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To what extent are changes in flood magnitude related to changes in precipitation extremes?
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Key points

 In contrast to conventional beliefs, we find weak causal linkages between precipitation 
extremes and floods

 The spatial pattern of changes in precipitation extremes explains less than 20% of the 
spatial pattern of changes in floods 

 Most catchments have a co-variation of less than 0.5 between annual precipitation 
extremes and annual floods
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Abstract

Despite increasing evidence of intensification of extreme precipitation events associated with a 
warming climate, the magnitude of extreme river flows is decreasing in many parts of the world. 
To better understand the range of relationships between precipitation extremes and floods, we 
analyzed annual precipitation extremes and flood events over the Contiguous United States from 
1980 to 2014. A low spatial correlation (less than 0.2) between changes in precipitation extremes
and changes in floods was found, attributable to a weak causal relationship. The co-variation 
between precipitation extremes and floods is also substantially low, with a majority of 
catchments having a coefficient of determination of less than 0.5, even among the catchments 
with a relatively strong causal relationship. The findings indicate a need for more investigations 
into causal mechanisms driving a non-linear response of floods to intensified precipitation 
extremes in a warming climate.

1 Introduction 

Among the most important implications of global climate change is the intensification of 
the hydrologic cycle [Huntington, 2006], including the intensification of rainfall extremes
[Westra et al., 2014]. As air temperature rises, the water vapor held in the atmosphere also 
increases following the Clausius-Clapeyron relation [Clausius, 1850]. This relationship has been 
documented extensively in the climate literature [Donat et al., 2013; Guerreiro et al., 2018; 
Papalexiou and Montanari, 2019; Westra et al., 2013], and has led to concerns of a future 
characterized broadly by an increase in the magnitude of global flood events. 

Large scale investigations into changes in floods, however, indicate a broader range of 
global flood response, with many studies documenting sites with a decrease in flood magnitude
[Do et al., 2017; Do et al., 2020b; Gudmundsson et al., 2019; Hodgkins et al., 2017; Kundzewicz 
et al., 2004; Lins and Slack, 1999]. These somewhat unexpected relationships between trends in 
extreme precipitation and trends in extreme discharge can be attributed to the influence of other 
flood generation mechanisms such as soil moisture [Ivancic and Shaw, 2015; Wasko et al., 2020;
Ye et al., 2017] and snow dynamics [Berghuijs et al., 2016; Blöschl et al., 2017; Do et al., 2020a;
Ledingham et al., 2019; Stein et al., 2020]. Even when floods are triggered by precipitation 
extremes, the relationship between precipitation magnitude and flood magnitude is likely non-
linear [Sharma et al., 2018], owing to the complex interactions of many variables which have 
undergone substantial changes such as land cover [Keenan et al., 2015; Lambin et al., 2003], 
river channels [Slater et al., 2015; Yamazaki et al., 2014] and evapotranspiration [Bosilovich et 
al., 2005; Gronewold and Stow, 2014]. 

However, there is still a lack of quantitative understanding of the relationship between 
precipitation extremes and floods, partially due to unavailable discharge observations in many 
parts of the world [Do et al., 2018; Do et al., 2020b]. Even for regions with relatively good 
streamflow records, empirical investigations have primarily focused on the consistency between 
the timing of precipitation extremes and that of floods [Berghuijs et al., 2019; Blöschl et al., 
2017; Do et al., 2020a; Ivancic and Shaw, 2015; Stein et al., 2020; Wasko et al., 2020] rather 
than co-variation between precipitation extreme intensity and flood magnitude. As a result, it is 
difficult to promote generalized statements about global relationships between changes in 
precipitation extremes and changes in floods, which is essential to the design of robust flood 
prevention and mitigation strategies in a warming climate [Milly et al., 2008]. 
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We aim to fill in this gap through an empirical assessment of the co-variation of 
precipitation extremes and flood magnitude using a large sample (671) of catchments across the 
Contiguous United States (CONUS) (Section 2.1). We used annual maxima streamflow from 
1980 to 2014 from these catchments as the flood population, and we used three metrics of annual
maxima precipitation to represent precipitation extremes (Section 2.2). Temporal changes in 
floods and precipitation extremes were then estimated at each catchment and the correlation 
between the spatial patterns of these trends was assessed (Section 2.3). The ordinal date of 
precipitation extreme events was then compared to that of annual flood events (Section 2.4) to 
assess potential causal relationships between these hydro-climatic extremes. Finally, the co-
variation between the intensity of precipitation extremes and flood magnitude across catchments 
was assessed (Section 2.5) to evaluate the appropriateness of using changes in extreme 
precipitation as a proxy for changes in floods. 

2 Data and Methods

2.1 Data

Data for our analysis was derived from the Catchment Attributes and Meteorology for 
Large-sample Studies (CAMELS) dataset [Addor et al., 2017a; Newman et al., 2015].  The 
CAMELS database aggregates a variety of hydrometeorological variables (primarily derived 
from other studies) for 671 catchments across the CONUS (the outlets of CAMELS catchments 
are shown in Figure 1). The catchments in the CAMELS database are intended to reflect 
relatively natural hydrologic conditions (the impervious surface area of each catchment is less 
than 5% of the total catchment area; see Newman et al. [2015] for more information). These 
catchments have a relatively small size (the median catchment area is 340.7 km2) and cover a 
range of climatic conditions (e.g., dry, temperate, and continental climates) as well as geographic
features (e.g., mountains and deserts). Other variables in the CAMELS database include daily 
streamflow (originally obtained from the United States Geological Survey), catchment-average 
daily precipitation and temperature (derived from the Daymet dataset [Thornton et al., 1997]), 
and daily evapotranspiration, simulated by the conceptual SAC-SMA model [Burnash et al., 
1973].

In addition to the hydro-meteorological data available through CAMELS, we also 
obtained soil moisture data from the NOAA Climate Prediction Center [Van den Dool et al., 
2003]. This dataset provides monthly soil moisture water height equivalent, simulated by a leaky 
bucket model, with a spatial resolution of 0.5-degree latitude x 0.5-degree longitude (i.e., a cell-
size of about 2,500 km2). We used monthly soil moisture from the cell containing each 
catchment outlets as a proxy for catchment-wide to obtain soil moisture conditions from 1980 to 
2014 for each of the CAMELS catchments. We judged this approach to be appropriate for the 
CAMELS catchments, which have a relatively small size.
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Figure 1. Location of CAMELS catchment outlets across the CONUS. Each catchment was 
classified into one of the six groups based on the annual average fraction of annual precipitation 
falling as snow (fsnow; categories were defined at 0.1 intervals, with all catchments having fsnow of 
at least 0.5 grouped into one category). The 18 major water resources regions over the CONUS 
are also shown (grey polygons bounded by whites lines) for reference (see also Figure S1 in 
Supporting Information). 

2.2 Identifying streamflow and precipitation extremes

Our approach to quantifying rainfall and streamflow extremes is based on the annual 
maxima (AMAX) index, one of the most common indices for assessing temporal changes in 
hydro-climatic extremes [Do et al., 2017; Kundzewicz et al., 2004; Ledingham et al., 2019; 
Villarini and Smith, 2010; Westra et al., 2013]. We first processed streamflow data to obtain the 
magnitude (QMAX index) and the timing (QDOYMAX index; defined as the ordinal date of annual 
floods) for each AMAX streamflow event.  To reduce the chance of misattributing flood events, 
we omitted from our data set any years missing more than 15% of daily values (to have a 
compromise between data coverage and data quality). 

We then processed daily precipitation to derive three sets of variables, each representing 
a different approach to quantifying precipitation extremes (a threshold of 15% missing data was 
also used to remove years with insufficient data.). The first variable representing precipitation 
extremes is AMAX precipitation (P), which is defined using the same approach to that of AMAX
streamflow. The second precipitation variable allows us to assess whether constraining the 
timing of precipitation extremes to seasons where the catchments are wet, and when floods are 
more likely to occur [Ivancic and Shaw, 2015], could improve the relationship between 
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precipitation extremes and floods. This second variable is calculated as the annual maximum 
precipitation based only on months in which soil moisture was above-average. The third 
precipitation variable is intended to take into account catchment saturation and snow dynamics, 
and how they affect the propagation of precipitation into effective precipitation [Berghuijs et al., 
2016; Berghuijs et al., 2019]. We calculated this variable using a coupled soil-snow routine
[Berghuijs et al., 2016; Hock, 2003; Stein et al., 2020; Woods, 2009] based on daily 
precipitation, temperature, and evapotranspiration (all readily available in the CAMELS dataset).
Details of this routine is provided in the Supporting Information; for further reading, see Stein et 
al. [2020]. 

Finally, we calculate the intensity and timing of each of the three precipitation AMAX 
variables, leading to a total of six new precipitation indices; PMAX and PDOYMAX (for the first 
precipitation variable), Psm.MAX and Psm.DOYMAX (for the second), and Peff.MAX and Peff.DOYMAX (for the 
third). Note that evapotranspiration is only available from October 1980 onward, thus Peff.MAX and
Peff.DOYMAX are not available for 1980.

2.3 Assessing the correlation between the spatial pattern of changes in precipitation extremes and
the spatial pattern of changes in floods 

We calculated temporal changes in the magnitude of AMAX streamflow (QMAX) and 
changes in precipitation extreme intensity (PMAX, Psm.MAX, and Peff.MAX) using normalized Theil–
Sen slope [Gudmundsson et al., 2019; Stahl et al., 2012] as follows: 

τ c=median(
x j−x i
j−i ) (1)

T c=
τc×10 years

x́c
×100 (2)

where τ c is the Theil-Sen slope estimator for catchment c, which is defined as the median of the 
average annual difference in AMAX values (x) between all possible pairs of years.  The indices i 
and j represent year numbers such that i ∈ [1, nc-1], j ∈ [2, nc], i < j, and nc is the number of 
years in the data record (after the screening process described above) for each catchment.  T c is 
the normalized trend, expressed as a percentage of change per decade relative to the mean of all 
AMAX values in a catchment (x́c).  This approach leads to four Tc values for each catchment, 
one for QMAX and three for precipitation intensity (PMAX, Psm.MAX, and Peff.MAX). 

To evaluate whether the spatial pattern of changes in floods can be explained by the 
spatial pattern of changes in precipitation extremes, we calculated the coefficient of 
determination R2 [Rao, 1973], which is the square of the correlation between the Tc values of 
QMAX and the Tc values of a precipitation extreme metric (e.g., Tc of PMAX). The value of R2 
ranges from 0 to 1, and a high R2 indicates a strong correlation. 

2.4 Assessing the causal relationship between precipitation extremes and floods

To quantify the strength of a potential relationship between precipitation extremes and 
floods, we calculated the probability that an annual precipitation extremes would be followed 
closely (in time) by an annual flood extreme in each catchment (referred to as the co-occurrence 
probability hereafter). We matched the timing of AMAX precipitation events (represented by 
PDOYMAX, Psm.DOYMAX, and Peff.DOYMAX indices) and the timing of annual floods (represented by 
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QDOYMAX index) and derive the fraction of annual flood events that can be directly attributed to a 
preceding precipitation extremes. To account for travel time required for precipitation to reach a 
catchment outlet, we adopted a previous approach [Ivancic and Shaw, 2015] and allowed a lag of
up to 5 days. Specifically, we presume that there is a causal relationship between AMAX 
precipitation and AMAX streamflow if 0 ≤ QDOYMAX - PDOYMAX ≤ 5. If precipitation extremes and 
floods were independent, the random chance of a match, on average, would be less than 2%, 
which is the random chance of QDOYMAX having a value between PDOYMAX and PDOYMAX + 5 (six 
days) of all possible days in a non-leap year (365 days). 

Given the important relationship between the precipitation type (i.e. snow or rain) over 
much of the CONUS [Berghuijs et al., 2016], as well as other parts of the world [Blöschl et al., 
2017; Do et al., 2020a], we also assessed whether relationships between precipitation extremes 
and floods vary by precipitation type. To achieve this objective, we used the annual average 
proportion of precipitation that falls as snow, readily available in Addor et al. [2017a], and is 
denoted as fsnow. Each catchments was classified into one of the six categories; the first five are 
defined by fsnow values between 0.0 and 0.5 at intervals of 0.1; the sixth category includes all 
catchments with an fsnow value between 0.5 and 1.0 (see Figure 1). We then assessed whether 
there are significant differences in the co-occurrence probability of precipitation extremes and 
floods across fsnow classification categories.  

2.5 Assessing temporal correlation between the intensity of precipitation extremes and flood 
magnitude

We identified catchments with similar causal relationship between precipitation extremes 
and flood by grouping catchments into seven groups according to the co-occurrence probability 
at 0.1 intervals (note that all catchments with at least 0.6 co-occurrence probability grouped into 
one category). We then measured the co-variation between the intensity of precipitation extremes
(e.g., PMAX index) and the magnitude of floods (QMAX index) at each catchment using the 
coefficient of determination R2. The R2 values were then analyzed alongside the co-occurrence 
probability to quantify the extent of which changes in precipitation extremes are useful to infer 
changes in flood magnitude. 

3 Results and Discussions

3.1 A low correlation between the spatial pattern of changes in floods and the spatial pattern of 
changes in precipitation extremes 

Figure 2 shows temporal changes in the magnitude of annual floods and precipitation 
extremes across the CAMELS catchments. We note that the effective precipitation (Peff) could be
equal to zero throughout the year wherever precipitation could not make the catchment fully 
saturated. Specifically, there are 110 catchments having zero Peff.MAX over more than 20 years, 
leading to a zero Thiel-Sen slope estimated as shown in Figure 2h (see also Supplementary 
Figure S2). We also removed 33 catchments that have Peff.MAX equal to zero across all years from 
our analyses, leading to a sample size of 638 catchments for Peff.MAX assessment.

Over the reference period, more CAMELS catchments (53%) experienced a decrease in 
QMAX index (Figure 2a), consistent with recent investigations [Do et al., 2017; Do et al., 2020b; 
Gudmundsson et al., 2019; Hodgkins et al., 2019; Hodgkins et al., 2017]. On the contrary, PMAX 
index shows an increasing trend (Figure 2b) over the majority of catchments (67%), although 
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some interior water resources regions exhibited a more prominent decreasing trend (e.g. Missouri
Region; see Figure S2 in the Supporting Information for trends in annual floods and precipitation
extremes over individual regions). There is a low correlation between the spatial pattern of 
changes in PMAX and the spatial pattern of changes in QMAX (Figure 2f) with an R2 of 0.11, 
indicating that only 11% of the spatial variation of trends of QMAX can be explained using trends 
of PMAX. 

The spatial pattern of Psm.MAX trends (Figure 2c) is generally consistent with that of PMAX 
trends, while the spatial pattern of Peff.MAX trends (Figure 2d) shows a substantial difference 
relative to that of PMAX trends, and appears to be more consistent with the spatial pattern of QMAX 
trends. The coefficient of determination between precipitation extreme trends and QMAX trends 
support this finding, with an R2 of 0.06 and 0.17 for Psm.MAX trends and Peff.MAX trends respectively
(Figure 2g and Figure 2h). These results are generally expected, as the snow-soil routine 
underlying Peff.MAX can be seen as a simple conceptual model that takes into account several 
catchment processes. 

More importantly, the R2 values between QMAX trends and precipitation extreme trends 
are less than 0.2 across all precipitation extreme metrics. This result means that the spatial 
variation of precipitation extreme trends can explain less than 20% of the spatial variation of 
QMAX trends across the CONUS from 1980 to 2014. The R2 calculated over individual water 
resources regions (Figure 2e; also see Figure S2 of the Supporting Information) also indicates a 
low correlation. Specifically, more than 60% of the regions having an R2 value of less than 0.2, 
indicating the limitation of using trends of precipitation extremes to infer trends of floods.
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Figure 2. Trends in (a) QMAX, (b) PMAX, (c) Psm.MAX and (d) Peff.MAX across each of the 671 
CAMELS catchments based on the normalized Thiel-Sen slope (Tc). Scatter plots between Tc 
values of QMAX and Tc values of (f) PMAX, (g) Psm.MAX, (h) Peff.MAX are also shown. (d) Boxplot of 
the R2 between Tc values of annual floods and Tc values of annual precipitation extremes (see 
Figure S2 in the Supporting Information for disaggregation of results across water resources 
regions).
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3.2 Co-occurrence probability of precipitation extremes and floods across the CONUS

The low correlation between the spatial pattern of changes in precipitation extremes and 
that of floods (discussed in Section 3.1) is potentially attributable to a weak causal relationship, 
as there are other mechanisms that could trigger floods [Blöschl et al., 2019; Merz and Blöschl, 
2003]. To assess this hypothesis, we assessed the co-occurrence probability between 
precipitation extremes and floods over individual catchments and the results are shown in Figure 
3 (See Figure S3-S5 in the Supporting Information for QDOYMAX, PDOYMAX, Psm.DOYMAX, and 
Peff.DOYMAX across all catchments). The averaged co-occurrence probability across all catchments 
is 32%, 30%, and 37% for PDOYMAX, Psm,DOYMAX, and Peff.DOYMAX extremes respectively. This 
number is consistent with a previous investigation [Ivancic and Shaw, 2015], indicating that 
annual precipitation extremes are only responsible for about one-third of the annual flood 
population. 

Figure 3. Co-occurrence probability between AMAX streamflow and (a) AMAX precipitation, 
(b) AMAX wet-month precipitation, (c) AMAX effective precipitation across all CAMELS 
catchments; and (d) when grouped into six categories using the fraction of precipitation falling as
snow (fsnow). Note that Peff were available for only 638 catchments.

The vast majority of catchments (more than 95%) have a co-occurrence probability that is
much higher than random chance (i.e., 2%), which is generally expected. Catchments with a 
relatively high co-occurrence probability are mostly located in coastal regions (e.g., South 
Atlantic-Gulf Region, Texas Gulf Region, California Region, and Pacific Northwest Region) 
while co-occurrence probability tends to be low whenever the fraction of precipitation falling as 
snow (fsnow) is high (e.g., Upper Colorado Region and Great Basin Region). More importantly, 
only a small fraction (14%) of all catchments having a co-occurrence probability between 
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QDOYMAX and PDOYMAX (Figure 3a; see Figure S6 for regional results) of at least 0.5, indicating a 
weak causal linkage. 

The co-occurrence probability between QDOYMAX and Psm.DOYMAX (Figure 3b; see Figure S7 
for regional results) is higher than or equal to 0.5 over 7% of all catchments, indicating a weaker 
causal linkage relative to that between QDOYMAX and PDOYMAX. A possible reason is that soil 
moisture has a relatively strong seasonal cycle [Eltahir, 1998; Findell and Eltahir, 1997], 
contrasting to a weak seasonality of short-duration precipitation extremes [Do et al., 2020a]. 
Using Psm has potentially masked out many short-duration flood-induced rainfall events that 
spread throughout the years, leading to a lower co-occurrence probability. This finding suggests 
that precipitation extremes constrained over wet months has a potentially lower predictability for
changes in annual floods.

Among the three precipitation extreme metrics, effective precipitation (Figure 3c; see 
Figure S8 for regional results) is the variable with the strongest causal relationship to floods. 
Specifically, 26% of all catchments have a co-occurrence probability between Peff.DOYMAX and 
QDOYMAX of at least 0.5. A simple approach to take into account snow-soil interaction has led to a 
substantial increase in co-occurrence probability, suggesting that catchment processes potentially
play a more important role in modulating floods relative to precipitation intensity. 

When catchments are divided into different categories using fsnow (Figure 3d), there is a 
notable decrease of co-occurrence probability when fsnow increases. We note that the co-
occurrence probability between precipitation extremes and floods is not consistently low across 
all catchments with a high fsnow. For instance, of all 73 catchments with an fsnow of higher than or 
equal to 0.5, six catchments (located in the Pacific Northwest Region) have a co-occurrence 
probability between PDOYMAX and QMAX of at least 0.5. As a result, catchments with a high snow-
to-rain ratio are likely to have floods not driven by precipitation extremes, but there are 
exceptions such as catchments strongly influenced by atmospheric rivers which are responsible 
for flood-induced rainfall events. 

3.3 To what extent are changes in precipitation extremes useful to explain changes in floods?

The co-variation between precipitation extremes and QMAX is relatively low, with 81%, 
85%, and 66% of all catchments having an R2 of less than 0.5 for PMAX, Psm.MAX, and Peff.MAX 
respectively. When catchments are grouped into different categories according to co-occurrence 
probability, a strong positive correlation between co-variation and co-occurrence probability is 
observed (Figure 4). Of all catchments with co-occurrence probability of less than 0.5, the 
averaged R2 is 0.28 (for PMAX), 0.24 (for Psm.MAX) and 0.33 (for Peff.MAX) respectively, indicating 
that only about 30% of the temporal variability of floods can be explained by precipitation 
extremes. 

Focusing on the catchments with the strongest causal relationship (i.e., a co-occurrence 
probability of at least 0.6), a low-to-moderate correlation is observed, with the median of R2 
between QMAX and precipitation extremes is 0.41, 0.43 and 0.52 for PMAX, Psm.MAX and Peff.MAX 
respectively. The causal relationship between Peff.MAX and QMAX is the strongest, with 34 out of 63
catchments (54%) have an R2 of above 0.5. The relationship between PMAX and QMAX is the 
lowest, with 10 out of 28 catchments (36%) have an R2 value of above 0.5, further confirming 
the need for considering catchment processes (e.g., snow-soil interaction) to explain changes in 
annual floods. 
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Figure 4. Coefficeint of determination (R2) between AMAX discharges and AMAX 
precipitation across all CAMELS catchments, grouped by the co-occurrence probability. Results 
are showed for precipitation (P), wet-month precipation (Psm) and effective precipitation (Peff). 
Note that Peff were available for only 638 catchments.

4 Summary and Conclusions

Using annual maxima precipitation and streamflow across a large sample of catchments, 
this study has empirically assessed the relationship between temporal changes in precipitation 
extremes and changes in annual flood magnitude. The spatial pattern of trends detected from 
precipitation extremes is weakly correlated to the spatial pattern of trends detected from AMAX 
streamflow over 671 CONUS catchments, with a coefficient of determination of less than 0.2. 

A weak linkage between annual precipitation extremes and annual floods is apparent 
across the CAMELS catchments, with the vast majority of catchments have less than 50% of 
annual flood events directly linked to precipitation extremes (85%, 90%, and 73% of all 
catchments for AMAX precipitation, AMAX wet-month precipitation and AMAX effective 
precipitation respectively). Catchments with a high snow-to-rain ratio (indicated by fsnow value) 
generally have a low causal relationship between precipitation extremes and floods, but the 
impact of snow presence is not uniform. The co-variation between extreme precipitation 
intensity and flood magnitude is also low, with more than 60% of catchments having an R2 of 
less than 0.5, regardless of which precipitation extreme metrics being used. Using a snow-soil 
routine to correct the actual amount of precipitation modulating floods has led to a substantially 
improved predictability for changes in floods, suggesting that future trend detection studies 
should focus more on the catchment attributes such as soil profile and impervious area.
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Notwithstanding the complex processes driving floods, this study has quantitatively 
assessed the limitation of using changes in precipitation as a proxy for potential changes in 
floods. The findings indicate that the intensity of daily precipitation extremes is a weak predictor 
for temporal changes in annual maxima of daily streamflow, even for catchments with a 
relatively high causal relationship. This study highlights the need for additional efforts to 
investigate the non-linear responses of floods to climate changes using a larger sample of 
catchments, which would hopefully achieve a universal understanding of how floods might 
evolve. For instance, the approach presented in this study can be applied for other large sample 
datasets [Addor et al., 2019; Alvarez-Garreton et al., 2018; Coxon et al., 2020; Gudmundsson et 
al., 2018] to quantify the contribution of extreme precipitation to historical changes in floods for 
other parts of the world.
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