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Key points 10 

 We assess co-occurrence and co-variation between precipitation extremes and floods to 11 
explore the range of their relationships.  12 

 The spatial pattern of changes in precipitation extremes explains less than 20% of the 13 
spatial pattern of changes in floods  14 

 Most catchments have a co-variation of less than 0.5 between annual precipitation 15 
extremes and annual floods 16 

 17 

  18 
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Abstract 19 

Despite increasing evidence of intensification of extreme precipitation events associated with a 20 
warming climate, the magnitude of peak river flows is decreasing in many parts of the world. To 21 
better understand the range of relationships between precipitation extremes and floods, we 22 
analyzed annual precipitation extremes and flood events over the contiguous United States from 23 
1980 to 2014. A low correlation (less than 0.2) between changes in precipitation extremes and 24 
changes in floods was found, attributable to a small fraction of co-occurrence. The co-variation 25 
between precipitation extremes and floods is also substantially low, with a majority of 26 
catchments having a coefficient of determination of less than 0.5, even among the catchments 27 
with a relatively high fraction of annual maxima precipitation that can be linked to floods. The 28 
findings indicate a need for more investigations into causal mechanisms driving a non-linear 29 
response of floods to intensified precipitation extremes in a warming climate. 30 

1 Introduction  31 

Among the most important implications of global climate change is the intensification of 32 
the hydrologic cycle [Huntington, 2006], including the intensification of rainfall extremes 33 
[Westra et al., 2014]. As air temperature rises, the water vapor held in the atmosphere also 34 
increases following the Clausius-Clapeyron relation [Clausius, 1850]. This relationship has been 35 
documented extensively in the climate literature [Donat et al., 2013; Guerreiro et al., 2018; 36 
Papalexiou and Montanari, 2019; Westra et al., 2013], and has led to concerns of a future 37 
characterized broadly by an increase in the magnitude of global flood events.  38 

Large scale investigations into changes in floods, however, indicate a broad range of 39 
global flood response, with many studies documenting sites with a decrease in flood magnitude 40 
[Do et al., 2017; Do et al., 2020b; Gudmundsson et al., 2019; Hodgkins et al., 2017; Kundzewicz 41 
et al., 2004; Lins and Slack, 1999]. These somewhat unexpected relationships between trends in 42 
extreme precipitation and trends in extreme discharge can be attributed to the influence of other 43 
flood generation mechanisms such as soil moisture [Ivancic and Shaw, 2015; Wasko et al., 2020; 44 
Ye et al., 2017] and snow dynamics [Berghuijs et al., 2016; Blöschl et al., 2017; Do et al., 2020a; 45 
Ledingham et al., 2019; Stein et al., 2020]. Even when floods are triggered by precipitation 46 
extremes, the relationship between precipitation magnitude and flood magnitude is likely non-47 
linear [Sharma et al., 2018], owing to the complex interactions of many variables which have 48 
undergone substantial changes such as land cover [Archfield et al., 2016; Keenan et al., 2015; 49 
Lambin et al., 2003], river channels [Slater et al., 2015; Yamazaki et al., 2014] and 50 
evapotranspiration [Bosilovich et al., 2005; Gronewold and Stow, 2014].  51 

However, there is still limited quantitative understanding of the relationship between 52 
precipitation extremes and floods [Ivancic and Shaw, 2015; Sharma et al., 2018].  A lack of 53 
discharge observations in many parts of the world [Do et al., 2018; Do et al., 2020b] is arguably 54 
one of the main reasons for the limited evidence for how flooding responses to intensifying 55 
precipitation extremes. Even for regions with relatively good streamflow records, empirical 56 
investigations have primarily focused on the consistency between the timing of precipitation 57 
extremes and that of floods [Berghuijs et al., 2019; Blöschl et al., 2017; Do et al., 2020a; Ivancic 58 
and Shaw, 2015; Stein et al., 2020; Wasko et al., 2020] rather than co-variation between 59 
precipitation extreme intensity and flood magnitude. As a result, it is difficult to identify 60 
generalized relationships between changes in precipitation extremes and changes in floods, 61 
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which is essential to the design of robust flood prevention and mitigation strategies in a warming 62 
climate [Milly et al., 2008].  63 

We aim to fill this gap through an empirical assessment of the co-variation of 64 
precipitation extremes and flood magnitude using a large sample (671) of catchments across the 65 
contiguous United States (CONUS) (Section 2.1). We used annual maxima streamflow from 66 
1980 to 2014 from these catchments as the flood population, and we used three metrics of annual 67 
maxima precipitation to represent precipitation extremes (Section 2.2). Temporal changes in 68 
floods and precipitation extremes were then estimated at each catchment and the correlation 69 
between the spatial patterns of these trends was assessed (Section 2.3). The ordinal date of 70 
precipitation extreme events was then compared to that of annual flood events (Section 2.4) to 71 
assess potential linkages between these hydro-climatic extremes. Finally, the co-variation 72 
between the intensity of precipitation extremes and flood magnitude across catchments was 73 
assessed (Section 2.5) to evaluate the appropriateness of using changes in extreme precipitation 74 
as a proxy for changes in floods.  75 

2 Data and Methods 76 

2.1 Data 77 

Data for our analysis was derived from the Catchment Attributes and Meteorology for 78 
Large-sample Studies (CAMELS) dataset [Addor et al., 2017b; Newman et al., 2015].  The 79 
CAMELS database aggregates a variety of hydrometeorological variables (primarily derived 80 
from other studies) for 671 catchments across the CONUS (the outlets of CAMELS catchments 81 
are shown in Figure 1). The catchments in the CAMELS database are intended to reflect 82 
relatively natural hydrologic conditions (the impervious surface area of each catchment is less 83 
than 5% of the total catchment area; see Newman et al. [2015] for more information). These 84 
catchments have a relatively small size (the median catchment area is 340.7 km2) and cover a 85 
range of climatic conditions (e.g., dry, temperate, and continental climates) as well as geographic 86 
features (e.g., mountains and deserts). Other variables in the CAMELS database include daily 87 
streamflow (originally obtained from the United States Geological Survey), catchment-average 88 
daily precipitation and temperature (derived from the Daymet dataset [Thornton et al., 1997]), 89 
and daily evapotranspiration, simulated by the conceptual SAC-SMA model [Burnash et al., 90 
1973]. 91 

In addition to the hydro-meteorological data available through CAMELS, we also 92 
obtained soil moisture data from the NOAA Climate Prediction Center [Van den Dool et al., 93 
2003]. This dataset provides monthly soil moisture water height equivalent, simulated by a leaky 94 
bucket model, with a 0.5-degree longitude-latitude resolution. We used monthly soil moisture 95 
from the cell containing each catchment outlet as a proxy for catchment-wide to obtain soil 96 
moisture conditions from 1980 to 2014. We believe this approach is appropriate for the 97 
CAMELS catchments, given their relatively small size. 98 

2.2 Identifying streamflow and precipitation extremes 99 

Our approach to quantifying rainfall and streamflow extremes is based on the annual 100 
maxima (AMAX) index, one of the most common indices for assessing temporal changes in 101 
hydro-climatic extremes [Do et al., 2017; Kundzewicz et al., 2004; Ledingham et al., 2019; 102 
Villarini and Smith, 2010; Westra et al., 2013]. We first processed streamflow data to obtain the 103 
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magnitude (QMAX index; MAX denotes the magnitude of annual maxima) and the timing 104 
(QDOYMAX index; DOYMAX denotes the ordinal date of annual maxima) for each AMAX 105 
streamflow event. To reduce the chance of misattributing flood events, we omitted any years 106 
missing more than 15% of daily values. We note that more than 95% of all data-years have a 107 
complete observation set, and thus this missing data criterion has a minor influence on the 108 
analyses.  109 

We then processed daily precipitation to derive three sets of variables, each representing 110 
a different approach to quantifying precipitation extremes. The first variable is AMAX 111 
precipitation (P), which is defined using the same approach to that of AMAX streamflow. The 112 
second precipitation variable is AMAX precipitation based only on months in which soil 113 
moisture was above-average. This second variable allows us to assess the impact of constraining 114 
the timing of precipitation extremes to seasons when the catchments are wet, and when floods 115 
are more likely to occur [Ivancic and Shaw, 2015]. The third precipitation variable is AMAX of 116 
effective precipitation [Berghuijs et al., 2016; Berghuijs et al., 2019], which takes into account 117 
catchment saturation and snow dynamics. We calculated this variable using a coupled soil-snow 118 
routine [Berghuijs et al., 2016; Hock, 2003; Stein et al., 2020; Woods, 2009] based on daily 119 
precipitation, temperature, and evapotranspiration (all readily available in the CAMELS dataset). 120 
Details of this routine is provided in the Supporting Information; for further reading, see Stein et 121 
al. [2020].  122 

Finally, we calculated the intensity and timing of each of the three precipitation AMAX 123 
variables, leading to a total of six precipitation indices; PMAX and PDOYMAX (for the first 124 
precipitation variable), Psm.MAX and Psm.DOYMAX (for the second), and Peff.MAX and Peff.DOYMAX (for 125 
the third). Note that evapotranspiration is only available from October 1980 onward, thus Peff.MAX 126 
and Peff.DOYMAX are not available for 1980. 127 

2.3 Assessing the correlation between the spatial pattern of changes in precipitation extremes and 128 
the spatial pattern of changes in floods  129 

We calculated temporal changes in the magnitude of AMAX streamflow (QMAX) and 130 
changes in precipitation extreme intensity (PMAX, Psm.MAX, and Peff.MAX) using normalized Theil–131 
Sen slope [Gudmundsson et al., 2019; Stahl et al., 2012] as follows:  132 

𝜏௖ = 𝑚𝑒𝑑𝑖𝑎𝑛 ቀ
௫ೕି௫೔

௝ି௜
ቁ    (1) 133 

𝑇௖ =
ఛ೎×ଵ଴௬௘௔௥௦

௫̅೎
× 100  (2) 134 

where 𝜏௖ is the Theil-Sen slope estimator for catchment c, which is defined as the median of the 135 
average annual difference in AMAX values (x) between all possible pairs of years. The indices i 136 
and j represent year numbers such that i ∈ [1, nc-1], j ∈ [2, nc], i < j, and nc is the number of years 137 
in the data record (after the screening process described above) for each catchment. 𝑇௖ is the 138 
normalized trend, expressed as a percentage of change per decade relative to the mean of all 139 
AMAX values in a catchment (𝑥̅௖). This approach leads to four Tc values for each catchment, one 140 
for QMAX and three for precipitation intensity (PMAX, Psm.MAX, and Peff.MAX).  141 

To evaluate whether the spatial pattern of changes in floods can be explained by the 142 
spatial pattern of changes in precipitation extremes, we calculated the coefficient of 143 
determination R2 [Rao, 1973], which is the square of the correlation between the Tc values of 144 
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QMAX and the Tc values of a precipitation extreme metric (e.g., Tc of PMAX). The value of R2 145 
ranges from 0 to 1, and a high R2 indicates a strong correlation.  146 

2.4 Assessing the linkage between precipitation extremes and floods 147 

To quantify the strength of a potential relationship between precipitation extremes and 148 
floods, we took the probability approach [Ivancic and Shaw, 2015; Ledingham et al., 2019] and 149 
identified the annual precipitation extremes that were followed closely (in time) by an annual 150 
flood extreme in each catchment. Specifically, we matched the timing of AMAX precipitation 151 
events (represented by PDOYMAX, Psm.DOYMAX, and Peff.DOYMAX indices) and the timing of annual 152 
floods (represented by QDOYMAX index; see Supporting Information Figure S3-S5 for more 153 
details). The co-occurrence probability was then computed as the fraction of annual precipitation 154 
extremes that can be directly linked to annual floods. To account for travel time required for 155 
precipitation to reach a catchment outlet, we adopted a previous approach [Ivancic and Shaw, 156 
2015] and allowed a lag of up to 5 days (i.e., we presume a connection if 0 ≤ QDOYMAX - 157 
PDOYMAX ≤ 5). This lag is well-suited our objective – to investigate the linkages between 158 
precipitation extremes and annual floods – as the chosen catchments have a relatively small size 159 
and thus a time of concentration of less than 5-day [Pilgrim et al., 1987]. If precipitation 160 
extremes and floods were independent, the random chance of a match, on average, would be less 161 
than 2%, which is the random chance of QDOYMAX having a value between PDOYMAX and PDOYMAX 162 
+ 5 (six days) of all possible days in a non-leap year (365 days).  163 

Given the importance of precipitation type (i.e. snow or rain) over much of the CONUS 164 
[Berghuijs et al., 2016], as well as other parts of the world [Blöschl et al., 2017; Do et al., 165 
2020a], we also assessed whether relationships between precipitation extremes and floods vary 166 
by precipitation type. We used the annual average proportion of precipitation that falls as snow, 167 
readily available in Addor et al. [2017b], and is denoted as fsnow. Each catchments was classified 168 
into one of the six categories; the first five are defined by fsnow values between 0.0 and 0.5 at 169 
intervals of 0.1; the sixth category includes all catchments with an fsnow value between 0.5 and 170 
1.0 (see Figure 1). We then assessed whether there are significant differences in the co-171 
occurrence probability of precipitation extremes and floods across fsnow classification categories.   172 

2.5 Assessing temporal correlation between the intensity of precipitation extremes and flood 173 
magnitude 174 

We identified catchments with a similar fraction of co-occurrence between precipitation 175 
extremes and flood by grouping catchments into seven groups according to the co-occurrence 176 
probability at 0.1 intervals (note that all catchments with at least 0.6 co-occurrence probability 177 
were grouped into one category). We then measured the co-variation between the intensity of 178 
precipitation extremes (e.g., PMAX index) and the magnitude of floods (QMAX index) at each 179 
catchment using the coefficient of determination R2. The R2 values were then analyzed alongside 180 
the co-occurrence probability to quantify the extent of which changes in precipitation extremes 181 
are useful to infer changes in flood magnitude.  182 
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3 Results and Discussions 183 

3.1 A low correlation between the spatial pattern of changes in floods and the spatial pattern of 184 
changes in precipitation extremes  185 

Figure 2 shows temporal changes in the magnitude of annual floods and precipitation 186 
extremes across the CAMELS catchments. We note that the effective precipitation (Peff) could be 187 
equal to zero throughout the year wherever precipitation could not make the catchment fully 188 
saturated. Specifically, there are 110 catchments having zero Peff.MAX over more than 20 years, 189 
leading to a zero Thiel-Sen slope estimated as shown in Figure 2h (see also Supplementary 190 
Figure S2). We also removed 33 catchments that have Peff.MAX equal to zero across all years from 191 
our analyses, leading to a sample size of 638 catchments for Peff.MAX assessment. 192 

Over the reference period, more CAMELS catchments (53%) experienced a decrease in 193 
QMAX index (Figure 2a), consistent with recent investigations [Do et al., 2017; Do et al., 2020b; 194 
Gudmundsson et al., 2019; Hodgkins et al., 2019; Hodgkins et al., 2017]. On the contrary, PMAX 195 
index shows an increasing trend (Figure 2b) over the majority of catchments (67%), although 196 
some interior water resources regions exhibited a more prominent decreasing trend (e.g. Missouri 197 
Region; see Figure S2 in the Supporting Information for trends in annual floods and precipitation 198 
extremes over individual regions). There is a low correlation between the spatial pattern of 199 
changes in PMAX and the spatial pattern of changes in QMAX (Figure 2f) with an R2 of 0.11, 200 
indicating that only 11% of the spatial variation of trends of QMAX can be explained using trends 201 
of PMAX.  202 

The spatial pattern of Psm.MAX trends (Figure 2c) is generally consistent with that of PMAX 203 
trends, while the spatial pattern of Peff.MAX trends (Figure 2d) shows a substantial difference 204 
relative to that of PMAX trends, and appears to be more consistent with the spatial pattern of QMAX 205 
trends. The coefficient of determination between precipitation extreme trends and QMAX trends 206 
support this finding, with an R2 of 0.06 and 0.17 for Psm.MAX trends and Peff.MAX trends 207 
respectively (Figure 2g and Figure 2h). These results are generally expected, as the snow-soil 208 
routine underlying Peff.MAX can be seen as a simple conceptual model that takes into account 209 
several catchment processes.  210 

More importantly, the R2 values between QMAX trends and precipitation extreme trends 211 
are less than 0.2 across all precipitation extreme metrics. This result means that the spatial 212 
variation of precipitation extreme trends can explain less than 20% of the spatial variation of 213 
QMAX trends across the CONUS from 1980 to 2014. The R2 is also low over individual water 214 
resources regions (Figure 2e), even though some regions have most catchments associated with a 215 
fraction of annual precipitation falling as snow of less than 0.1 (e.g., the Texas-Gulf Region and 216 
the South Atlantic-Gulf Region). Specifically, more than 60% of the regions having an R2 value 217 
of less than 0.2 (scatter plots for individual regions were provided in Figure S2 of the Supporting 218 
Information), indicating the limitation of using trends of precipitation extremes to infer trends of 219 
floods.  220 

3.2 Co-occurrence probability of precipitation extremes and floods across the CONUS 221 

The low correlation between the spatial pattern of changes in precipitation extremes and 222 
that of floods (discussed in Section 3.1) is potentially attributable to a weak linkage between 223 
these variables, as there are other mechanisms that could trigger floods [Blöschl et al., 2019; 224 
Merz and Blöschl, 2003]. To quantify the linkage between these extremes, we assessed the co-225 
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occurrence probability between precipitation extremes and floods over individual catchments and 226 
the results are shown in Figure 3 (See Figure S3-S5 in the Supporting Information for QDOYMAX, 227 
PDOYMAX, Psm.DOYMAX, and Peff.DOYMAX across all catchments). The averaged co-occurrence 228 
probability across all catchments is 32%, 30%, and 37% for PDOYMAX, Psm,DOYMAX, and 229 
Peff.DOYMAX respectively. This number is consistent with a previous investigation [Ivancic and 230 
Shaw, 2015], indicating that annual precipitation extremes can only be linked directly to about 231 
one-third of the annual flood population.  232 

The vast majority of catchments (more than 95%) have a co-occurrence probability that is 233 
much higher than random chance (i.e., 2%), which is generally expected. Catchments with a 234 
relatively high co-occurrence probability are mostly located in coastal regions (e.g., South 235 
Atlantic-Gulf Region, Texas Gulf Region, California Region, and Pacific Northwest Region) 236 
while co-occurrence probability tends to be low whenever the fraction of precipitation falling as 237 
snow (fsnow) is high (e.g., Upper Colorado Region and Great Basin Region). More importantly, 238 
only a small fraction (14%) of all catchments having a co-occurrence probability between 239 
QDOYMAX and PDOYMAX (Figure 3a; see Figure S6 for regional results) of at least 0.5, indicating a 240 
weak linkage.  241 

The co-occurrence probability between QDOYMAX and Psm.DOYMAX (Figure 3b; see Figure 242 
S7 for regional results) is higher than or equal to 0.5 over 7% of all catchments, indicating a 243 
weaker linkage relative to that between QDOYMAX and PDOYMAX. A possible reason is that soil 244 
moisture has a relatively strong seasonal cycle [Eltahir, 1998; Findell and Eltahir, 1997], 245 
contrasting to a weak seasonality of short-duration precipitation extremes [Do et al., 2020a]. 246 
Using Psm has potentially excluded many short-duration flood-induced rainfall events that spread 247 
throughout the years, including the months with a low soil moisture content. The removal of 248 
these flood-induced rainfall events is potentially the reason for a lower co-occurrence probability 249 
between QDOYMAX and Psm.DOYMAX relative to that between QDOYMAX and PDOYMAX.  250 

Among the three precipitation extreme metrics, effective precipitation (Figure 3c; see 251 
Figure S8 for regional results) is the variable with the highest co-occurrence probability to 252 
floods. Specifically, 26% of all catchments have a co-occurrence probability between Peff.DOYMAX 253 
and QDOYMAX of at least 0.5. A simple approach to take into account snow-soil interaction has led 254 
to a substantial increase in co-occurrence probability, suggesting that catchment processes 255 
potentially play a more important role in modulating floods relative to precipitation intensity.  256 

When catchments are divided into different categories using fsnow (Figure 3d), there is a 257 
notable decrease of co-occurrence probability when fsnow increases. We note that the co-258 
occurrence probability between precipitation extremes and floods is not consistently low across 259 
all catchments with a high fsnow. For instance, of all 73 catchments with an fsnow of higher than or 260 
equal to 0.5, six catchments (located in the Pacific Northwest Region) have a co-occurrence 261 
probability between PDOYMAX and QMAX of at least 0.5. As a result, catchments with a high snow-262 
to-rain ratio are likely to have floods not driven by precipitation extremes, but there are 263 
exceptions such as catchments strongly influenced by atmospheric rivers which are responsible 264 
for flood-induced rainfall events.  265 

3.3 To what extent are changes in precipitation extremes useful to explain changes in floods? 266 

The co-variation between precipitation extremes and QMAX is relatively low, with 81%, 267 
85%, and 66% of all catchments having an R2 of less than 0.5 for PMAX, Psm.MAX, and Peff.MAX 268 
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respectively. When catchments are grouped into different categories according to co-occurrence 269 
probability, a strong positive relationship between co-variation and co-occurrence probability is 270 
observed (Figure 4). Of all catchments with co-occurrence probability of less than 0.5, the 271 
averaged R2 is 0.28 (for PMAX), 0.24 (for Psm.MAX) and 0.33 (for Peff.MAX) respectively, indicating 272 
that only about 30% of the temporal variability of floods can be explained by precipitation 273 
extremes.  274 

Focusing on the catchments with the highest co-occurrence probability (at least 0.6), a 275 
low-to-moderate correlation is observed, with the median of R2 between QMAX and precipitation 276 
extremes is 0.41, 0.43 and 0.52 for PMAX, Psm.MAX and Peff.MAX respectively. The co-variation 277 
between Peff.MAX and QMAX is the highest, with 34 out of 63 catchments (54%) have an R2 of 278 
above 0.5. The co-variation between PMAX and QMAX is the lowest, with 10 out of 28 catchments 279 
(36%) have an R2 value of above 0.5, further confirming the need for considering catchment 280 
processes (e.g., snow-soil interaction) to explain changes in annual floods.  281 

4 Summary and Conclusions 282 

Using annual maxima precipitation and streamflow across a large sample of catchments, 283 
this study has empirically assessed the relationship between temporal changes in precipitation 284 
extremes and changes in annual flood magnitude. The spatial pattern of trends detected from 285 
precipitation extremes is weakly correlated to the spatial pattern of trends detected from AMAX 286 
streamflow over 671 CONUS catchments, with a coefficient of determination of less than 0.2.  287 

A weak linkage between annual precipitation extremes and annual floods is apparent 288 
across the CAMELS catchments, with the vast majority of catchments have less than 50% of 289 
annual flood events directly linked to precipitation extremes (85%, 90%, and 73% of all 290 
catchments for AMAX precipitation, AMAX wet-month precipitation and AMAX effective 291 
precipitation respectively). Catchments with a high snow-to-rain ratio generally have a low co-292 
occurrence probability between precipitation extremes and floods, but the impact of snow 293 
presence is not uniform. The co-variation between extreme precipitation intensity and flood 294 
magnitude is also low, with more than 60% of catchments having an R2 of less than 0.5, 295 
regardless of which precipitation extreme metrics being used. Using a snow-soil routine to 296 
correct the actual amount of precipitation modulating floods has led to a substantially improved 297 
predictability for changes in floods, suggesting that future trend detection studies should focus 298 
more on the catchment attributes such as soil profile and impervious area. 299 

Notwithstanding the complex processes driving floods, this study has quantitatively 300 
assessed the limitation of using changes in precipitation as a proxy for potential changes in 301 
floods. The findings indicate that the intensity of precipitation extremes alone is a weak predictor 302 
for temporal changes in annual maxima of daily streamflow, even for catchments with a 303 
relatively high co-occurrence probability. It is informative to note that this study focused on 304 
relatively small, “near-natural” catchments, and thus the findings may not be representative for 305 
larger catchments or catchments influenced heavily by urbanization. This study highlights the 306 
need for additional efforts to investigate the non-linear responses of floods to climate changes 307 
using a larger sample of catchments, which would hopefully achieve a universal understanding 308 
of how floods might evolve. For instance, the approach presented in this study can be applied for 309 
other large sample datasets [Addor et al., 2019; Alvarez-Garreton et al., 2018; Coxon et al., 310 
2020; Gudmundsson et al., 2018] to quantify the contribution of extreme precipitation to 311 
historical changes in floods for other parts of the world. 312 
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Figure 1. Location of CAMELS catchment outlets across the CONUS. Each catchment was 458 
classified into one of the six groups based on the annual average fraction of annual precipitation 459 
falling as snow (fsnow; categories were defined at 0.1 intervals, with all catchments having fsnow of 460 
at least 0.5 grouped into one category). The 18 major water resources regions over the CONUS 461 
are also shown (grey polygons bounded by whites lines) for reference (see also Figure S1 in 462 
Supporting Information).  463 

 464 

Figure 2. Trends in (a) QMAX, (b) PMAX, (c) Psm.MAX and (d) Peff.MAX across each of the 671 465 
CAMELS catchments based on the normalized Thiel-Sen slope (Tc). Scatter plots between Tc 466 
values of QMAX and Tc values of (f) PMAX, (g) Psm.MAX, (h) Peff.MAX are also shown. (d) Boxplot of 467 
the R2 between Tc values of annual floods and Tc values of annual precipitation extremes (see 468 
Figure S2 in the Supporting Information for disaggregation of results across water resources 469 
regions). 470 

 471 

Figure 3. Co-occurrence probability between AMAX streamflow and (a) AMAX precipitation, 472 
(b) AMAX wet-month precipitation, (c) AMAX effective precipitation across all CAMELS 473 
catchments; and (d) when grouped into six categories using the fraction of precipitation falling as 474 
snow (fsnow). Note that Peff were available for only 638 catchments. 475 

 476 

Figure 4. Coefficeint of determination (R2) between AMAX discharges and AMAX 477 
precipitation across all CAMELS catchments, grouped by the co-occurrence probability. Results 478 
are showed for precipitation (P), wet-month precipation (Psm) and effective precipitation (Peff). 479 
Note that Peff were available for only 638 catchments. 480 

 481 


