield unrealistic velocity uncertainties. 

The most common noise types used are power-law, usually close to flicker noise (FN), over most 

frequencies mixed with WN at the shortest periods. The complicating impact of offsets in the 

position time series, mostly caused by equipment changes or tectonic events, has not been fully 

appreciated. These are far less benign than recently suggested. In addition to contributing a pseudo-

random walk noise (RW) component to the velocity errors, estimating offset parameters changes the 

apparent noise color towards whiter, to the point that FN can no longer be considered the model 

that objectively best describes the observed GPS position spectra. Spectral power is effectively 

drained by offsets at periods longer than roughly the mean span between them. This consequently 

promotes a Gauss-Markov process as the preferred noise model and, importantly, obscures the 

presence of RW and long-period Earth deformation in the series. Both effects can lead to potentially 

under-estimated velocity uncertainties. The full value of decadal-long GPS time series for 

geodynamical applications is thereby greatly eroded by recurring offsets, especially when they occur 

quasi-regularly. In addition, contrary to common assumption, the noise color is generally not fixed 

with time, but clearly becomes whiter in more recent data. The origin of the colored noise and its 

whitening over time remain elusive.  
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1. Introduction and motivation  

This paper addresses the central problem of GPS time series analysis: the separation of what is 

considered signal, i.e., the systematic variations, from what is considered to be noise, i.e., the 

random variations of usually unknown origin. A functional model is commonly fit to a GPS position 

time series to represent the signal, consisting of a linear trend, periodic variations, and irregularly 

timed position offsets as needed. It was realized in the 1990s that weighted least-squares fitting for 

the functional model with formal error propagation yields highly optimistic uncertainties for geodetic 

parameters. Then the discovery that the GPS-based errors are correlated both spatially (Wdowinski 

et al., 1997) and temporally (Zhang et al., 1997) led to more robust methods to assess and quantify 

the levels and types of noise in time series of GPS station positions (Mao et al., 1999). The main goal 

was to obtain more reliable uncertainties for GPS-based velocities, which are needed for many 

geodynamical studies such as measuring intra-plate tectonic stability and correcting vertical land 

motion from tide gauge records. A general consensus quickly emerged that GPS time series errors 

combine mostly white noise (WN) at shorter periods, typically less than a month, with flicker noise 

(FN) or similar power-law noise (PL) over longer spans, from monthly up to decadal periods (Mao et 

al., 1999; Zhang et al., 1997), although some level of background random walk (RW) error cannot be 

excluded. Consequently, velocity uncertainties can be under-estimated by as much as an order of 

magnitude if WN alone is assumed (Mao et al., 1999). 

Development quickly followed of several mathematical tools to enable users to evaluate models of 

alternative noise types and amplitudes in observed GPS time series (Amiri-Simkooei et al., 2007; Bos 

et al., 2013; Langbein, 2004; Williams, 2008), which have been widely adopted for published noise 

analyses. One of the most common mathematical approaches found in the literature is the maximum 

likelihood estimator (MLE) which is well adapted to fit any noise model or combination of noise 

models to univariate time series. Very recently, this approach has been extended to analyze spatial 

common-mode noise models from regional GPS networks (Dmitrieva et al., 2015). 

In this study, we analyze the impact the functional model, particularly position offsets, has on the 

apparent color of the noise model fitted to the position time series. Two very recent papers have 

raised questions about the orthodox interpretation of the long time series that are increasingly 

available nowadays. He et al. (2019) conclude that GPS noise does not flatten at low frequencies 

while assuming that the noise properties are stable over time, which we will reiterate below is not 

justified, in part due to the effect of occasional position offsets. Meanwhile, Wang and Herring (2019) 

attempt to show that the impact of position offsets is less serious than previously thought. These 

authors base their conclusions on serious misrepresentations. It is the objective of this contribution 

to clarify these points and to offer new perspectives on the information obtained from the colored 

noise in GPS position time series. 

2. Background 

2.1 Basics of time series computation 

Most studies of GPS noise start with some particular set of time series with little or no regard for the 

process that was used to generate them or how alternative results might compare. It is, however, 

instructive to first consider the processing steps that produce observed GPS time series as this affects 

their noise content. “GPS” in the following can increasingly be regarded generically as “GNSS”, but in 

actual fact, for the long time series considered here, GPS observations have been used exclusively. 



Three types of GPS data processing can be distinguished that produce time series of station 

positions: 1) full global network solutions free of any a priori over-constraints; 2) precise point 

positioning (PPP) of several sorts; and 3) regional network solutions. The International GNSS Service 

(IGS) and its Analysis Centers (ACs) are the prime examples of global network providers. Their 

occasional IGS reprocessing campaigns generate the GNSS inputs for the International Terrestrial 

Reference Frame (ITRF; Altamimi et al. 2016) and for many PPP solutions. PPP allows a single GNSS 

station to be positioned by assuming a priori satellite orbits and clocks from some given global 

solution provider (Zumberge et al., 1997). This is an efficient and autonomous method to densify a 

global solution that is usually limited in size by CPU constraints. The quality of PPP solutions is poorer 

when integer phase ambiguities are not fixed, but improve notably, especially in the east component, 

when double-differenced or one-way ambiguities are resolved, which is the usual case today. 

Regional networks are processed for many local or national applications requiring dense coverage, 

and can yield highly precise differential positions due to the natural rejection of common-mode 

errors. 

The assignment of absolute geocentric coordinates to estimated station positions depends on the 

type of processing used. The IGS global network positions are realized, after combining independent 

AC solutions, by aligning each unconstrained daily frame via no-net-rotation (NNR) to the current 

linear ITRF coordinates using a "core" subset of well-distributed and reliable reference stations, 

typically numbering between about 40 and 80 (Rebischung et al., 2016b). This alignment process 

unavoidably redistributes non-linear displacements, both genuinely physical as well as technique 

artifacts, among the reference stations to all other network members (Collilieux et al., 2012). By 

including as many reference stations as possible, as uniformly spaced as possible, the net alignment-

induced scatter should be much less than if only a few fiducials were used. Ray et al. (2017) showed 

that the long-term weighted root-mean-square (WRMS) of this rotational scatter is about 25 to 30 

µas, equivalent to about 0.8 to 0.9 mm of equatorial motion, which corresponds to the estimated 

accuracy of daily IGS polar motion measurements. This same level of scatter also matches the 

observed WRMS error floor for daily IGS horizontal GPS positions after removing periodic variations, 

actually, about 0.9 and 0.8 mm for North and East components, respectively. Individual stations 

often display scatter that is considerably larger than these floors due to a variety of local effects. Ray 

et al. (2017) also found a WRMS error floor for non-periodic GPS station heights of 3.0 mm, which is 

commensurate with the usual ratio of GPS vertical to horizontal errors. The spectral qualities of the 

net frame alignment scatter were not studied by Ray et al. (2017) except to describe them as 

broadband and with more power at longer periods, i.e., reddish noise. 

At a minimum, time series of PPP estimates inherit the net noise properties of their reference global 

network solution, and its ITRF alignment, that have been fixed in the processing. In fact, contrary to 

assertions by Zumberge et al. (1997), the actual performance of a PPP solution must always be 

degraded somewhat by loss of the full solution covariance information and by any potential 

deviation from identical modeling applied in the global network versus the PPP data reductions. (See 

further points in section 4.1). 

Regional network solutions are particularly effective in estimating very precise horizontal positions 

and velocities by innately suppressing spatially coherent errors and by being generally less sensitive 

to large-scale effects, e.g., orbit errors. But they do not provide reliable absolute geocentric heights 

for the same reason and long-term alignments of regional frames to ITRF are subject to significant 

biases (Legrand et al., 2010). 



2.2 Analysis effects in GPS noise 

There have been few quantitative comparisons between the GPS noise characteristics from different 

IGS ACs or from different types of computation strategy (global, PPP, regional). Using the AC-specific 

station residuals from continuously updated operational IGS combined products might be instructive 

to some extent, but the interpretation is confused by comparison to the weighted AC mean. To 

address this concern, Rebischung et al. (2016a) formed individual long-term solutions for each AC in 

the second IGS reprocessing campaign (i.e., Repro2) and examined the station residuals. There was a 

large variation among ACs in the number of stations processed, but the quality of solutions was 

generally rather similar. The background non-periodic power is well described, except for JPL, as 

high-frequency WN plus a PL with spectral index near -1 for North and East and near -0.8 for up. The 

JPL behavior differs in having less WN, which is undetectable for heights, and having smaller PL 

spectral indices of -0.72 to -0.74 for North and East and -0.52 for up. 

On the surface this result seems to imply that WN is largely a product of data analysis and not 

derived from GPS observational noise. But that conclusion could be undermined by the facts that the 

JPL Kalman filter processor might simply absorb WN into its parameter estimates or that the JPL use 

of data arcs that overlap by 3 hr with adjoining days before and after could exert a strong smoothing 

effect. EMR/NRCan is the only other IGS AC using the JPL Kalman filter but they fit strict 24-hr arcs 

and have noise properties similar to the other non-JPL ACs, which supports the second possibility of 

implicit smoothing.  

The attenuation of WN is at least partly produced by the implicit smoothing effect of including 3 hr 

overlaps from the previous and the following daily observations. This is the case in the JPL 

processing, but it is less clear how any difference of the JPL analysis scheme can reduce their spectral 

indices by ~0.3. After all, the geophysical processes that affect GPS data and positions, such as 

surface pressure loading, contribute effects that have distinctly red spectral variations, at least up to 

periods of a year or longer. One guess is that the critical element might involve JPL's estimation of 

satellite solar radiation pressure (SRP) variations as 3D stochastic offsets rather than as harmonic 

parameters, as most ACs do, but EMR also uses 3D stochastic SRP estimation. 

Concerning position offsets, Williams (2003) showed that the presence of undetected and 

unmodeled position offsets in GPS time series contributes a RW noise component. He also evaluated 

the impact of adding offset parameters to the functional model, for various background noise types. 

Griffiths and Ray (2016) quantified the magnitude of the RW-like noise due to adding position offsets 

in an ITRF-type global network solution. Under these circumstances and because some station 

hardware changes cause discontinuities while others do not, different ACs are expected to introduce 

varying amounts of RW noise when they use incomplete metadata for the station equipment 

changes. This effect is probably not dominant among AC noise differences, however. 

2.3 Assumptions of noise analysis and the evolution of colored noise 

In constructing analytical methods to evaluate GPS positional noise, a number of assumptions must 

be made, some of them by implication only. Basic is the natural notion that the total observed GPS 

noise is a superposition of different physical processes each with its own spectral characteristics. 

Some processes might be so slight, compared to others, that their noise effects cannot be detected 

directly or the data span that would be needed is very long, e.g., RW. Under these circumstances, it is 

not generally possible to invert a GPS spectrum to infer its constituent noise components. Instead, 

forward modeling of a range of possible noise types and amplitudes is usually performed and tested 

by best-fitting against the observations, which is of course non-unique and prone to subjectivity. 



Another key assumption almost always made is that the mix of noise characteristics for any given 

time series is constant over time, despite observations of Williams et al. (2004) and Santamaría-

Gómez et al. (2011) to the contrary. Time series, especially long ones, often display non-stationary 

noise properties that are evident to the eye. For examples, please view the JPL PPP website at 

https://sideshow.jpl.nasa.gov/post/series.html and check plots for these long-running stations: ALIC, 

CAS1, CHUM, COCO, DAV1, GENO, KIR0, KIRU, MAS1, MATE, MEDI, NRC1, ONSA, PIN1, RAMO, SFER, 

TOW2, UCLU, ZIMM. There has been an overall trend towards improved GPS tracking hardware and 

more robust ground networks on the one hand, but degradations and gradual failures at individual 

stations can happen at any time. This is why visual inspection of the series, as done in this study, is of 

uttermost importance to support the conclusions of a given analysis. The JPL plots also illustrate the 

pervasiveness of position offsets in any GPS solution, which average about 0.9 per station per decade 

in the IGS Repro2 global analysis (Rebischung et al., 2016b), the dataset used by Griffiths and Ray 

(2016). 

3. Data and methods 

In this study we used residual daily GPS position time series from the JPL online service 

(https://sideshow.jpl.nasa.gov/post/series.html; accessed in May 2019). These series are estimated 

using the PPP technique with phase ambiguity resolution and JPL final orbits and clocks products. The 

daily PPP frames were NNR-aligned to the IGS14 realization of ITRF2014 (Rebischung et al., 2016b) 

using transformation parameters estimated at the same time as the orbit/clock products in a full 

global network solution. JPL data reduction models and procedures were updated following Repro2 

(IGS Mail 7637, 5 June 2018) and applied in the network solution and in the PPP processing, including 

antenna calibrations consistent with the IGS14 frame. This latest JPL PPP reprocessing ensures the 

temporal coherence of the historic series with their current operational products. The residual series 

were obtained after removing linear trends, seasonal variations, position offsets, and outliers. JPL 

uses an automatic offset detector that Gazeaux et al. (2013) ranked as the second-best automatic 

solution in their study. 

From the initial set of 2567 stations available, we retained 137 stations having at least 20 years of 

data since 1999, less than 10% of missing points, and gaps not longer than 5 months. These 137 

stations were screened for quality using SARI (Santamaría-Gómez, 2019) in which we removed 

several outliers most probably caused by snow/ice on the antennas. In addition, we added position 

offsets for 8 stations that were visually identified and judged to be significant against the colored 

noise content in the series. After this check, we rejected 8 more stations having unusual residual 

distributions or strong changes in their variability, leaving 129 long, high-quality stations for this 

study (see all the information in the supplemental material). We observed a very irregular temporal 

sampling for some of these stations with, occasionally, multiple points estimated on the same day 

separated by only a few hours. This is probably caused by JPL merging their global network and PPP 

estimates for the same station. To avoid this, we removed the daily estimates with epochs before 6 h 

UTC or after 18 h UTC. We also note there are more than 3 offsets per station per decade on average 

among the selected 129 stations, which is particularly large compared to the value for the IGS Repro2 

series. 

We acknowledge the JPL PPP series have distinct noise characteristics compared to other GPS 

position series, but they provide the longest homogeneously reprocessed residual series to date, 

before the next IGS reprocessing campaign, and for an extensive number of global stations. Judging 

from IGS combination reports (see weekly orbit and frame combination summaries at 

https://lists.igs.org/pipermail/igsreport/), the JPL analysis quality is outstanding also. This dataset is 

https://sideshow.jpl.nasa.gov/post/series.html
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therefore the best available for addressing several points concerning the noise content and the 

impact of position offsets. 

In the following, we used the Lomb-Scargle periodogram (Scargle, 1982) to represent the error 
power spectra and the Create and Analyze Time Series (CATS) software (Williams, 2008), which 
implements MLE, for the estimation of the noise power spectra. Here, we define, on one hand, the 
noise power spectrum as the power spectrum that is obtained from a noise analysis (e.g., CATS) that 
is conveniently used to assess the formal errors of a fitted model. On the other hand, we define the 
error power spectrum as the power spectrum that is actually observed in residual GPS series. In 
other words, the error spectrum represents the spectral distribution of the variance that is not 
explained by the reduction of the raw GPS observations nor by the fitted model to the series, and it 
includes random and systematic variations, both physical and spurious. Generally speaking, the noise 
spectrum is obtained by fitting the error spectrum with a particular stochastic process or mix of 
processes. Ideally, the noise spectrum and the error spectrum should be very similar, but we show in 
the next section that this is not always the case and that a distinction between them needs to be 
recognized. Since JPL did not fit the draconitic harmonics in the PPP series (see Fig. 1), we removed 
up to the tenth harmonic of the 1.04 yr draconitic period before estimating the noise spectrum with 
CATS. 

4. Results  

4.1 Noise types in the JPL PPP series 

The stacked error spectra of the 129 residual JPL series are shown in Fig. 1. Overall, the error spectra 

have a crowbar shape that could be described by a power-law process up to periods of ~5 years. The 

slope of the power-law is clearly lower than FN, especially in the vertical component. Beyond 5 years, 

the power spectra decay significantly in all the components. At the shortest periods, we observe that 

WN in not visible in any coordinate component. The PL clearly dominates the stacked spectra even at 

high frequencies of at least 100 cycles-per-year (cpy) or more. To quantify an upper bound of the WN 

amplitude, we assume the PL is actually dominated by FN, which is likely for the horizontal 

components, but not so much for the vertical component as we discuss later on. Considering a 

Figure 1. Stacked error spectra of the 129 selected JPL series for the three coordinate components. The spectra are shifted for the sake 
of visibility. The thick solid black lines represent the smoothed spectra. The thin dotted black line represents a pure flicker noise process. 



median FN amplitude for the daily series of 4 mm yr-1/4 for the horizontal and 11 mm yr-1/4 for the 

vertical component, and a cross-over period from FN to WN of less than 4 days, we bound the 

maximum white noise level to be 0.4 and 1.1 mm for the horizontal and vertical components, 

respectively. This is much lower than the WN reported for the other AC solutions of the last IGS 

Repro2 (Rebischung et al., 2016a) and reflects the smoothing inherent in the JPL global processing 

used for their PPP series. In addition, Ray et al. (2013) and Amiri-Simkooei et al. (2017) have found 

spurious ~5 d signals in the preceding JPL PPP time series that are not present in their corresponding 

global solutions, the source of which was unknown. The ~5-day signals reported in those past studies 

are not visible in this latest JPL solution, but nevertheless we still note a bump around 5.5 days (~65 

cpy) common to all the components and of unknown origin, but possibly related to the overlapped 3 

+ 24 +3 hr data arcs used by JPL. The power spectrum decays faster for periods shorter than 5.5 days 

in the vertical component only. 

Because white noise obviously does not play a part in the background error spectrum, in the 

following noise analysis we average the daily series into weekly series in order to speed up the 

processing without losing information on the colored noise content. 

Using CATS, we estimated the type and amplitude of the colored noise that best describes the error 

spectra of the individual series. To assess the impact of offsets in the noise analysis, we assume the 

background noise content of the series is constant and can be described by a unique noise model. 

We will demonstrate later that this hypothesis, commonly applied in most noise analyses, is not 

valid. At least we can assess how well a single model describes the background noise because all our 

series are available for the same period of time. Four noise models were tested: FN, PL, flicker plus 

random walk noise (FNRW) and a generalized Gauss-Markov noise model (GM), which includes a PL 

process at high frequency and a WN process at low frequency (Langbein, 2004). In order to 

discriminate the goodness of fit for each model, we used the estimated maximum likelihood plus an 

empirical threshold computed by Santamaría-Gómez et al. (2011) that accounts for the different 

degrees of freedom of each noise model. We verified the validity of these empirical thresholds using 

ad hoc FN synthetic series. 

The distribution of the best fitted noise model per component (labelled “Full series”), the noise 

model parameters and its degrees of freedom are given in Table 1. The FNRW noise model (2 

degrees of freedom) is not included in Table 1 because it was not selected as the preferred noise 

model in any of the series. These results corroborate our qualitative description of the stacked error 

spectrum in Fig. 1, i.e., the GM model dominates the other noise models and it is clearly the best 

model explaining the crowbar shape of the stacked full-series error spectrum. We observe that the 

spectral index of the GM process is significantly closer to FN than RW, consistent with the error 

spectra shown in Fig. 1 and indicating that the First-Order GM noise process used by Wang and 

Herring (2019), which combines WN at long periods with RW at shorter periods, may not be the best 

model to describe the noise in most of the series. 

Figure S1 in the Supporting Information shows the distribution of the 129 stations used in this study 

together with their preferred noise model for each component. Most of the stations are 

concentrated in Europe, Australasia and, especially, Western USA. To explore to what extent the 

stacked error spectra of Fig. 1 could be biased by the geographic distribution of the 129 sites, we 

computed two additional smoothed stacked spectra corresponding to the stations located in 

Western USA (64) and Europe (36). Figure S2 in the Supporting Information shows that while the 

spectra from the regional subsets are more variable due to the smaller number of sites, their general 

shape is consistent with the one from Fig. 1. 



 

Table 1. Percentage of the best fitted noise model per component. The numbers in parenthesis after the noise model names 

in the first column provide the degrees of freedom. The numbers after the different percentages indicate the 5%/50%/95% 

values of relevant noise model parameters for the selected fits (σ for variance in mm, k for spectral index and β for cross-

over period in years). Note that the variance corresponds to weekly sampled series. 

 East North Up 

FN (1) 

Full series 
16% 

σ=2.0/2.3/2.9 
7% 

σ=1.9/2.2/2.6 
2% 

σ=6.5/6.7/6.7 

Segments 
51% 

σ=1.9/2.1/2.7 
37% 

σ=1.8/2.3/3.3 
21% 

σ=5.7/6.8/11.1 

PL (2) 

Full series 
9% 

σ=2.0/2.3/3.1 
k=-0.62/-0.83/-1.13 

9% 
σ=1.8/2.1/4.0 

k=-0.48/-0.74/-0.87 

21% 
σ=5.1/6.4/8.3 

k=-0.61/-0.69/-0.82 

Segments 
27% 

σ=1.6/2.1/2.8 
k=-0.57/-0.76/-1.16 

25% 
σ=1.3/2.0/3.3 

k=-0.45/-0.72/-1.28 

64% 
σ=4.4/5.7/7.9 

k=-0.52/-0.70/-0.82 

GM (3) 

Full series 
75% 

k=-0.92/-1.20/-2.26 
β=0.2/1.1/2.2 

84% 
k=-0.98/-1.29/-2.09 

β=0.3/0.8/1.7 

77% 
k=-0.82/-1.05/-1.51 

β=0.3/0.8/1.7 

Segments 
22% 

k=-1.10/-1.51/-3.36 
β=0.2/0.5/2.1 

38% 
k=-1.14/-1.49/-2.38 

β=0.3/0.6/1.2 

15% 
k=-0.97/-1.25/-2.18 

β=0.2/0.4/0.9 

 

4.2 Loss of low-frequency power 

Although the GM model is by far the best fitting amongst those tested over the full data spans, the 

power spectrum of this noise model does not explain the sharp loss of power at long periods 

observed in the error spectra of Figure 1 (Langbein, 2004). It is known that the trend estimation 

absorbs part of the colored noise at the longest period and that the estimated colored noise from the 

residual series is biased low for short series (Langbein & Johnson, 1997). Here we argue that a 

significant amount of the low-frequency power spectrum is also absorbed by the estimated position 

offsets. 

To demonstrate this, we first reran the noise analysis, but using this time the continuous segments of 

the series between each pair of estimated offsets. From our initial 129 series of 20 years, we extract 

163 segments longer than 5 years with a median length of almost 9 years. Table 1 shows the results 

from this second run (labelled "Segments"). The dominant noise model for the East component is 

now FN. For the North component, it is equally distributed between FN and GM, closely followed by 

PL with a median spectral index of −0.7. For the vertical component, the dominant noise model is 

clearly PL with a median spectral index of −0.7. We also observe that GM, while not being the 

preferred noise model in any component anymore, still fits better the error spectrum of a quarter of 

the series on average. The FNRW was still not selected in any of the series. Considering the three 

components together, the preferred noise model is PL with a spectral index lower than FN. We note 

however that it is difficult to reach solid conclusions about the general noise model that best 

describes the error spectrum when the series do not have the same length nor cover the same 

period of time. This exercise at least confirms that the GM model is apparently promoted by the 

effect of estimated position offsets in long discontinuous series. 



Comparing the ratio of the selected GM models between the “Full series” and the “Segments” runs in 

Table 1, one would be tempted to state that the effect of offsets is to triple the chances to select a 

GM model on average for any component. However, this increase should be considered the upper 

bound effect. The true effect is very likely smaller because by extracting segments of the original 

series and comparing their noise content to the original 20-year series we are repeating the common 

flaw of comparing what is not comparable, i.e. comparing the noise content between series having 

different length. A more rigorous approach that could be applied, especially when comparing noise 

levels from different sets of series, is to use continuous segments of the same length and period, at 

the expense of reducing the number of exploitable series. Since that was not possible in this case, we 

carried out another test to demonstrate the impact of the offsets in the error spectrum by creating 

synthetic series with the same sampling as our 129 original series and different amplitudes of FN 

from Table 1. These series were then fitted with a linear trend and the same offsets as in the original 

JPL series. Figure 2 (black curves) shows how the FN power is absorbed at long periods slightly by the 

trend and mostly by the offsets. The simulated FN power spectrum starts flattening around a period 

of 3 years and the power starts dropping around a period of 7 years, which lies close to the median 

offset separation of the dataset of 8.2 years. The decay follows the crowbar shape of the real error 

spectra reasonably well. This indicates that, very likely, the error spectra of the GPS series actually 

would not decay or flatten if the series were continuous. 

4.3 Detectability of RW noise 

The loss of power at long periods caused by estimating offsets hinders the analysis of the error 

sources that may contribute in that part of the spectrum, for instance, the RW noise. In addition to a 

RW contribution due to remaining offsets in the series (Williams, 2003), it has been suggested that 

the instability of the antenna monument introduces some level of RW process noise in all series 

(Johnson & Agnew, 1995). For the best geodetic-class monuments, the amplitude of RW is expected 

Figure 2. Comparison of simulated (in black color) and real (in colors) smoothed error power spectra. The real 
spectra for East, North and Up are the same as in Figure 1. The simulated spectra includes flicker noise (dashed), 
flicker noise with trend estimation (dotted) and flicker noise with trend and offsets estimation (solid). 



to be several times smaller than the amplitude of FN and, therefore, it can only be detected in very 

long series or when the spatially-correlated FN is reduced, for instance in regional solutions and in 

short-baseline solutions (Dmitrieva et al., 2015; Hill et al., 2009; King & Williams, 2009; Langbein & 

Svarc, 2019). In our dataset of 129 stations of 20 years length we did not detect RW being 

significantly present in any of the series. Recent studies using network or PPP global solutions also 

report that RW does not play a significant role in the error spectrum (e.g., He et al. 2019). The low 

proportion of detected RW in global solutions has been attributed to the dominance of FN and the 

series not being long enough (Williams et al., 2004), to which we should add the estimation of 

velocities and the position offsets. 

Since the estimated position offsets absorb significant amounts of power in the band of the error 

spectrum where we expect RW to emerge, our chances to detect RW in long series are reduced. A 

lower probability to detect RW implies that the amount of RW potentially being hidden in the series 

could be quite large relative to the amount of FN. To quantify this, we ran a new noise analysis using 

synthetic series of 20 years having FN+RW in different proportions and with offsets being estimated 

at different intervals. Figure 3 shows that the success rate of detecting RW over a general PL is 

heavily affected by the amplitude ratio FN/RW, by the velocity estimate and in smaller amount, but 

still significant, by the length of the continuous series without offsets. The impact of the offsets is 

particularly important when the FN clearly dominates over the RW. As an example, for a series 

having an estimated offset every 6 years, which is a common scenario, the daily series could 

accommodate RW amplitude equal to 1/6 of the FN amplitude, i.e., typically ~0.7 mm yr-2 for the 

horizontal components and almost 2 mm yr-2 for the vertical component, and yet, we will have less 

than 10 % chance to detect this RW component. Lower RW amplitudes have been reported in past 

studies (King & Williams, 2009), which implies even less chances to detect it. For the same scenario, 

the success rate more than doubles if the offsets were not present in the series and, ideally, tops 

around 45 % if the velocity was not estimated (Fig. 3). 

Figure 3. Success rate of random walk detection in a FN+RW model against a PL model as a function of the amplitude 
ratio between flicker noise and random walk noise (y-axis) and as a function of the maximum length of the series 
without offsets (x-axis). The separated box to the right of the main image represents the success rate when the 
velocity and the offsets are not removed from the series. The impact of removing the velocity is determined as the 
difference between the rightmost values of the figure and the separated box on the right of the figure. 



4.4 Impact of frame alignment on error spectra 

It is clear that the functional model can severely alter the error power spectrum. Therefore, a natural 

question arises as to what would be the effect of the frame alignment on the colored noise of the 

series. The frame alignment is part of the functional model in any network solution and is also 

implicitly applied to any PPP solution via the fixed orbit and clock products from the network 

solution. To answer this question, we used 20 years of weekly IGS SINEX files starting in 1999. We 

modified the SINEX files by extracting the IGS14 core stations and replacing their weekly station 

coordinates by their linearized positions, extracted from the mean position and velocity of the IGS 

long-term frame, plus a synthetic FN series for each station. The idea is to quantify how much the FN 

series change after the frame alignment process. 

The variance-covariance of the weekly network solutions was left intact in the SINEX files. By doing 

this, we assume the spatial correlation of position errors and its changes through time are 

independent of the temporal correlation of each individual station. This hypothesis was necessary as 

it is not practically possible to synthetize a covariance matrix that accounts for FN in both the 

temporal and spatial domains at the same time in a least-squares network solution (Benoist et al., 

2020). In addition, this assumption is commonly applied in most studies when the colored noise 

content in a given series is estimated with no regard for its spatial correlation. 

We performed two cumulated solutions using these modified SINEX files with and without the 

estimation of the transformation parameters of the frame alignment. In addition, we examined the 

impact of including/excluding a weekly scale offset and also the impact of the full/diagonal 

covariance matrix of the SINEX files, i.e., the spatial correlation. Our results indicate that neither the 

frame alignment nor the consideration of the spatial correlation have a significant impact on the 

retrieved FN series. The velocity estimation absorbs a small amount of the FN variance at the longest 

period, as expected, but the estimation of the transformation parameters does not alter significantly 

the background error spectrum of the residual series after the alignment (Fig. S3). This result also 

validates the hypothesis that the temporal and spatial correlations can be considered independently 

when analyzing the noise content of individual series. On a series-by-series basis, the FN amplitude 

changes typically less than 0.1 mm for both horizontal and vertical components, even if the added FN 

amplitude was ~3 times larger in the vertical component. The FN change is marginally larger in the 

vertical component if the scale parameter is estimated. For most of the stations, the FN amplitude 

increases in the horizontal component and decreases in the vertical component.  

4.5 Evolution of noise types over time 

Concerning changes of the colored noise content with time, Williams et al. (2004) and Santamaría-

Gómez et al. (2011) showed that the amplitude of the PL content in the series is generally getting 

smaller with time. Bos et al. (2010) also questioned the hypothesis that noise properties are constant 

over time. In that case, the estimated noise content of a given series will depend on the period of 

time chosen. This dependency can void the conclusions from separate studies about the average 

noise level in a particular set of series if they do not cover the same time period. It can also have a 

significant impact on comparisons of noise levels between different sets of series (Amiri-Simkooei et 

al., 2017; Langbein & Svarc, 2019). 

Here, we revisit this issue by using our selection of 129 series from the last JPL PPP solution having 

the same length, minimum gaps, homogeneous good-quality data from 1999 onwards, and almost 

twice as long as those in Santamaría-Gómez et al. (2011). We split the original 20-year series into 4 

segments of 5 years each and ran separate noise analyses for each segment including the same four 



noise models (Fig. 4). We observe that not only the PL amplitude reduces, but the noise color itself 

changes as well throughout the last 20 years of GPS observations (see Table 2). The proportion of FN 

and GM is falling in favor of a PL with a spectral index becoming whiter (Table 2). Part of the 

apparent change of the noise color is undoubtedly caused by the irregular distribution of the 

estimated offsets in the series (Fig. 4d). Offsets are more frequent in the first half of the series than 

in the second, particularly before 2005. For instance, in 2002 and 2004, around 60% of the stations 

had at least one estimated offset. After 2005, the number of removed offsets stabilizes. If the noise 

amplitude and type were to be constant, we should expect the noise to get redder if less offsets were 

removed in the second half of the series, but we observe the contrary. This result confirms earlier 

findings that colored noise is becoming whiter for newer observations, but in a more general 

framework, i.e., considering also changes in the preferred noise model from FN towards PL. The 

whitening of the noise color can also be seen in the reduction of the median formal velocity 

uncertainties obtained from the fitted noise models in each segment and component, i.e., not 

considering the contribution of offsets to the uncertainty (Fig. 4d). We also note that in the 

segmented series, the GM model is much less dominant than the FN and PL models and also tends to 

disappear in the newest part of the series. This is contrary to the analysis of the full 20-year series 

discussed earlier and confirms again that the GM model is favored by the power absorption of the 

estimated offsets at long periods.  

 

 

Table 2. Percentage of selected PL and FN models, with the median noise amplitude in mm (σ) and spectral index (k), for the 
four segments of 5 year length as in Figure 4. Values in red are computed from less than 30 series. 

 
East North Up 

% σ k % σ k % σ k 

PL 

1999-2004 19 2.0 -0.73 12 2.4 -0.71 42 5.7 -0.65 

2004-2009 20 2.2 -0.74 15 2.6 -0.77 55 5.3 -0.65 

2009-2014 36 1.5 -0.70 20 1.8 -0.68 54 5.3 -0.65 

2014-2019 36 1.6 -0.67 45 1.7 -0.68 74 5.0 -0.63 

FN 

1999-2004 67 2.5 -1 76 2.9 -1 39 8.2 -1 

2004-2009 59 2.1 -1 47 2.3 -1 31 6.5 -1 

2009-2014 45 2.1 -1 56 2.3 -1 35 6.6 -1 

2014-2019 56 2.0 -1 48 2.1 -1 21 7.1 -1 

 



 

5. Discussion  

5.1 Impact of offsets on the noise color 

It is clear that offsets should be, first, avoided as much as possible and, second, removed from the 

series in order to get the least biased estimate of the velocity. The main limitation for reaching the 

second goal is that offsets are usually mixed and hidden by other features in the series, including 

colored noise. Manual offset detection by expert analysts generally outperforms automatic 

algorithms which tend to over-fit the series with spurious offsets (Gazeaux et al., 2013). Despite this 

finding, with the increasing number of series available and also their length, automatic offset 

detection is being used nowadays by many scientists as a purely practical matter and it is very likely 

that this trend will continue. 

Leaving aside the question whether the removed offsets are correctly timed or not, we demonstrate 

for the first time how the offset estimation absorbs most of the low-frequency colored noise in the 

series, independent of both the series length and the number of offsets, but depending on the 

separation between the offsets. This translates into a different shape of the error spectrum and 

changes estimates of the colored noise content and hence velocity uncertainty. The impact is most 

dramatic in the case of a series with regularly spaced offsets every N years. In that case, the colored 

noise content of the series becomes unobservable beyond a period of approximately N years. For an 

irregular distribution of offsets, the fit of a noise model will provide, at best, a biased lower noise 

amplitude and, at worst, it will indicate that the best fitted model is much whiter, for instance a PL 

Figure 4. Distribution of the preferred noise model in the JPL series for 4 periods of 5 years each (x-axis) for the 
East (upper left), North (upper right) and Vertical components (lower left). Lower right: distribution of offsets per 
year and the median formal uncertainty of velocities for each period and component.  



model with spectral index closer to zero or even a GM model where the spectral index is zero at the 

longest periods. 

In their recent study, He et al. (2019) analyzed 110 series of at least 12 years length to investigate 

whether the power spectrum flattens at the longest periods. They found that for 90 % of the series, 

the noise could be described by a GM process. This figure dropped to 5 % of the horizontal and 13 % 

of the vertical series when excluding the GM fits having a cross-over period between the Gaussian 

and the Markov-like processes smaller than 1 year. From the JPL series in our study, we find that 

around 80 % of the horizontal and 77 % of the vertical series are better described by a GM process, 

falling to 32 % for the North, 42 % for the East and 32 % for the vertical component if we exclude the 

GM fits having a cross-over period smaller than 1 year. These results are inconsistent with those from 

He et al. (2019). To choose the best-fit model, He et al. (2019) used a modified Bayesian Information 

Criterion penalty function that was added to the logarithm of the maximum likelihood estimate. This 

penalty function is slightly less restrictive than the empirical log-likelihood thresholds that we used 

from Santamaría-Gómez et al. (2011), i.e., in a synthetic FN series, the penalty function would allow 

the GM to be selected about 2 % more of the time than our empirical threshold, which would not 

explain these differences. 

We may instead explain the difference of our results with those from He et al. (2019) due to a 

combination of the following reasons. First, they considered series of different lengths and only 20 

out of their 110 stations had the maximum length of 20 years, compared to all 129 in our study. If we 

consider that the GM model was mainly retained in the longest 20 stations, then their GM ratios 

would rise to a maximum of 28 % and 72 %, closer to our results. Second, it is very likely that their 

series had a different set of estimated offsets than those in our series. Since almost all of their fitted 

GM models had a cross-over period shorter than a year, it would indicate that the power in many of 

their error spectra was decaying at shorter periods than our spectra, i.e., their series may have been 

fitted by more offsets than ours. Third, they used a different software for the noise content analysis 

that provides slightly lower spectral indices for short series (Bos et al., 2013). It is unknown to us if 

their software would also provide shorter cross-over periods for the GM model. Fourth, they 

analyzed PPP series from an older version of the same software with, importantly, obsolete orbits 

and clock products consistent with the IGS 1st reprocessing campaign. Those products may possess 

higher levels of FN (Amiri-Simkooei et al., 2017). 

We also note that, from their method description, He et al. (2019) did not consider the spurious 

draconitic signal and its harmonics, with periods located between 1 year and 1 month, when fitting 

the noise model to the series. As with the velocity and the offsets, any parameter in the functional 

model could have an impact on the noise model fit to the residual series. If the draconitic oscillations 

are stationary and one removes them, then the error power spectrum will drop below the 

background noise at the removed lines. Otherwise, the error power spectrum at those lines will be 

higher than the background noise. In both cases, the background noise at those specific lines will be 

affected by the choices made in the functional model. Note that the same situation happens with the 

seasonal oscillations. We favored including all the systematic oscillations in the functional model, in 

this case up to the 10th harmonic of the 1.04 cpy frequency. Alternatively, one could restore the 

background noise power for the removed periods, but this requires a reliable hypothesis of the 

background power since the true noise power is not separable from the power of the systematic 

oscillations. Nevertheless, it would be expected that the draconitic oscillations, if left intact in the 

series as in He et al. (2019), would slightly bias the fit towards a GM model. We confirm that if the 

draconitic oscillations were not removed from our series, the GM model would be selected in ~4 % 

more of the series, which renders our results even less consistent with He et al. (2019). We also 



observe that the power corresponding to some of the draconitic harmonics is not completely 

removed in our stacked error spectrum (see Fig. S4 in the Supporting Information), which indicates 

that the draconitic amplitude/phase may change over time or that the actual period may be different 

among the stations as shown by Santamaría-Gómez et al. (2011). For instance, Santamaría-Gómez et 

al. (2016) showed that for the station AZU1, the fourth draconitic oscillation changed its amplitude 

and phase when the antenna was replaced, indicating that part of the draconitic variance is due to 

local near-field multipath effects. This observation precludes the stationarity of the draconitic 

oscillations at least for those stations where the multipath environment may have changed. 

When the estimated noise level is biased low or the best-fitted model is whiter than it should be, the 

resulting formal velocity uncertainty will be biased low. This is the main reason to reject the GM 

process when the cross-over period is too small (He et al., 2019; Santamaría-Gómez et al., 2011). 

However, when designating the noise model that best describes long residual GPS series, it is clear 

that we cannot consider a long-memory process like FN, as in most past publications, but rather a 

GM process. However, this statement does not mean that the actual noise of the series is dominated 

by a GM process, but instead that the true noise color has changed and it is not observable anymore 

due to the fitted functional model, particularly the position offsets. 

In addition, since the estimated offsets change the amplitude and even the noise color, they could 

negate the conclusions drawn from the comparison of noise levels between different solutions 

(Amiri-Simkooei et al., 2017) or different monument types (Langbein & Svarc, 2019). In order to 

obtain comparable noise levels between different series, we recommend using similar sampling, 

including the series length and gaps, and also, if possible, the same set of offsets. The latter may not 

be possible if an offset is generated by incorrect metadata during the reduction of the GPS 

observations or if the series belong to different instruments with different antenna monuments and 

tracking histories. 

We foresee that, if the current frequency of position offsets does not change or even increases in the 

future, as the series get longer the error power spectrum will continue to drop at long periods. This 

will prevent us from obtaining further information on the interannual to decadal error band 

compared to the information we already have today. Like a chameleon, we will never see the true 

noise color of the GPS position errors at such long periods. A consequence of this is that it will be 

necessary to use a heuristic noise model, not supported by the observations, in order to obtain less 

biased formal velocity uncertainties. Somehow, we are already seeing this scenario today when the 

best fitting model is a GM process, but it is rejected because of the low formal uncertainty it implies. 

A more conservative approach would be to fix the noise model to FN and also adding a relatively 

small amount of RW, compared to the estimated FN, to compensate for both the unobserved 

monument instability and also the reduction of the estimated FN amplitude by the offsets. 

This recommendation is subjective and would depend on the analyst choice, but the fact that offsets 

are potentially hiding random walk noise in the series is of extreme concern for research using GPS 

velocities applied to tectonics, reference frames, sea-level change and GIA. Beyond the impact on 

velocities, the power spectrum drop caused by the estimated offsets seriously limits our ability to 

address relevant scientific questions such as the expected periodic Earth deformation at long periods 

recently modelled by Ding et al. (2020). A signal with a period of ~5.9 years lies very close to the 

period where the power spectrum is mostly flat and starts decaying in the best and longest JPL series 

available today. Whether this signal exists or not, we have not been able to find any sign of a 

significant spectral peak emerging out of the noise in this band in any coordinate component (Fig. 1). 



The lack of observability of the noise spectrum at long periods also blocks our ability to 

unambiguously answer whether it naturally flattens at some long period or still continues unabated, 

contrary to the conclusions by He et al. (2019). This question, that has puzzled geodesists for the last 

20 years or more, could provide invaluable information on the process generating the colored noise 

of the GPS series. Due to the estimated offsets, it will probably remain unanswered, therefore 

preventing scientists from exploiting even more precise GPS velocities. 

5.2 Impact of offsets on velocities 

Beyond the impact on the estimated noise level and color, the offsets also have a significant impact 

on the estimated velocity. Indeed, there exists a threshold on the offset size below which correcting 

the offset may produce a larger velocity error than if the offset was left uncorrected (Gazeaux et al., 

2013; Griffiths & Ray, 2016). Williams (2003) demonstrated that an offset in the middle of the series 

introduces the largest velocity error compared to a different location in the series. If the offset is 

located near the beginning or end of the series, the velocity error being added becomes negligible 

compared to the velocity error without the offset. A similar scenario results if more than one offset is 

added very close to the beginning or end of the series, provided the length of the series before or 

after the offsets does not change significantly. In other words, the velocity error obtained from the 

fitted functional model is inversely proportional to the length of the continuous series between the 

offsets and not proportional to the number of offsets in the series. Certainly, when the offset is in the 

middle, the longest continuous segment of the series is the shortest of any other offset location 

possible, and therefore the velocity error is the largest possible. 

In the case of a series free of offsets for N years, adding a new offset at the end will barely affect the 

present velocity error. However, after adding an offset, as the series length continues to grow, the 

velocity error will decrease much slower than if the offset had not been added. The maximum impact 

of the added offset on the velocity error will occur approximately when the series reaches a length of 

twice the current length (2N years), or slightly earlier in case the series is dominated by FN according 

to Williams (2003). The actual velocity error added by the offset will be indirectly proportional to the 

length N. From the epoch of maximum impact around 2N, as the series gets longer, the velocity error 

will decrease until the impact of the added offset vanishes more than 4 or 5 times N years in the 

future. Therefore, when planning a configuration change that would likely introduce a new offset 

into a series, the station manager should consider the increased velocity error that will result in the 

long-term, especially when the series is approximately twice the current length. For series having 

several offsets, the velocity error will accumulate the effects of the different offsets. If the introduced 

offsets are periodic and mostly equally spaced, then the resulting velocity error will decay very 

slowly, simulating a random walk process, but considering the separation between the offsets and 

not the series length (see Fig. 5 left panel), similar to the findings by Griffiths and Ray (2016). In the 

most extreme case of having an offset every year, as can occur in a GPS campaign, and assuming a 

common FN of 6 mm, the offsets will introduce a velocity error of ~0.6 mm yr-1 after 20 years of 

measurements (not shown in Fig. 5). It will be necessary to collect 80 years of measurements to 

reduce the velocity error down to 0.3 mm yr-1, i.e. the error obtained from typical offset rates in 

continuous 20-years long series (Griffiths & Ray, 2016). This velocity error does not include the 

impact of seasonal terms in the series, which would aggravate the velocity error as discussed by 

Wang and Herring (2019). This velocity error is mostly accounted for by the functional model and is 

independent of the formal velocity error provided by the fitted noise model that best describes the 



residual series, which will reduce as the number of offsets increases (Fig. 5 left panel) and most 

probably will not include RW, as we demonstrated in section 4.3. 

When the offsets are equally spaced in the series, as typically in simulation studies, both the 

separation between the offsets and number of offsets provide equivalent assessments of the velocity 

errors created by offsets, though their representation is still different and may lead to confusion. 

Figure 5 shows different metrics for the velocity errors from zero-trend synthetic series having 

decreasing numbers of estimated offsets. This figure shows that in the case of considering the total 

number of equally-spaced offsets (right panel), the velocity error increases linearly. However, in the 

case of considering the equivalent separation between equally-spaced offsets (left panel) the velocity 

error increases similarly to a RW process generated exclusively by the functional model being fitted. 

We note that the same velocity errors are shown in both panels of Fig. 5, only the independent 

variable in the X axis of the panels is different. The functions used to predict the increase of the 

velocity error with offsets are different depending on the chosen independent variable, i.e., 

quadratic or linear. This reconciles the apparently contradictory results from Wang and Herring 

(2019), who considered the total number of offsets in the series, with those obtained earlier by 

Griffiths and Ray (2016), who systematically split the available series in half and considered the rate 

of offset occurrence, i.e., the inverse of their separation. 

Another major difference between the findings by Griffiths and Ray (2016) and those by Wang and 

Herring (2019) is that while the former discussed true velocity errors, i.e., the scatter of velocity 

estimates compared to a reference value, the latter discussed formal velocity errors, i.e. the estimate 

of the velocity error from the law of propagation of variance. To explain their difference, Wang and 

Herring (2019) emphasize the importance of considering colored noise against WN when estimating 

the formal velocity error and its change with offsets. They created synthetic series with different 

types of noise processes, some of which, for instance WN or RW series, are not reasonable examples 

of actual GPS series. They concluded that, depending on the noise type of the series, the impact of 

offsets on the formal velocity errors can be quite different. Indeed, the impact of colored noise in the 

formal velocity errors is established since the late 1990s (Zhang et al., 1997), together with the fact 

that the GPS error spectra is generally consistent with a power-law noise spectrum close to FN. In 

their study, Griffiths and Ray (2016) employed actual IGS series, which contain FN, to observe how 

the true velocity error changes by varying only the rate of artificially inserted position offsets. When 

estimating the impact of offsets on the true velocity errors, the type and amplitude of the colored 

Figure 5 Velocity errors from 1000 synthetic series of 20 years having 6 mm yr -1/4 of FN as a function of the separation between 
offsets of 2, 4, 6, 8, 10 and 20 years (left), and their equivalent number of total offsets in the series, i.e., 9, 4, 3, 2, 1 and 0 offsets 
(right). Formal velocity uncertainties are given for a fitted FN model only (noise), the FN model plus the functional model 
(noise+offsets) and the potentially hidden RW considering a 10 % detection threshold (hidden RW). The dispersion of the 
estimated velocities (SD velocities) represents the true velocity error. 



noise used to estimate the formal velocity error has a limited impact, provided the noise type is 

consistent with FN or a smaller (whiter) spectral index. This fact is not observed if the noise in the 

series is consistent with RW, which, we insist, is not a realistic noise model to describe real GPS 

series. In other words, provided a real series with a given colored noise between white and flicker, 

the true velocity error induced by offsets when fitting the trend will not change significantly whether 

we consider the series as WN or FN in the covariance matrix of the least-squares fit. It is in fact the 

estimate of the formal velocity error that changes depending on the assumed temporal correlation. 

Ideally, when the correct noise model is used, both the true and formal rate errors will provide the 

same numbers, i.e., the formal velocity error depends on the chosen noise model while the true 

velocity error does not. This is a major difference between both studies, and we argue that is more 

informative providing true velocity errors, as in Griffiths and Ray (2016), than considering changes of 

the formal velocity error that depend on the chosen noise model, as in Wang and Herring (2019). In 

addition, in their analysis with the simulated series, Wang and Herring (2019) estimated the impact 

of offsets on the formal velocity errors without re-estimating the apparent change of the noise type 

and its parameter values after adding the offsets; they used the same covariance matrix as the one 

used for creating the synthetic series in the first place. Therefore, their estimated formal velocity 

errors do not account for the fact that the error spectrum at long periods is severely reduced by the 

added offsets as we have demonstrated in this study. For instance, we showed in Fig. 5 that, while 

the scatter of the estimated velocities, i.e., the true velocity error, increases with the number of 

offsets, the contribution of the colored noise to the formal velocity error decreases because the 

fitted noise model is progressively whiter. This means that the findings by Wang and Herring, with 

respect to the synthetic series, are not describing the complete impact offsets have on GPS velocities 

as we do in our study.  

By adding equally-spaced artificial offsets into real IGS position series, Griffiths and Ray (2016) found 

that the velocity error due to the actual rate of offsets removed from the series, i.e., their average 

span separation, is at the level of 0.09 and 0.34 mm yr -1 for the horizontal and vertical components, 

respectively. These values correspond to the average IGS rate of offset occurrence at that time. In 

our study, using synthetic FN series that reasonably match the JPL PPP series (Fig. 2), we find velocity 

errors at the level of 0.08 and 0.21 mm yr -1 due to the offsets that JPL removed from the series. 

These values were obtained from the scatter of the fitted trends with and without the JPL offsets 

while also fitting the parameters of a PL process. If we consider WN instead of PL, as Griffiths and Ray 

(2016) did, the true velocity errors change by less than 0.02 mm yr -1, supporting the quantification of 

velocity errors by Griffiths and Ray (2016). Our numbers are smaller most probably due to the fact 

that colored noise in the JPL series is lower than in the IGS series, and also due to the fact that we 

considered synthetic series with real irregularly-distributed offsets, while Griffiths and Ray (2016) 

considered real series with artificial equally-spaced offsets, which tends to increase the error. 

Also importantly for velocity estimates is that, due to the removed trend and offsets, it is very 

difficult to say how much RW is truly contributing to the series variance. At most, given the 

separation between offsets in the series, we provided in Fig. 3 the probability that the RW does not 

exceed a given threshold. Inversely, by setting a detection threshold, we can assess the maximum 

amount of RW that could be present in the series. This is relevant because if RW noise were to be 

included in the error budget, one would obtain a more conservative formal uncertainty for the GPS 

velocities. For example, if we assume the upper limit of the hidden RW corresponds to a 10 % 

detection probability, from Fig. 3 we obtain a ratio FN/RW between 7.3 (RW ~14 % of FN amplitude) 

and 3.7 (RW ~27 % of FN) for a separation between offsets of 20 and 2 years, respectively. 

Considering the FN amplitude for weekly series shown in Table 1, the amount of potentially hidden 

RW translates into formal velocity errors (pink curve in Fig. 5) much higher than those obtained from 



the estimated noise content (black curve in Fig. 5) and very similar to those caused by the offsets in 

the functional model (blue curve in Fig. 5). However, if the real amount of hidden RW is larger than 

the 10 % threshold we have used, which still has some probability to occur on a series-by-series 

basis, then the true velocity errors would be larger than those provided by both the fitted functional 

and noise models together, potentially resulting in a biased velocity estimate. At the end, the 

estimated formal uncertainty of the velocity becomes a subjective choice, i.e., depending on how 

conservative velocity uncertainties one prefers to obtain, a different amount of RW noise could be 

assumed. Despite RW noise having been detected in several regional or very-short baseline solutions, 

most of the studies using global GPS solutions have chosen to not consider RW noise in the velocity 

uncertainty budget, certainly because it has not been detected as a main contributor of the error 

spectrum. A remarkably exception is Langbein (2012) who proposed using a noise model composed 

of FN and RW noises instead of the typical PL noise model to obtain a more conservative velocity 

error budget. We argue that, with the state-of-the-art GPS series in our study, we cannot rule out the 

possibility that the RW noise is indeed affecting the velocity estimates even if we were not able to 

detect it. The GPS velocity errors of a global solution would be much larger if RW noise were to be 

considered, especially in the vertical component where the larger series variability allows for a larger 

RW noise to pass undetected. For example, the long-term stability of the terrestrial reference frame 

(Altamimi et al., 2016), assessing recent sea-level changes (Santamaría-Gómez et al., 2017) or our 

understanding of the Earth rheology and the glacial history (Schumacher et al., 2018) rely on 

accurate GPS velocity errors. 

In light of the broad impact that offsets have on the GPS velocities as shown for the first time in this 

study, our recommendation is that if the station manager wants to change an already running GPS 

antenna, for instance to augment the tracking capabilities of the station, the antenna change should 

be made immediately after an unplanned offset occurred, e.g., an earthquake that displaced the 

antenna. Otherwise, we recommend installing a new station nearby to benefit from the already 

existing infrastructure like access, security, power, communications, etc. As a general rule, a 

functioning antenna must never be touched for the interest of science, contrary to the advice of 

Wang and Herring (2019). 

5.3 Origin of colored noise 

The underlying physical origin of colored GPS noise and its change in time is still an open question. 

Santamaría-Gómez et al. (2011, 2013) investigated the impact of the evolving tracking network, the 

evolving satellite constellation and the evolving rate of fixed phase ambiguities. None of these effects 

could explain the observed decrease in colored noise amplitude with time. Here we demonstrate 

that the frame alignment process cannot explain either the observed colored noise or its change with 

time. 

Using synthetic series with different proportions of FN, we were unable to explain the stacked error 

spectra resulting from the JPL residual series. The real series exhibit spectra that are significantly 

lower in power at the longest periods even if we account for the damping of the colored noise 

caused by the estimation of position offsets. The mismatch between the real stacked spectra and the 

simulated FN spectrum is more evident for the vertical component than for the horizontal (Fig. 2). 

Spectral indices of the horizontal components have been reported to be closer to flicker noise than 

the vertical component (Rebischung et al., 2016b; Santamaría-Gómez et al., 2011; Williams et al., 

2004). Although surface load mass variations can introduce significant colored noise in the vertical 

component (Santamaría-Gómez & Mémin, 2015), the fact that flicker noise is visible more clearly in 

the horizontal component argues against the hypothesis of flicker noise being mainly created by 

surface mass load variations, which are significantly more important on the vertical component than 



in the horizontal. Another concurrent indication is the fact that the colored noise content is getting 

whiter with time even if non-tidal loading corrections are not currently included in the conventional 

corrections applied to the series and their effects are most likely not decaying with time. 

What causes a spectral index that is whiter than flicker is as intriguing as what causes the FN itself. 

This situation can only be explained by a combination of different error sources, i.e., we are looking 

for a process that dampens FN in the vertical component while having minimal impact on the 

horizontal components. We demonstrated that the frame alignment process certainly contributes in 

the same direction, but its magnitude is rather negligible. Actually, surface mass load variations are a 

good candidate for such a process. Santamaría-Gómez and Mémin (2015) showed that the 

combination of modeled atmospheric, oceanic and hydrologic load variations results in colored noise 

that can be described by a PL with a spectral index varying spatially from WN to RW (see map of 

figure S1 in Santamaría-Gómez and Mémin (2015)). The median spectral index of the modeled load 

variations for the vertical component at the 129 JPL series used in this study is −0.7, i.e. significantly 

lower than a flicker process. In addition, the median amplitude of the colored noise obtained from 

the modeled surface loads at the 129 stations and scaled to weekly sampling is ~4 mm. This equals 

two-thirds of the observed PL amplitude of ~6 mm in the residual weekly vertical JPL series, which 

implies that the surface mass load variations add noise to the series, mostly on the vertical 

component, but the noise added is less colored than FN. One may conclude that the surface mass 

loads, contrary to causing the FN observed in the series, probably contribute to hide it, making the 

vertical series appear whiter than the horizontal components.6.  

Conclusions 

Offsets in GPS position time series are one of the biggest limitations concerning the precision of the 

estimated GPS velocities. Yet, the best GPS series are populated with offsets, many of which are 

related to equipment testing and upgrading which are avoidable. The use of algorithms for automatic 

offset detection may even increase the number of spurious offsets that are included in the model 

fitted to the GPS series. Here, we address for the first time the complete impact that estimated 

position offsets have on the GPS velocities, their uncertainty and the colored noise of the residual 

series. 

We have shown how the estimated offsets absorb most of the series variability at periods longer 

than their time spacing. The result is that at interannual to decadal periods, the noise power spectra 

of the GPS position time series changes color and becomes uninterpretable as a quantitative 

measure of the contributing noise processes. This severely affects our ability to objectively provide a 

noise model that fully describes the temporal correlation of the GPS series. Any colored noise model 

fitted to GPS series having offsets will be biased low, i.e. towards WN, and the preferred noise model 

may even be wrongly selected, e.g. a Gauss-Markov process instead of a flicker or power-law 

process. As a result, the estimated formal velocity uncertainty will be biased low. If one is interested 

in obtaining conservative formal velocity uncertainties, it is necessary to subjectively choose a 

different noise model that is not clearly supported by the observations, for example a FN model 

topped with a relatively small amount of RW. 

The subjectivity to choose a more accurately representative noise model also concerns the amount 

of RW that the analyst is willing to add to the velocity uncertainty budget. On most past studies using 

global network or PPP solutions, the RW has never been included in the velocity error budget 

because it has not been detected over other noise types. We show how the inclusion of offsets in the 

series renders RW detection even more difficult in very long series that include RW. We conclude 



that the common assumption that RW does not contribute to the velocity error is questionable, 

especially considering that RW has been detected in regional or short-baseline solutions with greater 

sensitivity due to spatial filtering. The addition of a small quantity of RW, even if not observed 

directly, will significantly raise the GPS velocity uncertainty and especially in long series with frequent 

offsets where the amount of RW that could be allocated in the error budget is larger. 

The unobservability of the noise power spectra at long periods caused by the estimated position 

offsets also has severe consequences for our ability to observe and discover long-period Earth 

deformation signals. A periodic Earth deformation signal with a period of ~5.9 years has been 

suggested in recent literature. This period is exactly located where the error spectrum is blurred by 

the estimated position offsets in the best and longest JPL series to date used in this study. Despite 

recent claims for the detection of this signal, we were unable to find any sign of a significant signal 

emerging out of the noise in this band in any coordinate component.The origin of colored noise in 

GPS position time series and its change with time is still an open question. We have demonstrated 

how the frame alignment process, that is inherent to the construction of any GPS series, does not 

play a significant role. Surface mass loads could at least partly explain why the noise is whiter in the 

vertical component than in the horizontal, but they cannot explain why the noise color is becoming 

whiter in the most recent data. In addition, the offsets already present in the GPS series are 

preventing us from observing the properties of the colored noise at long periods. If offsets continue 

to appear in the series at the current rate, it will represent a major limitation for our understanding 

of the GPS error spectrum reducing the value of longer series in the future. 
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