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Abstract13

Water retention in soil exhibits diverse phenomena, including suction-saturation hystere-14

sis, non-unique air entrapment at zero suction and negative suction under partial sat-15

urations. The constancy of suction after a long rest can be broken by relatively minor16

mechanical or hydraulic agitations such as low-amplitude wetting cycles – this fact is here17

being related to metastable states that differ from the true equilibrium. The complete18

suction-saturation relationships are thus being recovered using non-equilibrium Landau’s19

hydrodynamic theory and Onsager’s reciprocity principles. Equilibrium suction does not20

pertain to hysteresis, yet can be approached through small amplitude agitations over long21

duration. Conditions for rate independence are being described, while rate-dependency22

are also accommodated and illustrated. Finally, it is shown that the new non-equilibrium23

theory retains the rigorously derived equilibrium result of the effective stress of partially24

saturated soils.25

1 Introduction26

The connection of air and water pressures to their densities in partially saturated27

soils is normally expressed by relating suction (air minus water pressures) to the degree28

of saturation and porosity. These soil water retention relationships, which are known al-29

ternatively as capillary pressure-saturation relations, are critical to hydrology, agricul-30

ture, geotechnology and petroleum engineering, as they control transport phenomena (Bear,31

2013; Hassanizadeh et al., 2002) and effective stresses (Jiang et al., 2017; Vaunat & Casini,32

2017). From previous experimental research of these relationships many phenomena have33

been identified. Most generally, under elevated suctions the amount of water in the soil34

reduces (Brooks, 1965; Mualem, 1976), while under constant suction the degree of sat-35

uration depends on the porosity (Gallipoli et al., 2003; Assouline, 2006; Zhou et al., 2012).36

Drying from full saturation occasionally requires large suction to distinguishably reduce37

the water content or saturation (Fredlund & Xing, 1994; Pasha et al., 2017). Wetting38

monotonously from dry states cannot regain full saturation without entrapping air and39

letting water pressure gets larger than the air pressure, meaning essentially negative suc-40

tion or capillary pressure (Skjaeveland et al., 2000; Alsherif et al., 2015; Wang et al., 2016;41

Chen et al., 2019). Under zero suction the degree of saturation is also not unique and42

broadly depends on the maxima of previously applied suction (Poulovassilis, 1970; Ward-43

law & Taylor, 1976; Hammervold et al., 1998). Cycles of wetting (imbibition) and dry-44

ing (drainage) present hysteretic (scanning) response (Haines, 1930; Gallipoli, 2012; Zhou,45

2013; Pasha et al., 2017). While the effective stress of soils has been fundamentally linked46

to soil water retention under thermodynamic equilibrium conditions (Jiang et al., 2017),47

for all practical purposes the impact of hydraulic hysteresis on it seems negligible when48

experimentally plotted against saturation (Khalili & Zargarbashi, 2010).49

In the well-known work of (Hassanizadeh & Gray, 1993) thermodynamics were used50

to articulate a number of useful restrictions on soil water retention (viz., capillary pressure-51

saturation) relationships. However, there is currently no thermodynamic framework ca-52

pable of explaining all the above listed observations using a single mathematically con-53

sistent physical treatment – the purpose of this paper is to resolve this gap by extend-54

ing a previous formulation for thermodynamically equilibrated soil systems (Jiang et al.,55

2017; Einav & Liu, 2018, 2020) to non-equilibrium conditions. In particular, here the phe-56

nomena of hydraulic hysteresis, air entrapment, path-dependent saturation at zero suc-57

tion and negative suction will all be resolved using a single evolution equation for suc-58

tion deviation from a well defined non-hysteretic true equilibrium retention state, with-59

out needing to take any additional assumptions.60

The current derivation follows the hydrodynamic procedure, which was originally61

formulated by Landau (Landau & Lifshitz, 1980, 1987), and extended to address super62

fluidity (Khalatnikov, 2018) and liquid crystals (de Gennes & Prost, 1993). More recently63

–2–



manuscript submitted to Water Resources Research

the concept of two-stage irreversibly in heterogeneous media was introduced by (Jiang64

& Liu, 2009), and adopted for granular materials (Jiang & Liu, 2009, 2015; Alaei et al.,65

2021). Similarly, (Jiang et al., 2017) have hydrodynamically derived the effective stress66

of partially saturated soils in thermodynamic equilibrium, without needing to track the67

overwhelmingly complex shapes and distribution of air-water-solid interfaces, thanks to68

the fact that all these factors are actually encoded in the soil water retention relations.69

Here, their resolved relationship between the effective stress and soil water retention is70

shown to be valid even under non-equilibrium conditions.71

To accommodate for non-equilibrium relations between fluid pressures and densi-72

ties, the current treatment adopts the Onsager’s reciprocity relations (Onsager, 1931;73

De Groot & Mazur, 2013) for the corresponding dissipative microscopic processes. The74

relevance of these relations has been noted for porous media by (Bear, 2013) and oth-75

ers (Li et al., 1995; Moyne & Murad, 2006; Winkler et al., 2020), though have not been76

used to explain hysteretic soil water retention in soil. Furthermore, unlike the earlier ther-77

modynamic formulations of partially saturated soils, we do not neglect the subtle yet rig-78

orous distinction (Jiang et al., 2017) between the externally applied or measured suc-79

tion and the intrinsic suction that actually develops in the media. Those could be an or-80

der magnitude different, yet they are strictly connected thermodynamically.81

Another key step in the current hydrodynamic derivation is the inclusion of more82

than one set of temperatures and entropies. Although in water research only the ther-83

mal temperature has been considered prior to this work, additional temperatures have84

been accounted for in continuum formulations of granular and amorphous materials (Jiang85

& Liu, 2009; Kamrin & Bouchbinder, 2014). Here we adopt the two stage irreversibly86

principle for energy flow between temperatures of distinct scales of motion (Jiang & Liu,87

2009), and identify two sets of temperatures and entropies. The first set includes the con-88

ventional thermal temperature and entropy (T and s), which captures the degrees of free-89

dom and fluctuating motion of elementary atomistic particles. The second set includes90

the meso-related temperature and entropy (Tm and sm), which embodies the degrees of91

freedom and fluctuating motion of mesoscopic features at the scale of soil particles and92

the water-air-particle interfaces in between. The scales of these mesoscopic features are93

comparable and overwhelmingly larger than that of atoms, and thus their contributions94

are lumped within the single set of Tm and sm.95

Thermal effects on soil water retention have been reported experimentally (Hop-96

mans & Dane, 1986). These could be naturally accounted for in the theory, but are left97

for future considerations since they tend to be small in practical regimes of interest. On98

the other hand, the dependence of soil water retention on the fluctuating motion of soil99

particles and fluid-solid interfaces has not been considered (eg., through Tm) in previ-100

ous thermodynamic considerations; here, this concept is being developed, thus allowing101

to capture relaxation towards the least energy states of true equilibrium (see Fig 1a).102

The significance of the ‘true equilibrium’ for soil water retention relationships is103

clearly demonstrated, and the corresponding states are shown to be unique for every given104

material. This is in contrast to the previous thermodynamic ideas by (Morrow, 1970)105

and (Hassanizadeh & Gray, 1993), which involved two different equilibrium relationships106

for drying and wetting. However, such models fail to decide where to relax to when re-107

siding in between, unless being forced to arbitrarily (Beliaev & Hassanizadeh, 2001). As108

such the previous models cannot explain why the soil can develop negative suction (or109

negative capillary pressures). Similarly, they cannot explain the non-uniqueness of resid-110

ual saturation, air entrapment, and the approach of suction towards a focal point upon111

wetting-drying cycles with diminishing amplitude (Muraleetharan et al., 2009).112

In contrast, the current formulation is shown to predict all of these observations113

from first principles. At non-equilibrium conditions, the retention state tends to get stuck114

only at shallow energy minima. These minima are rather precarious, because they could115
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Figure 1: Conceptual distinction between equilibrium and metastability: (a) soil water
retention showing metastable states visited after monotonic drying or wetting (dashed
orange lines) and true equilibrium states (dashed blue line) approached after low ampli-
tude perturbations of suction or saturation (grey zigzags), or even acoustic waves; (b) the
dynamics of fluid patches and interfaces that accompany such perturbations.

be easily left behind upon small hydraulic or mechanical vibrations. The states belong-116

ing to these minima are only metastable and are not actually in equilibrium (see Fig 1a).117

On the other hand, by continuously adding further hydraulic or mechanical vibrations118

to the soil, the state can gradually approach the true equilibrium state of least energy,119

because micromechanically this can unlock the motion of otherwise feebly jammed fluid120

patches (see Fig 1b). Experiments that impose such vibrations at both positive (Muraleetha-121

ran et al., 2009) and negative (Alsherif et al., 2015) suctions are available in the liter-122

ature, and support the presence of only a single true equilibrium state.123

Partially saturated soils are three-phase media, where each phase interacts with124

the others. According to the proposed theory, small solid particle vibrations (for exam-125

ple, excited by acoustic waves) would cause the meso-related temperature Tm to elevate.126

Increased value of Tm means stronger motion of localised fluid patches. In the process127

these patches migrate to explore other locations in the pore spaces, where they could more128

favourably rest. This motion is accompanied by the alterations of interfacial fluid-particle129

geometries (see Fig 1b), and thus changes to the measured suction. As the mechanical130

agitation stops and Tm relaxes back to zero, the system attain a new metastable state131

of suction, which may possibly lie on the true equilibrium curve (see Fig 1a), without132

even needing to experience any change to the degree of saturation Sr. This simple thought133

experiment illustrates why particle motion should not be disconnected from soil water134

retention. The proposed hydrodynamic theory considers this form of coupling for the first135

time, as well as recovering the other form of solid-fluid coupling between effective stress136

and fluid pressures in soils.137

The paper is organised as follows. In Sec. 2 the hydrodynamic principles for par-138

tially saturated soils will be reviewed, being valid for both equilibrium and non-equilibrium139

conditions. Based on these general principles, the following Sec. 3 summarises the pre-140

viously derived specific results of partially saturated soils under thermodynamic equi-141

librium; the presentation will add new context and examples to support the remaining,142

main parts of the paper. In the following sections the formulation will be extended to143

non-equilibrium conditions. In Sec. 4 the treatment will focus on rate-independent pro-144

cesses; while Sec. 5 will expand this formulation to rate-dependent processes which in145

the limit of slow drying and wetting predicts similar results as along the rate-independent146

limit in Sec. 4. Both of these sections will include a number of examples to illustrate the147
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significance of the new theory. Finally, in the concluding Sec. 6 the novel concepts of this148

paper will be summarised, followed by a number of suggestions for future considerations149

and studies.150

2 General hydrodynamics for partially saturated soils151

2.1 Densities152

Partially saturated soils contain three domains denoted by an index β ={S,W,A},
each species sufficiently dispersed such that it could be statistically macroscopic for ther-
modynamics to hold in it. The soil has a representative volume V where each species
has a mass Mβ ; as a result, three thermodynamic partial densities can be identified, whose
addition gives the overall partial density:

%β ≡ Mβ

V
, % ≡

∑
%β . (1)

Similarly, it is possible to define corresponding intrinsic densities using the species
volumes Vβ , which add up to give the total volume:

%̂β ≡ Mβ

Vβ
, V ≡

∑
Vβ . (2)

Using these densities a variety of commonly used dimensionless ratios could be de-
fined:

cβ ≡Mβ

M
=

%β
%
, φβ ≡ Vβ

V
=

%β
%̂β

,

n ≡VV

V
= φW + φA, e ≡ VV

VS
=

n

1− n
, Sr ≡ VW

VV
=

φW

n
, (3)

being the concentrations and volume fractions of the species, the porosity, void ratio, and153

the degree of saturation, respectively; while VV = VA+VW is the volume of voids. The154

key point here is that all the above ratios are entirely given from the six densities (three155

partials and three intrinsics).156

Finally, using simple additions∑
φβ ≡ 1,

∑
cβ = 1. (4)

2.2 Balance laws157

According to the first law of thermodynamics all media must conserve energy, which
is given by the balance of the conserved energy density (U):

∂tU +∇iEi = %viGi, (5)

where Ei is the energy flux, %Gi is the gravitational force density, and vi is the barycen-
tric velocity. The conserved energy is related to its value at rest (vi = 0), known as the
internal energy density (u):

U ≡ U(gi, s, ε
e
ij , %β , Nζ) = g2i /(2%) + u(s, εe

ij , %β , Nζ), (6)

where gi = %vi, s, εe
ij and %β represent the momentum, thermal entropy, the elastic strain158

tensor, and the partial densities of the three β-species in Eq. (1), respectively. These state159

variables are universally required for the description of partially saturated soils under160

both equilibrium and non-equilibrium conditions. On the other hand, the term Nζ de-161

notes a list of ζ later-to-be-specified non-equilibrium state variables, whose values van-162

ish under equilibrium. All these equilibrium and non-equilibrium state variables require163
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their own balance law. Below, these evolution laws are specified for the equilibrium vari-164

ables, leaving the non-equilibrium variables for Sec. 4.165

The momentum density is given by its own conservation law:

∂tgi +∇j(givj + σij) = %Gi, (7)

where σij is the total stress tensor.166

The thermal entropy is given from the second law of thermodynamics:

∂ts+∇i(svi − Fi) = R/T ≥ 0, (8)

where svi and Fi are the convective and dissipative energy currents, respectively; while167

R and T are the thermal entropy production and temperature.168

The elastic strain tensor is given from:

dtε
e
ij +Ωikε

e
kl − εe

kjΩik = ε̇ij − ε̇pij , dt = ∂t + vk∇k, (9)

where Ωij is the anti-symmetric component of the velocity gradient, ε̇ij = − 1
2 (∇ivj+169

∇jvi) the total symmetric strain rate, while ε̇pij is its dissipative current known as the170

plastic strain rate. More detail on the significance of this law is given by (Einav & Liu,171

2018).172

Finally, the balance law for the partial densities of the three species, as well as the
overall conservation law for the total partial density are given from:

∂t%β ≡ −∇i(%βv
β
i ) = −∇i(%βvi − Jβ

i ), ∂t% ≡ −∇i(%vi), (10)

where vβi and Jβ
i are the velocity and dissipative density current (flux) of species β. In

particular, the sum of the species momenta is given by the total momentum density of
the soil mixture

%vi =
∑

%βv
β
i , (11)

while thanks to Eq. (1) we also find ∂t% =
∑

∂t%β , so by combining the above:∑
Jβ
i = 0 ⇒ Jβ

i = %β(vi − vβi ). (12)

2.3 Hydrodynamic procedure – general results173

Following the hydrodynamic procedure (Einav & Liu, 2018), by combining Eqs. (6-
12) the thermal temperature is recovered from its corresponding entropy density:

T ≡ ∂u

∂s
, (13)

while the elastic stress, thermodynamic pressure, and viscous stress are given by:

σe
ij ≡

∂u

∂εe
ij

, PT ≡ −∂(u/%)

∂(1/%)

∣∣∣∣
εe
ij

, σD
ij = σij − σe

ij − PT δij , (14)

where δij is the Kronecker delta tensor. Similarly, it is possible to define a variety of par-
tial chemical potentials for the total mixture, individual species, and for their deviation
from the chemical potential of the solid phase:

µ ≡ ∂u

∂%
, µβ ≡ ∂u

∂%β
, Xβ ≡ µβ − µS. (15)

Thanks to the hydrodynamic procedure (Einav & Liu, 2018) it is also possible to
derive the rate of thermal entropy production:

R = Fi∇iTm + JA
i ∇iXA + JW

i ∇iXW +D ≥ 0, D = σD
ij ε̇ij + σe

ij ε̇
p
ij , (16)
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where D is identified as the mechanical dissipation.174

While the general condition for guaranteeing the positiveness of the thermal en-
tropy production R may follow from Onsager’s reciprocal relationships, to a first order
it is clear that σD

ij ∼ ε̇ij . Critical state testing in soil mechanics are generally made un-
der very low strain rates, in which case the viscous stress practically vanishes σD

ij → 0.
So by identifying the elastic stress as effective (as both comes to represent the stress car-
ried out only by the soil skeleton), the hydrodynamic procedure reveals the following gen-
eral result for the effective stress of soils (both fully saturated and not):

σeff
ij ≡ σij − PT δij , PT = −∂(u/%)

∂(1/%)
= µ%− u. (17)

Since PT depends on the definition of u, so does the explicit solution for the effec-175

tive stress σeff
ij . Importantly, as discussed in the following section the general dependence176

of u on the various densities is clear, thus enabling accurate solutions for both PT and177

σeff
ij .178

3 Partially saturated soils under equilibrium179

The current section reviews the fundamental results from the thermodynamic deriva-180

tion for equilibrated soil systems by (Jiang et al., 2017), which reveals the explicit hy-181

dromechanical relationships between the effective stress of partially saturated soils to their182

intrinsic and externally measured/applied suction values. This is an essential step be-183

fore proceeding to address the more general case of such relationships under non-equilibrium184

conditions.185

3.1 Equilibrium conditions186

True thermodynamic equilibrium states refer to conditions where all the dissipa-
tive fluxes in the system vanish and all the non-equilibrium state variables attain zero
value, so that their contribution to the energy vanishes. Under such conditions the in-
ternal energy u approaches its unique minimum value:

min
{%̂β ,Nζ}

u(s, εe
ij , %β , %̂β , Nζ) = ueq(s, ε

e
ij , %β) [equilibrium] (18)

which is found by minimising the internal energy over the three intrinsic densities %̂β (Jiang187

et al., 2017), as well as all the possible values of the yet-to-be-specified ζ non-equilibrium188

state variables Nζ . In the following, this equilibrium state is first described by specify-189

ing ueq, and later ζ = 2 specific non-equilibrium state variables will be defined to al-190

low departures from the true equilibrium conditions. At non-equilibrium conditions, it191

would be shown using the new theory that partially saturated soils could get stuck in192

metastable states that do not satisfy the true equilibrium condition of least energy.193

3.2 Internal energy194

Neglecting thermal effects through s (or T ) on the hydromechanical relations, the
equilibrium value of the internal energy of partially saturated soils could be represented
by summing up the elastic strain energy of the soil skeleton ue and the free energy f of
the three domains:

ueq ≡ ue(ε
e
ij , %S) + f(%β). (19)

The relation between the partial densities in Eq. (1) means that f varies with %.
Therefore, since ue and f depend on % they both contribute to the thermodynamic pres-
sure PT . However, wave measurements reveal elastic bulk moduli in soil at the order ∼
(%3Sp

e)1/2 (Rubin & Einav, 2011; Viggiani & Atkinson, 1995), meaning elastic pressure
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pe ∼ %3S(ε
e
v)

2 and elastic energy ue ∼ %3S(ε
e
v)

3 (where pe = 1
3σ

e
ii and εe

v = εe
ii). Thus,

although it is possible to carry along the contribution of ue to PT through its own de-
pendence on % within %S, this is entirely negligible relative to the contribution of f since
most practically εe

v . 0.1. Therefore, it is accurate to replace u by f in both Eq. (17)
and Eqs. (14,15,13) so that:

σeff
ij ≡ σij − PT δij , PT = −∂(f/%)

∂(1/%)
= µ%− f, (20)

and
σe
ij =

∂ue

∂εe
ij

, µ =
∂f

∂%
, µβ =

∂f

∂%β
, (21)

respectively. As shown below, the dependence of f on the various densities is clear, thus195

enabling an accurate solution for PT and σeff
ij .196

3.3 Free energy and suctions197

The free energy of the three domains, which represents their volumetric compress-
ibility, could be calculated analytically (Jiang et al., 2017):

f ≡
∑

φβ f̂β(%̂β) =
∑ %β

%̂β
f̂β(%̂β), P̂β ≡ −∂(f̂β/%̂β)

∂(1/%̂β)
= µ̂β %̂β − fβ , µ̂β ≡ ∂f̂β

∂%̂β
, (22)

where f̂β , P̂β and µ̂β are the intrinsic free energy, pressure and chemical potential of species
β arising due to possible small variations in the corresponding intrinsic densities %̂β . Al-
though small relative to variations in partial densities %β , the possibility of variable %̂β
must be allowed for to accomodate phenomena related to the development of air-water-
solid interfaces under partial saturations. In particular, under partial saturations such
variations produce different signs for the intrinsic pressures in the air and the water, thus
producing intrinsic suction:

ŝ ≡ P̂A − P̂W, (23)
which should not be confused with the measured suction from the difference between the
air (uA) and water (uW) pressures that are being applied or measured externally from
devices out of the soil:

s ≡ uA − uW. (24)

Although not being considered prior to (Jiang et al., 2017), most usually uA 6= P̂A,198

uW 6= P̂W, and s 6= ŝ, since along boundaries only the partial chemical potentials in199

and out of the measurement devices need to be equal under equilibrium.200

Furthermore, while under equilibrium the presence of surface tensions along the201

geometrically complicated interfaces means water decompression (P̂W < 0, uW < 0),202

compressed air pressures (P̂A > 0, uA > 0), and thus positive suctions (ŝ > 0, s > 0203

), it will be shown later that off equilibrium these suctions could change sign upon wet-204

ting from very dry samples.205

3.4 Energy minimisation, and equilibrium suctions and effective stress206

As presently stated in Eq. (22a) the free energy f depends on six densities – the207

three partial ones required for Eq. (19), as well as three non-required intrinsic densities208

%̂β . Therefore, solving for the effective stress in Eq. (20) would depend on too many in-209

trinsic densities. To this end it is possible to first solve equilibrium states by minimis-210

ing the energy towards its global minimum (Jiang et al., 2017), before addressing non-211

equilibrium scenarios where the states can get stuck in local minima.212

As part of the energy minimisation, it is understood that under a given set of par-
tial densities %β , the intrinsic densities %̂β would adjust dependently to minimise the en-
ergy. When the energy is minimised, while taking Eq. (4) as the only trivial constraints,
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one finds PT = P̂β = uβ = P0 as a suctionless limit where ŝ = s = 0. However, such
a trivial solution ignores the previously mentioned role of interfacial phenomena in par-
tially saturated soil, as the actual reason for observing the non-zero measured and in-
trinsic suctions in the first place. Previous attempts to track the complex geometries of
such interfaces in soils have always relied on oversimplifying assumptions. As detailed
by (Jiang et al., 2017) a more pragmatic, accurate and general approach is to consider
the measured suction s as an actually known quantity by minimising the energy with
the intrinsic suction ŝ as an additional constraint. This actually has an exact analytic
solution, but the solution is far too long to be illuminating. However, it is possible to
arrive at practically the same result as the analytic one by approximating it around the
suctionless limit (Jiang et al., 2017), which presents the following structure for equilib-
rium states

PT ≡ uA − χs, χ ≡ χ(%β), (25)

where χ is the classical Bishop’s coefficient (Bishop & Blight, 1963).213

Further keeping in mind the order of magnitudes of both the compressibilities Kβ

and intrinsic densities %̂β of the three species, with air by far having the smallest, thus
negligible values, we find that under equilibrium conditions:

χeq ≡χeq(%β) =
%A

%̄A
+

%S
%̄S

[
%̄A(∂ŝeq/∂%A)− %̄S(∂ŝeq/∂%S)

%̄A(∂ŝeq/∂%A)− %̄W(∂ŝeq/∂%W)

]
, (26)

seq ≡seq(%β) =
%W

%̄WKW

[
%̄A

∂ŝeq

∂%A
− %̄W

∂ŝeq

∂%W

]
ŝeq, (27)

where the subscript ‘eq’ was added to χ, s and ŝ to highlight that the above solutions214

correspond to equilibrium values, owing to the energy minimisation. The purpose of adding215

this now as compared to the original exposition (Jiang et al., 2017) is that in the follow-216

ing equilibrium would be distinguished from non-equilibrium conditions. Furthermore,217

while as part of the energy minimisation the intrinsic densities %̂β were allowed to vary218

to obtain the above result, these variations are certainly small and thus their assigned219

value in the above could be their reference value %̄β under room temperature and atmo-220

spheric air pressure. It is also noted that the water compressibility at those conditions221

is known to be KW = 2 GPa.222

The relationships in Eqs. (26,27) are most general and accurate, and simply require223

one to assume a dependence in the form ŝeq = ŝeq(%β) to yield measured soil water re-224

tention in the form s = s(%β) that could be compared with experimental measurements.225

Although the intrinsic densities were allowed to change during the energy minimisation226

to arrive to the results above, these changes are entirely small and thus rather than the227

generally variable %̂β we have used %̄β above as constant intrinsic densities that corre-228

spond to their known values at 1 atm and room temperature.229

Although in general the effects of the intrinsic air density on the hydromechanics
of soils is considered in the above, most empirical soil water retention relationships tend
to neglect this theoretical contribution. It is thus useful to neglect the effects of %̂A in
the above, and further consider the relationships between the index properties in Eq. (3)
to produce more common dependencies and simpler structures. One such possibility can
be exhibited in terms of the degree of saturation Sr and void ratio e (Einav & Liu, 2020):

χeq ≡χeq(Sr, e) = Sr − e
∂ŝeq/∂e

∂ŝeq/∂Sr
, (28)

seq ≡seq(Sr, e) = −
[
Sr

KW

∂ŝeq

∂Sr

]
ŝeq, (29)

which requires one to assume ŝeq = ŝeq(Sr, e) that would yield measured soil water re-230

tention in the form s = s(Sr, e) agreeable with the experiments.231
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3.5 Illustration of equilibrium states232

The analytic way to use the relationships in Eqs. (28,29) is to treat Eq. (29) as an233

ordinary differential equation (ODE), to be solved for ŝeq. Given a known empirical law234

for seq = seq(Sr, e), it is possible to integrate this ODE to get ŝeq = ŝeq(Sr, e) using235

an initial suctionless boundary at full saturation ŝ(1, e) ≡ 0. One example for such an-236

alytic solutions is to impose a hyperbolic relationship between suction and saturation237

(Jiang et al., 2017; Einav & Liu, 2018, 2020). An alternative example is developed through238

the two steps below, which yield relationships whose mathematical forms appear some-239

what more versatile and elegant than the previously proposed hyperbolic relations.240

(a) As a first step, consider retention functions inspired by a three-parameter (c, α,
λ) Inverse Weibull function. Where this function was originally used to estimate
distributed strength in solid materials, here it is adapted to represent the depen-
dence of suction on saturation:

seq = ce−λ(− lnSr)
α, (30)

where α is a constant controlling the dependence of soil water retention curves on
Sr; while ce−λ controls its dependence on void ratio (which could be estimated
from empirical relations for air entry values). Putting this proposition in Eq. (29)
and solving using ŝ(1, e) ≡ 0 as boundary condition, we find:

ŝeq =
√

2KW
1+α (− lnSr)seq. (31)

which upon differentiation using Eq. (28) gives:

χeq = Sr

(
1 + λ

1+α lnSr

)
. (32)

(b) While the suctions in the proposed relations above diverge at zero saturations, some
soils exhibit diverging behaviour at a finite small value of residual saturation Sr0

(as an additional fourth parameter). To that extent, it is possible to extend the
above relations by first replacing Sr in ŝeq from Eq. (31) with an effective satu-
ration S∗

r = (Sr − Sr0)/(1− Sr0), so that from Eqs. (28,29):

seq =ce−λ
(

Sr

Sr−Sr0

)
(− lnS∗

r )
α, (33)

ŝeq =
√

2KW
1+α (− lnS∗

r )seq. (34)

χeq =Sr

(
1 + λ(Sr−Sr0)

(1+α)Sr
lnS∗

r

)
, (35)

which yields the same results for Sr0 = 0 as with Eqs. (30-32).241

To illustrate these functions, Fig. 2 shows the dependence of the intrinsic and mea-242

sured suctions on the shape parameter α. The results have been non-dimensionalised to243

exclude the effects of the void ratio e and parameter λ, which do not change the qual-244

itative shape and merely scale the value of the effective air entry value in this model (the245

effective air entry value represents the required suction to start drying the sample from246

full saturation). Nevertheless, the parameter λ alters the result for the effective stress247

Bishop’s coefficient χeq, as shown for λ = 1 and λ = −1 on Fig. 3a and Fig. 3b, re-248

spectively, for various values of α. Both α and λ affect the qualitative dependence of χeq249

on Sr.250

Comparing Fig. 2a and Fig. 2b, it is clear that the equilibrium intrinsic and mea-251

sured suctions are not similar both qualitatively and in values (since the normalisation252

differ), as discussed by (Einav & Liu, 2020). In Fig. 2 an increase in α is shown to pro-253

duce a sharper rise at high saturations followed by a flatter rise at intermediate satu-254

rations, transitioning from typical clay to typical sand retention curves. This effect is255
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Figure 2: The dependence under the true thermodynamic equilibrium of the (a) intrinsic
and the (b) measured suctions on the degree of saturation for different retention shape pa-
rameter α using Eqs. (34,33), respectively. These suctions have been normalised to yield
non-dimensional numbers on the y-axes. The residual saturation parameter Sr0 = 0.1

Figure 3: The dependence of the Bishop parameter χ = χeq on the degree of saturation
Sr for different shape parameter α and (a) positive λ = 1.5 or (b) negative λ = −1.5, cor-
responding to Eq. (35). As in Fig. 2, the residual saturation parameter Sr0 = 0.1. Dashed
red lines show the trivial χ = Sr solution, which the current model reproduces with λ = 0.

particularly clear from the equilibrium measured suction Fig. 2b, where for α → 0 we256

recover a true air entry value signal at Sr = 1. On the other hand Fig. 3a,b illustrate257

that positive and negative λ values yield χeq values below and above the χeq = Sr line,258

respectively. Both scenarios have been reported in the literature (Jennings & Burland,259

1962; Khalili & Zargarbashi, 2010), showing χeq values above 1 at high saturations, and260

hinting towards values that may go below 0 as long as the soil remains stable.261

It should also be mentioned that in such measurements of χ (Jennings & Burland,262

1962; Khalili & Zargarbashi, 2010), the void ratio e is not normally being prevented from263

changing during the tests. Such potential e-changes were not included in drawing Fig. 3,264

which took e to be constant. However, using Eq. (35) the effects of the e variations on265

the lines could be considered, and would simply distort the χeq − Sr line. The extent266

of this distortion would depend on the magnitude of the variations of e during the tests267

and the level of sensitivity of the χeq relation on it according to Eq. (35).268
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4 Non-equilibrium soil water retention (rate-independence)269

4.1 Non-equilibrium intrinsic suction and effective stress270

Under non-equilibrium conditions, the intrinsic and measured suction variables de-
viate from their equilibrium values, thus exhibiting dynamic phenomena such as hystere-
sis. It is therefore useful to consider the ‘non-equilibrium intrinsic suction’ as a new state
variable:

ξ ≡ ŝ− ŝeq, (36)
for which an explicit evolution equation is required. Resolving this equation is the pri-
mary focus of the current derivation. To retain the equilibrium results from the previ-
ous sections, the evolution of this new independent state variable should obviously re-
lax to zero, so that ŝ → ŝeq under true equilibrium. Since ξ is independent of all pre-
vious state variables (including %β), then by replacing ŝeq with ŝ in Eqs. (28,29) and us-
ing Eq. (36), under non-equilibrium conditions:

χ(%β , ξ) = χeq(%β), s(%β , ξ) =
ŝ

ŝeq
seq =

(
1 +

ξ

ŝeq(%β)

)
seq(%β). (37)

As such the Bishop stress coefficient χ and thus the thermodynamic pressure in Eq. (25)
and the effective stress in Eq. (20) are all insensitive to the non-equilibrium conditions,
but the measured suction s is sensitive, since it depends on the value of ξ. This result
is valid for any specific exposition, including when the effect of air density on the reten-
tion is ignored and the densities are replaced by the saturation and void ratio:

χ(Sr, e, ξ) = χeq(Sr, e), s(Sr, e, ξ) =

(
1 +

ξ

ŝeq(Sr, e)

)
seq(Sr, e), (38)

where the equilibrium values are taken from Eqs. (28,27), which purely depend on Sr271

and e.272

Since the measured suction depends on the intrinsic suction deviation ξ, one has
to track the dynamics of the latter variable. Its general evolution equation should allow
it to both advect along the barycentric velocity (vi) and be dissipated irreversibly through:

(∂t + vi∇i)ξ + Zξ = 0, (39)

where Zξ is its dissipative flux. Currently unknown, this dissipative flux will finally be273

specified by following Onsager’s reciprocal conditions and Jiang & Liu’s two-stage irre-274

versibility principle (Jiang & Liu, 2009).275

4.2 Non-equilibrium, meso-related entropy276

In thermodynamics the second law in Eq. (8) refers to balance of thermal entropy
in terms of the degrees of freedom of elementary microscopic particles such as atoms. How-
ever, the description of soils further requires to consider the degrees of freedom of meso-
scopic features such as soil particles and air-water interfacial curvatures, which are many
order of magnitudes larger than those atoms. It has been shown and considered that the
motion of these mesoscopic features controls the rheology and dynamics of sand. The
distributed geometry of air-water interfaces has also been shown experimentally (Zhao
et al., 2013; Fukushima et al., 2021) and computationally (Gan et al., 2013) to control
soil water retention hysteresis phenomena. Therefore, in addition and in analogy to the
balance of the thermal entropy in Eq. (8), we further consider the balance of a meso-related
entropy:

∂tsm +∇i(smvi − Fm
i ) = Rm/Tm, (40)

where smvi and Fm
i are the meso-related convective and dissipative energy currents, re-277

spectively; while Rm and Tm are the meso-related rates of entropy production and tem-278

perature. Here, the above equation lets us consider hydraulically related non-equilibrium279
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phenomena such as soil water retention hysteresis. However, note that exactly the same280

equation could and has been used to explain mechanically related non-equilibrium phe-281

nomena in sand, such as stress-strain hysteresis (Jiang & Liu, 2009; Alaei et al., 2021).282

Notice that unlike Eq. (8), Rm is not restricted from being negative, yet we take R ≥283

0 and R + Rm ≥ 0. The micro-meso separation between the two entropies and tem-284

peratures has been further discussed by (Liu, 2021) in the context of granular and plasma285

physics.286

4.3 Internal energy at non-equilibrium states287

During non-equilibrium conditions the internal energy density of the soil depends
on both equilibrium and non-equilibrium contributions, the latter being represented by
the two new non-equilibrium state variables, the meso-related entropy sm and the intrin-
sic suction deviation ξ. Therefore, neglecting the effects of the thermal entropy s (or T )
on the hydromechanical response of partially saturated soils:

u ≡ u(%β , ε
e
ij , s, sm, ξ) = ueq(ε

e
ij , %, %β) + une(sm, ξ), (41)

The first term ueq captures internal energy that maintains during equilibrium and
could be taken directly from Eq. (19). On the other hand, the second term une captures
additional internal energy at non-equilibrium states. The thermodynamic conjugates of
the first three conserved state variables have been defined in Eqs. (21). The thermody-
namic conjugates of the two remaining independent state variables are defined from the
non-equilibrium part of the internal energy:

Tm =
∂une

∂sm
, Yξ =

∂une

∂ξ
, (42)

being the meso-related temperature and ’unbalanced interfacial texture’, respectively.288

Note that in Eq. (41) the internal energy arising from equilibrium and non-equilibrium289

state variables was exclusively decoupled into their corresponding contributions. Although290

this is not necessarily required for the current formulation, this split has been kept for291

two reasons: (1) there are no current experiments that would support the fine resolu-292

tion of the accurate form of such coupling; (2) such form of coupling should be expect-293

edly weak, so adding it would only complicate the derivation without changing the ac-294

tual result of this paper.295

Accordingly, since we already specified the equilibrium internal energy in Eq. (19),
what is left is to specify the non-equilibrium internal energy in terms of its two non-equilibrium
state variables. Again, in the absence of experiments that would help determining its ex-
act form, the simplest form is considered, which involves further decoupling into two in-
dependent quadratic contributions from the two non-equilibrium state variables:

une(sm, ξ) = 1
2ωs

2
m + 1

2κξ
2, (43)

so using Eq. (42):
Tm = ωsm, Yξ = κξ, (44)

where ω ≥ 0 and κ ≥ 0. The quadratic form of the potential above could be seen as296

the lowest order term which has a minimum of a Taylor approximation to the otherwise297

true energy potential. As such, it is clear that as the two new non-equilibrium internal298

variables vanish (sm → 0 and ξ → 0), the total internal energy approaches its mini-299

mum equilibrium value u → ueq, thus keeping the previous true equilibrium results valid.300

Considering again the question of coupling or not the equilibrium and non-equilibrium301

internal energies in Eq. (41), one may wish to consider the coefficients ω and κ to gen-302

erally depend on the partial density. However, it could be shown that such generality303
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would only add an unnecessary negligible contribution to PT , as illustrated in the con-304

text of elasticity in the paragraph that follows Eq. (19). Therefore, taking this option305

along would not alter the main result of this paper, in the form of the final resolved hy-306

drodynamic equation of non-equilibrium soil water retention.307

Combining the non-equilibrium Eqs. (39,40,42) with the previous equilibrium Eqs. (6-
12), and following the same hydrodynamic procedure, the total entropy production, which
sums up both thermal and meso-related contributions is given by:

R+Rm ≡ Fi∇iT + Fm
i ∇iTm + JA

i ∇iXA + JW
i ∇iXW + YξZξ +D ≥ 0. (45)

4.4 Total entropy production under typical experimental conditions308

The total entropy production in Eq. (45) is most general, being applicable for field
and experimental conditions alike. This entropy production is a local quantity, being rel-
evant to any material point in the space, as it depends on both local state variables and
gradients. In typical experimental soil water conditions, the only applied gradients come
from the fluid fluxes. Under these conditions, we can neglect the thermal and meso-related
temperature gradients, as well as the mechanical dissipation, which is mostly driven by
negligible velocity gradients. Similarly, it is useful to start by exploring the case of neg-
ligible mechanical dissipation, since typical experimental setups for recovering soil wa-
ter retention properties do not involve discernible mechanical boundary deformations or
external acoustic excitation. The impact of such mechanical mechanisms on soil water
retention has not been explored experimentally in the literature, but will be detailed the-
oretically later in Sec. 4.11. Similarly, while fluid fluxes are being imposed in order to
determine the soil water retention relationships, the air flux is negligible relative to the
water flux, because the density of water is three orders larger than that of air. Accord-
ingly, under experimental conditions we can normally use:

∇iT ∼ 0, ∇iTm ∼ 0, D ∼ 0, JA
i � JW

i , (46)

so that
R+Rm = JW

i ∇iXW + YξZξ ≥ 0. (47)

4.5 Parallel force decomposition of the total entropy production309

In order to calculate the rates of entropies in Eqs. (8,40) it is necessary to identify310

the contributions of R and Rm to their cumulative value R+Rm in Eq. (47). Entropy311

production by YξZξ effectively arises by departing metastability when interfacial hinges312

along soil-particle roughness points are unlocked, which vibrate the motion of fluid atoms313

in the vicinity. Therefore the term YξZξ is taken to contribute directly and exclusively314

to the thermal entropy production R, since having it contributing to Rm would not let315

metastability develop as seen experimentally. On the other hand, we consider two pos-316

sible decompositions for the JW
i ∇iXW term: a ‘flux decomposition’ where the flux term317

JW
i is decomposed into atomistic and meso-related parts, and a ‘force decomposition’318

where the chemical force term ∇iXW is broken into two. The use of parallel flux/force319

decompositions is very common in designing spring-slider systems or electrical circuits.320

It is also used in hydraulic to calculate effective permeability for porous media with sep-321

arated solid components. Each of these decomposition formulations has merits, while it322

is hard to distinguish which of these is more likely without further insight at both scales.323

Remarkably, the main result of this paper remains identical at the limit of slow load-324

ing using either of these models, yet the force decomposition approach leads to this rate-325

independent result more directly. Therefore, the parallel force formulation is the one adopted326

below, while for completeness the alternative parallel flux formulation is given in Appendix327

A. As part of the alternative formulation a subtle rate-dependence factor arises irrespec-328

tive of the meso-related temperature Tm, but this does not seem necessary because hy-329

drodynamically speaking rate dependence can always arise from the evolution of Tm as330
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the physical measure of slowly relaxing fluctuations, as described further in Sec. 5. As331

far as the mechanical part of the constitutive behaviour is concerned, it is possible to332

obtain rate-independence even when Tm relaxes, as shown for example for dry sand in333

terms of the granular temperature (Liu, 2021), which is here considered to contribute334

to Tm.335

Irrespective of these two alternative possible decompositions, it is also noted that336

the vibration of fluid-solid interfaces should decay to further vibrate the atoms around337

them. To this extent the R and Rm terms should include source and sink terms (±γT 2
m),338

respectively. Accordingly, while the constitutive equations for the various terms will be339

specified below such that both the total (R+Rm) and thermal (R) entropy productions340

would be strictly non-negative, the meso-related entropy production (Rm) is not restricted341

from being negative, and here may be so due to the corresponding sink term. This re-342

sult follows the principle of ‘two-stage irreversibility’ for the passage of energy from the343

larger to the smaller scale, which was originally proposed for dry granular materials (Jiang344

& Liu, 2009), but is here taken to reflect similar hydrodynamics in partially saturated345

soils.346

Taking all of these into account, the overall entropy production is decomposed to
its meso-related and thermal contributions, respectively:

Rm =JW
i ∇iXWm − γT 2

m, (48)
R =JW

i ∇iXWa + YξZξ + γT 2
m, (49)

where ∇iXWm and ∇iXWa are the meso-related and the thermally-related (atomistic)
parts of ∇iXW, being the chemical potential gradient of the water relative to the solid.
In order to retain Eq. (47) their summation requires:

∇iXWa +∇iXWm ≡ ∇iXW. (50)

The interpretation of the above is that the homogenised fluxes into the sample that347

goes into moving meso-scopic and atomistic degrees of freedom are equal JWm
i = JWa

i =348

JW
i , yet the forces from the differences in chemical potentials in the two scales are dif-349

ferent and add to give the total homogenised potential ∇iXW.350

4.6 Reciprocal conditions351

According to Eqs. (8,47) the non-negativeness of both R and R+Rm must be sat-352

isfied. The non-negativeness of the thermal entropy production (R ≥ 0) is met by adopt-353

ing Onsager’s reciprocal conditions for generally coupled irreversible processes. Accord-354

ingly, for the current problem355

(
Zξ

∇iXWa

)
=

(
rξξ rξW

j

rWξ
i rWW

ij

)
·
(
Yξ

JW
j

)
, (51)

where we have introduced in the matrix the generalised resistivity coefficients (cofactors
of the transport coefficients in (Onsager, 1931)). According to (Casimir, 1945), the re-
sistivity coefficients must satisfy:

rWξ
i = −rξW

i , rWW
ij = rWW

ji , (52)

where rξξ > 0, rWW
ij > 0 for i = j, and det(rWW

ij ) > 0.356

Furthermore, it is always possible to define

rξW
i = rξWêi, JW

i = JWêi, (53)
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where rWξ and JW denote the magnitudes of rξW
i and JW

i , respectively; while êi is taken
as the unit vector along which the water flux JW

i preferentially lies. Then, since êiêi =
1, the first Onsager relation in Eq. (51) reduces to:

Zξ = rξξYξ + rξWJW. (54)

Finally, given the positive diagonal coefficients in Eqs. (51,52) to solve for R in Eq. (49),
it is clear that R ≥ 0. To ensure R+Rm ≥ 0 we must thus further require

∇iXWm = ηJW
i , (55)

with η ≥ 0.357

4.7 Water flux through finite experimental volumes358

Since
∑

Jβ
i = 0 and JA

i � JW
i from Eqs. (12,46), we also find that JS

i ≈ −JW
i .

Using the conservation of solid density in Eq. (10), it follows that its rate of change is
∂t%S = −∇i(%Svi+JW

i ). However, during experimental water retention tests the solid
mass is kept constant (∂t%S ≈ 0), so we find JW

i = −%Svi. Combining the latter rela-
tion with the conservation of water density in Eq. (10), we have:

∂t%W =

(
1 +

%W

%S

)
∇iJ

W
i . (56)

The above equation relates the rate of change of the partial water density to the
water flux through the volume of an infinitesimal representative volume element in space.
The last equation could be converted to consider a finite volume V of experimental wa-
ter retention samples through integration. Using the divergence theorem

∫
∇iJ

W
i dV =∮

JW
i dSi = JWA (having dSi = êidA, with A being the surface area through which

the water flows into V ). Therefore, we find that

JW =

(
%S

%S + %W

)
l∂t%W, (57)

where l = V
A is the typical experimental dimension. Therefore, the flux of water into

the experimental sample scales approximately with the rate of water density and exper-
imental dimension as JW ∼ l∂t%W. Using the definitions in Eq. (3), it could also be ex-
pressed in terms of rate of the saturation and void ratio:

JW = C
(
∂tSr +

Sr

e(1 + e)
∂te

)
, C ≡ C(Sr, e) = l

(
e

1 + e

)(
%̄S%̄W

%̄S + %̄WSre

)
. (58)

The above is general. However, in most experimental measurements of soil water
retention properties the void ratio e is assumed constant, while the intrinsic densities barely
change from their reference:

JW = C∂tSr (59)

such that the water flux into the sample relates directly to the rate of saturation.359

4.8 Non-equilibrium soil water retention360

Combining Eqs. (40,44) with Eqs. (48,55), taking as before ∂te ≈ 0 for the exper-
imental conditions, and assuming homogeneous testing conditions for which spatial gra-
dients could be ignored:

∂tTm =
ωRm

Tm
=

ωγ(T 2
m0 − T 2

m)

Tm
, (60)
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where using Eq. (53):
Tm0 =

√
η
γ |JW|, (61)

is the stationary solution of Tm for dtTm = 0, which represents the value of the meso-361

related temperature at the rate independence limit of very slow wetting or drying con-362

ditions. The more general case of rate-dependent processes is discussed in Sec. 5.363

Next, adopting Eq. (54) along with Eq. (39) for homogeneous testing conditions:

∂tξ + rξξYξ + rξWJW = 0. (62)

When no water is added or subtracted from the experimental sample, where JW =
0, we expect the intrinsic suction deviation ξ to decay towards the true equilibrium only
when the meso-scopic interfaces are being sufficiently agitated. Such agitations should
expectedly enable to unjam air-water interfaces that may otherwise be pinned in local
equilibria along particle roughness and patches of fluids. In the hydrodynamic theory
the effects of those agitations on the energy landscape are considered through the meso-
related entropy sm or temperature Tm, as conceptualised by Fig. 5. Taking these ideas
into account, we require:

rξξ = rTm, (63)

with r ≥ 0, while given the stationary solution of Tm = Tm0 in Eq. (61):

rξξ = r
√

η
γ |JW|. (64)

364

Recalling that Yξ = κξ from Eq. (44), as well as Eq. (59) :

∂tξ = −rk
√

η
γ |JW| ξ − rξWJW, JW = C∂tSr. (65)

The above equation represents the main result of this paper – a hydrodynamically
resolved equation for soil water retention at non-equilibrium conditions. Accordingly, the
intrinsic suction deviation ξ responds hysteretically to cyclical wetting-drying changes
to Sr. Notice also that coefficients {r, rξW, η, γ} in Eq. (65) may all depend on the var-
ious partial densities %β , and thus irrespective to cycles the evolution of ξ and thus the
non-equilibrium suction would in general depend on those densities (or more specifically
on Sr and e). Finally, an even simpler form of this hydrodynamic equation could be de-
veloped by noticing that Eq. (65) is entirely rate independent, so material time deriva-
tives in the above equation could be substituted with finite increments (eg., as in ∂tx →
dx):

dξ = −A|dSr|ξ − BdSr (66)

where A and B are effective non-negative coefficients for the intrinsic suction deviation,
which are given by

A ≡ A(Sr, e) = rk
√

η
γ C, B ≡ B(Sr, e) = rξWC. (67)

The above equation for ξ is boxed, as we wish to highlight it as the main result of365

this paper. While the derivation follows clear yet subtle hydrodynamic concepts, the fi-366

nal result is extremely simple and should thus offer a source of inspiration for future em-367

pirical investigations in hydrology and soil mechanics. Given the definition of the non-368

equilibrium intrinsic suction ŝ = ξ + ŝeq in Eq. (36), a complete model for soil water369

retention s = s(Sr, e) could then be obtained using Eq. (37), given the relationships370

for the equilibrium suctions ŝeq and seq (here satisfying Eq. (29)).371
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Since the first term in Eq. (66) linearly scales with ξ, the coefficient A in it con-
trols the relaxation rate of the system back to equilibrium states. The second term does
not depend on ξ and thus the coefficient B in it controls the drift rate away from the equi-
librium state. The actions of these two terms compete, so only if the second term is ab-
sent, would the suction deviation relax to zero, thus letting the soil water retention ar-
rive to its equilibrium state. To further understand the role of this competition, consider
the stationary case where these terms balance:

ξS = −B
A

dSr

|dSr|
= ∓B

A
(for dξ = 0), (68)

which does not actually depend on C and thus on the system dimension l. Considering
constant A and B, once approached ξ remains on its stationary value ξS. On the other
hand, considering B/A dependent on Sr and e, the intrinsic suction deviation ξ would
drift from ξS. Nevertheless, the stationary relations in Eq. (68) will be shown to provide
a useful indication to the boundaries of the drying and wetting processes. A seemingly
robust and simple option for the drift coefficient B does depend on Sr and e, while the
relaxation coefficient A is kept constant:

A = a, B = −b
∂ŝeq

∂Sr
, (69)

where {a, b} ≥ 0 are non-negative constants. Since ŝeq ≡ ŝeq(Sr, e) may depend on e372

so does B, and thus the predicted soil water retention curves also vary with e. On the373

other hand, recall that Eq. (66) ignores the possibility of hysteretic suction due to vari-374

able de 6= 0, including under constant Sr. Should future experiments explore and re-375

port such phenomenon, one may replace the use of JW from Eq. (59) with its more gen-376

eral form in Eq. (58). Note also that under de = 0, we find dŝeq =
∂ŝeq
∂Sr

dSr, and so377

Eq. (66) yields approximately dξ = −a|dSr|ξ + bdŝeq. For a = 0 integration gives ξ ≈378

bŝeq, showing that the extent of intrinsic suction deviation from its equilibrium would379

broadly depend on the equilibrium suction level itself. This scaling seems to be univer-380

sally reflected from experimental retention tests, thus providing the rational basis be-381

hind Eq. (69).382

4.9 Illustration of non-equilibrium results383

Subsection 3.5 illustrates the practical significance of the equilibrium thermody-384

namic theory by (Jiang et al., 2017) by employing the phenomenological model in Eqs. (33-385

35). This model allows for a sharper rise of suctions in the vicinity of Sr = 1 when com-386

pared with their latest phenomenological model in (Einav & Liu, 2020). However, this387

is not the main result of this paper. The actual aim and result are to clarify the physics388

of soil water retention in non-equilibrium conditions. For that purpose, here we illustrate389

this main result by adopting the same equilibrium Eqs. (33-35) as the backbone of the390

non-equilibrium equations in Eq. (36,38,66). Accordingly, the only two parameters re-391

quired for capturing non-equilibrium suctions are a and b.392

To this end, Fig. 4 presents the effects of these parameters on the non-dimensional393

intrinsic suction deviation (ξ∗ = ξ/
√
cKwe−λ, top row), intrinsic suction (ŝ∗ = ŝ/

√
cKwe−λ,394

middle row), and measured suction (s∗ = s/
(
ce−λ

)
, bottom row), for various a and b395

values. These figures correspond to a suction-controlled protocol, which starts from Sr =396

1 and s = 0, then drying continues till s∗ = 20, from which we applied 100 small in-397

cremental cycles of suction of ∆s∗ = ∓2, followed by further drying till s∗ = 50, wet-398

ting till a negative suction of s∗ = −20, and final drying back to s∗ = 0.399

Notice that during continuous drainage and imbibition the state is basically roughly400

parallel to the stationary solutions shown by the dashed orange lines. Furthermore, and401

most importantly, any deviation from the dashed blue equilibrium curve is attributed402

to non-equilibrium states. It is shown that in order to regain the equilibrium state one403

–18–
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Figure 4: The effects of parameters a and b in Eq. (69) on the dynamics of the intrinsic
suction deviation ξ in Eq. (66), the non-equilibrium intrinsic suction ŝ using Eq. (36),
and the non-equilibrium suction s using Eq. (38), all against saturation Sr. Stationary
solutions are given by Eq. (68) and equilibrium states are shown as zero for ξ and using
Eqs. (34,33) for the two corresponding suctions.

can add sufficient wetting-drying noise, which causes drifting from the stationary states404

to the equilibrium one, where ξ ≡ 0. For example, ignoring the 100 small cycles, the405

rest of the curve reveals the previously phenomenologically dubbed (eg. see (Alsherif et406

al., 2015; Beriozkin & Mualem, 2018)): ’first drainage curve’ (also known as ’primary407

drying curve’), ’first imbibition’ (also known as ’primary wetting curve’) till negative suc-408

tion, and the following ’secondary drainage’ (also known as ’secondary drying curve’, as409

the final leg of our testing protocol, which does not go return to full saturation Sr <410

1 at s = 0. This inability to regain full saturation after such drying-wetting-drying cy-411

cle has been attributed to ’air entrapment’ – an obvious synonym for lack of saturation412

– but we are not aware of clear fundamental explanations to this development besides413

propositions to use arbitrary curve-fitting protocols. This gap is here filled automatically414

thanks to the non-equilibrium thermodynamic physics, as we shall further illustrate in415

the next subsection against experiments.416

Finally, it is useful to compare the middle and right columns in Fig. 4, where the417

a and b coefficients have been quadrupled – this change could arise for example for a given418

material by quadrupling the experimental dimension l. This is because C ∼ l in Eq. (58),419

while both A ∼ a and B ∼ b depends linearly on it (Eqs. 68). Since the ratio B/A ∼420

b/a is identical for both columns, the stationary lines on the corresponding figures are421

identical as well. We thus do not observe much differences when the response follows closely422

the stationary lines. On the other hand, the rates of approaching to these lines do change423

significantly, a fact that could be tested experimentally in the future by conducting soil424

water retention tests for identical materials yet distinctively different sample sizes.425
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4.10 Metastable states426

In Sec. 3.1 the true equilibrium conditions involved a previously unspecified list of427

ζ non-equilibrium internal variables Nζ . By now this has been addressed, having Nζ ≡428

{ξ, Tm}. Being on the minimum energy that corresponds to the true equilibrium the air-429

water interfaces remain static, and so thus the suction s. Each s-value refers to an Sr-430

value (and a given e-value). The system is then defined entirely by ueq, from which one431

can derive the unique equilibrium relationship between suction and densities, as origi-432

nally derived by (Jiang et al., 2017).433

However, in partially saturated soils it is possible to identify other states with mo-
tionless fluid-solid interfaces (thus sm = Tm → 0), which are not under true thermo-
dynamic equilibrium, but rather only metastable where the energy landscape is relatively
shallow and the stability could be easily perturbed. Under such metastability the non-
equilibrium intrinsic suction deviation is not zero ξ 6= 0, and thus the energy minimi-
sation is only relative:

min
{%̂β ,sm}

u(s, εe
ij , %β , %̂β , ξ, sm) = u(s, εe

ij , %β , ξ) [metastability] (70)

so that unlike Eq. (18) it is found that u 6= ueq(s, ε
e
ij , %β), because in this case the min-434

imisation does not seek to change ξ. As such, in this case the intrinsic suction deviation435

from equilibrium is non-zero, so that metastable states do not actually satisfy the ther-436

modynamic equilibrium, even if the system remains static.437

To visualise the conceptual difference between the true equilibrium and metasta-438

bility, it is helpful to schematise the energy landscape using Fig. 5, considering the quadratic439

non-equilibrium energy in Eq. (43) and the above observations, sm ∝ Tm ∝ |JW|.440

Figure 5: The dynamics of the non-equilibrium energy une = 1
2κξ

2 + 1
2ωs

2
m during wetting

(JW < 0) and drying (JW > 0) processes, and the difference between the true thermody-
namic equilibrium (ξ = JW = 0) and metastable states (JW = 0).

To clarify further consider pure water or pure air, where each point is in true equi-441

librium along a plane spanned by the (true thermal) temperature and pressure. There442

is nothing special here, so one does not need to consider the concept of metastability.443

On the other hand, dry sand is a classical example for metastability. Here, a sandpile444

may hold together permanently at a critical angle but any minor perturbation, for ex-445

ample by adding just a single grain, can trigger large parts of it to collapse.446

The situation is even more interesting in partially saturated soils, where apart from447

the intrinsically metastable grains, further complexity arises due to the interaction of the448
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water with the air through surface tensions, which end up forming feeble fluid patches449

and interfaces that are only precariously pinned along rough particle surfaces. Here too,450

any small vibration by gentle shaking, soil shear, or an in- or outward flowing water, can451

disturb those mesoscopic entities by unpinning interfaces and through the migration, split-452

ting or coalescence of the patches (e.g., see Fig 1b). These dynamics would continue till453

a new metastable state is met, where the patches stop moving and the interfaces are be-454

ing pinned along neighbouring roughness points. The meso-related temperature Tm, ac-455

counting for the random motion of mesoscopic objects such as grains and water-air sur-456

faces, quantifies these motions. The net macroscopic effect of the relaxation of those meso-457

scopic motions and Tm towards zero is seen through the plurality of suction-saturation458

phenomena, including hysteresis, air entrapment, negative suction and the scanning curves.459

At any metastable {Sr, s, e}-point Tm = 0. On the other hand, every little noise or per-460

turbation would let Tm go up again, thus helping the suction progress to its true equi-461

librium value – being faster as Tm gets larger. Finally, notice that increasing Tm through462

a finite continuous increase of water or air flow, the saturation and void ratio also change,463

and thus the true equilibrium point is moving as well.464

4.11 A mechanical way to departure metastability towards true equi-465

librium466

So far, the derivation focused on pure hydraulic forcing or fluid fluxes along bound-
aries. Under these conditions it is possible to approach the true equilibrium using small
amplitude saturation or suction cycles, as illustrated in Fig. 4. However, there is another
approach to explore the new concept of true equilibrium, involving a mechanical source
of small amplitude sound waves. To illustrate this point, one can no longer ignore the
input of mechanical dissipation D to the total rate of entropy production in Eq. (47) and
thus to the meso-related entropy production Rm in Eq. (48). Recalling Eq. (16) that D =
σD
ij ε̇ij+σe

ij ε̇
p
ij , the mechanical dissipation may grow from either the development of plas-

tic strain rates (ε̇pij) or viscous stress (σD
ij). Discernible effects from plastic strain rate

require sufficient distortion of experimental boundaries. On the other hand, it is possi-
ble to generate D by elevating σD

ij without discernible boundary distortions by viscously
heating the meso-scopic structure in the medium using small amplitude sound waves.
Accordingly in such experimental configurations the mechanical dissipation could be eval-
uated from D = σD

ij ε̇ij . Furthermore, assuming for simplicity that its contribution pro-
duce meso-related entropy in Rm, the expression in Eq. (48) now becomes

Rm = JW
i ∇iXWm +D − γT 2

m, (71)

which in the absence of hydraulic fluxes and forcing further simplifies to:

Rm = D − γT 2
m, D = σD

ij ε̇ij . (72)

This case of the meso-related entropy production is actually equivalent to the orig-
inal proposition by (Jiang & Liu, 2009) for dry granular media, where the meso-related
temperature Tm matches the granular temperature. Here, the meso-related temperature
cannot be identified as the granular temperature, since it quantifies the motion of all the
meso-scopic degrees of freedom of both granular and fluid interfacial entities. Further
notice that unlike Rm in Eq. (48), whose source term is purely hydraulic, here the source
term (D) is purely mechanical and strongly depends on particle motion and viscous heat-
ing of the meso-scopic degrees of freedom. This could be understood by noticing that
according to the second relation in Eq. (72), to a first order the viscous stress has to be
proportional to the strain rate (σD

ij ∼ ε̇ij) in order to ensure the non-negativity of the
mechanical dissipation D ∼ ε̇ij ε̇ij ≥ 0. Exposing an experimental sample to monochro-
matic sound waves, the meso-related temperature Tm would quickly reach a steady state
constant value. This occurs when Ṫm ≈ 0, meaning Rm ≈ 0, from which Tm ≈

√
D/γ.

Having no water flux (JW = 0) into the sample while these waves are being applied,
the dissipative flux of the intrinsic suction deviation becomes Zξ = rξξYξ from Eq. (54).
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Therefore, using Eqs. (63) and (44) it is possible to write Zξ ∼
√
Dξ, so using Eq. (39)

without convection the rate of the non-equilibrium intrinsic suction deviation becomes:

ξ̇ ∼ −
√
Dξ. (73)

Based on the above result ξ should eventually relax to zero as long as the sound467

wave continues to produce a non-negative D > 0. Having eventually reached a state468

with ξ = 0 means the true equilibrium of the soil water retention had been reached thanks469

to non-hydraulic input of external mechanical sound waves.470

This new prediction motivates to consider developing novel experiments which in-471

corporate sound waves with which the equilibrium states of soil water retention in a given472

soil could be discovered and measured systematically. This prediction also vividly high-473

lights the significance of solid mechanics to the comprehensive understanding of soil wa-474

ter retention.475

4.12 Comparisons against experimental data476

In the absence of clear measurements of intrinsic suction, evaluation against ex-477

periments could only be made against previously measured suction-saturation curves (viz.,478

capillary pressure-saturation curves), or suction curves against alternative measures of479

fluid content. The evaluation below is made under the caveat that rate-dependent ef-480

fects are mostly not being reported to occur in the experiments, even that those could481

rather be the rule rather than the exception. To this end, the validity of rate indepen-482

dence is examined in the next Sec. 5, where it is shown that for sufficiently slow load-483

ings, or when there exist long waiting periods between measurement points, where the484

system can relax to metastable states, the response should indeed represent the limit of485

rate-independence. Therefore, in this subsection examine the rate-independent limit of486

the theory where dynamic phenomena are not clearly reported.487

In the context of the proposed hydrodynamic theory, unlike previous thermody-488

namic formulations, rate-independence is not taken as a synonym to true equilibrium.489

Quite the opposite, hysteresis, air entrapment, and other such phenomena actually re-490

flect non-equilibrium conditions, so rate-independence only relates to metastable states.491

To illustrate this point, consider the first qualitative comparison of the theory against492

a previous experiment by (Muraleetharan et al., 2009) in Fig. 6a, which shows the re-493

tention response of a finely graded silica sand with a median particle size of 0.14 mm to494

a comprehensive set of drying-wetting cycles (see more details in (Muraleetharan et al.,495

2009)). As shown the hydrodynamic model response in Fig. 6b captures the main phe-496

nomenological response of this test, including the development of ‘air entrapment’, the497

presence of primary and secondary drying and primary wetting curves, and the gradual498

convergence into a focal point at the end of ‘scanning’ drying-wetting cycles with dimin-499

ishing amplitudes. According to the new hydrodynamic theory this focal point resides500

on the predicted true equilibrium state, as represented by the dashed blue line in Fig. 6b501

and as explained conceptually using Fig. 5.502

It is important to note that the residual saturation in Fig. 6b after the primary dry-503

ing and wetting back to zero suction does not reside on the true equilibrium line, and504

so according to our theory the extent of ‘air entrapment’ that is marked on Fig. 6a should505

not be seen to be unique, however reproducible it may be during large cycles. To illus-506

trate this point we consider a second comparison, this time against the retention exper-507

iment on sintered glass beads by (Poulovassilis, 1970) in Fig. 7. Although the test has508

been reported to be dynamic, rate-dependent phenomena have not been reported or quan-509

tified, and so the prediction is based on the rate-independent limit of the theory. Un-510

like the previous example, in this experiment the initial drying from full saturation stops511

at relatively low suction before wetting back to zero suction. Then the extent of drying512

is increased by achieving a slightly higher suction, to then repeat the wetting back to513
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Figure 6: Comprehensive soil water retention under positive suction cycles: (a) exper-
iment by (Muraleetharan et al., 2009), (b) hydrodynamic model response in red with
corresponding equilibrium state in dashed blue. Equilibrium parameters: ce−β

0 = 5.34 kPa,
α = 0.3 and Sr0 = 0.015. Non-equilibrium parameters: a = 10 and b = 2.

zero suction. Such cycles continue and show that the level of air entrapment is not ac-514

tually unique, as expected and predicted by the hydrodynamic theory.515
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Figure 7: Comprehensive soil water retention under positive suction cycles: (a) experi-
ment by (Poulovassilis, 1970), (b) hydrodynamic model response in red with correspond-
ing equilibrium state in dashed blue. Equilibrium parameters: ce−β

0 =12 kPa, α=0.45 and
Sr0 = 0. Non-equilibrium parameters: a = 6.8 and b = 1.6.

Notice that in the two previous examples the drying and wetting cycles are made516

in such a way that the suction always remain positive. Therefore, consider the third com-517

parison in Fig. 8 against experiments on Esperance sand by (Alsherif et al., 2015), who518

tested the response of soil to wetting-drying cycles in the negative suction domain. Again,519

the hydrodynamic theory successfully predicts in Fig. 8b the salient phenomenological520

characteristics of the experimental Fig. 8a. Remarkably, in both cases the small nega-521

tive suction cycles gradually saturates the sample back towards full saturation. Accord-522

ing to the theory, this is because at zero suction the true equilibrium state resides on full523
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saturation. Other than using ad hoc geometrical algorithms to curve fit such responses,524

we are not aware of any previous first-principle predictions of this phenomenon.525
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(a) (b)

Figure 8: Soil water retention with both positive and negative suction cycles: (a) experi-
ment by (Alsherif et al., 2015), (b) hydrodynamic model response in red with correspond-
ing equilibrium state in dashed blue. Equilibrium parameters: ce−β

0 = 1.5 kPa, α = 0.35
and Sr0 = 0.18. Non-equilibrium parameters: a = 9 and b = 1.6. Points were added for
ease of comparison where loading were inverted.

All the three previous comparisons have been made solely for the soil water reten-526

tion, yet the theory strictly connects this property to the Bishop’s effective stress coef-527

ficient χ of partially saturated soil. Where in a previous work (Einav & Liu, 2020) we528

examined this connection against non-cyclical soil water retention experiments for true529

equilibrium conditions, the current theory anticipates the dependence of χ on degree of530

saturation Sr and void ratio e to remain identical for on and off equilibrium conditions.531

To illustrate this point, we consider the final against the experiments of (Khalili & Zargar-532

bashi, 2010) in Fig. 9. While the void ratio e during those tests varied since the sam-533

ples were mechanically loaded to measure χ, the exact variation of e has not been re-534

ported, and thus we keep e constant and equal for both the drying and wetting reten-535

tion curves in Fig. 9a. As such, theoretically speaking under this limit the dependence536

of χ on Sr should remain identical during these legs, as shown in Fig. 9b. This is not537

actually far off from the experimental values reported on that same plot, while the small538

drift during wetting from the drying portion of the χ-Sr relation may be attributed to539

the changes in e during the tests.540

To summarise, the examples above and many similar others we have tried illustrates541

the power of the newly proposed hydrodynamic theory to predict an unprecedented range542

of rate-independent phenomena in partially saturated soils related to soil water reten-543

tion.544

5 Non-equilibrium soil water retention (rate-dependence)545

Most common experimental studies of soil water retention attempt to remove po-546

tential rate dependencies at material level. Instead, retention data are recorded only af-547

ter sufficient waiting time, during which the degree of saturation Sr eventually stops chang-548

ing. Excluding macroscopic diffusive flow processes, this observed relaxation may come549

from various dynamic processes such as slow-varying interfacial readjustments, rearrange-550
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Figure 9: The influence of (a) soil water retention on (b) Bishop’s effective stress coef-
ficient. Experimental points come from experiments on three different soils by (Khalili
& Zargarbashi, 2010). The solid lines show the hydrodynamic model prediction. For red
lines, equilibrium parameters: ce−β

0 = 675 cm-water as a unit of water pressure, α = 1,
λ = 12 and Sr0 = 0; non-equilibrium parameters: a = 18 and b = 6.9. For blue lines,
equilibrium parameters: ce−β

0 = 7 cm-water, α = 0.9, λ = 0.5, Sr0 = 0.1; non-equilibrium
parameters: a = 2.5 and b = 25. For purple lines, equilibrium parameters: ce−β

0 = 20
cm-water, α = 1, λ = −0.5 and Sr0 = 0.05; non-equilibrium parameters: a = 25 and
b = 140.

ment of patches of fluids, and diffusion and advection of fluids at the pore-scale. The slow551

relaxation of Sr during experiments in very short samples, where fluid contents could552

be considered mostly macroscopically homogeneous, reinforces the possibility that the553

constitutive process underpinning soil water retention is intrinsically rate dependent. Some554

experiments actually go beyond to carefully isolate constitutive rate effects from macro-555

scopic flow processes by measuring both saturation and suction at fixed positions in space556

(Topp et al., 1967; Vachaud et al., 1972; Oung et al., 2005).557

The rate dependent effects in these experiments have triggered interest to develop
rate-dependent soil water retention models (Hassanizadeh et al., 2002; Helmig et al., 2007).
Key features that distinguish the current work from these models is that the current the-
ory automatically captures rate-dependent phenomena thanks to the two-scale temper-
atures embedded in our hydrodynamic framework. This is on top of the previously dis-
cussed differences, including the distinction between true thermodynamic states of equi-
librium from metastable states and the measured suction from the intrinsic suction. Specif-
ically, the general rate-dependent evolution equation for the meso-related temperature
is simply given by combining Eq. (60) with the stationary meso-related temperature Tm0

in Eq. (61) to find:

∂tTm =
ω(ηJ2

W − γT 2
m)

Tm
, JW = C∂tSr, (74)

where the flux JW is a time variable, as it depends on the rate of saturation ∂tSr (or more558

generally, also on the rate of void ratio ∂te, as specified by Eq. (58)), itself being a time559

variable. As such Tm would not necessarily follow its stationary solution stated in Eq. (61).560
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Considering a time varying JW(t), yet constant η%W
Sr

, ω and γ, the above equation
could be rearranged

∂t(L2) =
1

τ

[
(∂tSr)

2 − L2
]
, Tm =

√
η

γ
CL, τ =

1

2γω
, (75)

where τ is a typical time that controls the relaxation of L2, while L acts as a ‘memory
function’ that memorises the time-dependent history of the time-varying saturation rate
(∂tSr). Combining the solution of Tm above with Eq. (65), the rate dependent version
of Eq. (66) may be rewritten

∂tξ = −ALξ − B∂tSr. (76)

which has to be solved in conjunction with Eq. (75). Comparing the above equation with
its rate-independent version in Eq. (66) shows that the limit of rate-independence is char-
acterised by:

L → |∂tSr| (rate-independence). (77)

The linear differential equation for L2 in Eq. (75) has a general analytic solution
for any time variable ∂tSr(t), which can be solved using an integrating factor for the case
of initially relaxed Tm(t) = 0, thus giving:

L(t) = e−t/(2τ)

(
1
τ

∫ t

0

et
∗/τdtSr(t

∗)2dt∗
)1/2

. (78)

It is possible to show that under gradually diminishing ∂tSr(t) and slow processes,561

which develop over times much longer than the typical time t � τ , the memory func-562

tion L(t) would practically vanish over time, as described by Eq. (77). Therefore, τ sim-563

ply controls the typical time for the relaxation of Tm to its stationary solution. To il-564

lustrate this point, two examples are considered in the section below.565

5.1 Monotonic drying from a fully relaxed state566

As a first example, consider monotonic drying with constant ∂tSr(t) = −k < 0
from a state beginning from a fully relaxed state Tm(t) = 0, for which case the inte-
gral in Eq. (78) could be resolved to give L(t) =

√
1− e−t/τk, so that:

dtξ = −A
√
1− e−t/τkξ + Bk. (79)

Therefore, with growing drying time towards t � τ the result practically converges567

to the rate-independent solution in Eq. (65) for that loading scenario (with ∂tSr = −k).568

This dynamic response implied by the theory is demonstrated in Fig. 10 for variously569

imposed rates of drying. Also demonstrated on that figure is how for (relatively) very570

low rates of drying k the dynamic response immediately converges to the rate-independent571

limit response of the theory that is characterised by slow transitions from one metastable572

state to another.573

Also notice from Fig. 10 that the required extent of drying t·dt∂Sr to return back574

to equilibrium broadly agrees with ≈ 2τ ·∂tSr, thus given meaning to ≈ 2τ as the typ-575

ical time above which a drying time (∂tSr)
−1 would yield the rate independent responses576

shown in the preceding section.577

The above analysis of rate-dependence was done under various imposed saturation578

rates. This does not directly represent the actual (locally uncontrolled) rates of drying579

in the previous experiments on rate-dependent effects (Topp et al., 1967; Vachaud et al.,580

1972; Oung et al., 2005). Nevertheless, the responses observed in Fig. 10 are qualitatively581

reminiscent to the experimental observations in those studies. In future it could be in-582

teresting to pull out the actual rates of drying in those tests, and numerically integrate583

the equations of L2.584
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Figure 10: Rate-dependent responses of non-dimensionalised suction-saturation responses
under different constant rates of drying dtSr = −k < 0, starting from full saturation with
relaxed state Tm = 0. Parameters: α = 0.5, a = 10 and b = 2. Also shown in dashed
lines are the rate-independent metastable states and the states corresponding to the true
thermodynamic equilibrium. (Attaining the true thermodynamic equilibrium requires per-
turbations, as described in Sec. 4.)

5.2 Drying-wetting cycles with diminishing amplitude585

As a second and slightly more elaborated example consider controlled drying and
wetting cycles with diminishing amplitudes from a fully relaxed state Tm(t) = 0

Sr(t) =1− a+ a cos(π t
t1
)e

− t
t2 , for which (80)

dtSr(t) =− a
t1t2

(
t1 cos(π

t
t1
) + πt2 sin(π

t
t1
)
)
. (81)

where t1 represents the duration of each drying or wetting leg, and t2 the typical time586

during which the drying or wetting amplitudes vanish. A typical example of the vari-587

ation of Sr with time t is shown on Fig. 11a for the case of t2 = 2t1, along with its deriva-588

tive as dashed black line on Fig. 11a.589

The form of ∂tSr(t) could be integrated analytically using L in Eq. (78) and yields590

a closed-form expression. This solution is too long to be illuminating, but its graphical591

representation is useful and given in Fig. 11b for three different typical times τ . Since592

the rate independent limit of L is given by |∂tSr| (see Eq. (77)), it is useful to compare593

these in Fig. 11b over time. For long varying processes with τ � t1, indeed the rate-594

dependent response of L converges to its rate-independent limit. It is then possible to595

substitute the analytic L(t) into Eq. (76) and integrate numerically ξ, and then recover596

the non-equilibrium intrinsic and measured suctions. The corresponding results are shown597

in Fig. 11c, again highlighting convergence to the rate-independent limit for relatively598

slow processes.599

6 Conclusions600

This paper has presented the development of a hydrodynamic theory for partially601

saturated soils at non-equilibrium conditions. The theory predicts and explains most rig-602

orously and consistently all the pivotal phenomena exhibited by soil water retention re-603

lationships. To this end, a number of important theoretical steps have been made that604

distinguish the current work from previous thermodynamic formulations in the litera-605

ture.606
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Figure 11: Dynamic drying-wetting cycles with diminishing amplitudes for various typical
times τ : (a) saturation over time; (b) memory function over time; and (c) dynamic soil
water retention curves.

1. At the limit of thermodynamic equilibrium, the derivation gives results that are607

fully consistent with the rigorous findings of (Jiang et al., 2017). As such, the deriva-608

tion carefully distinguished the externally measured/applied suction (or so-called609

capillary pressure) from the intrinsic suction through chemical potentials in and610

out the soil, and related these to the effective stress of the soil.611

2. To accommodate emergent features at non-equilibrium conditions, the new the-612

ory distinguished the true thermodynamic equilibrium from metastable states. It613

was argued and shown that unlike equilibrium states, metastable states are not614

unique and can be easily disturbed by external perturbations. Applying such per-615

turbations can lead the system towards its unique equilibrium state.616

3. Two non-equilibrium internal variables and their evolution equations were intro-617

duced and developed: (a) the intrinsic suction deviation ξ, which simply reflects618

deviation from the equilibrated intrinsic suction in (Jiang et al., 2017), and (b)619

the meso-related temperature Tm, which tracks degrees of freedom at the scale of620

grains and pores.621

4. The rate of ξ was rigorously derived based on Onsager’s reciprocity principles for622

dissipative processes at the microscale. The rate of Tm was recovered using the623

(Jiang & Liu, 2009)’s principle of two-stage irreversibility, which was first proposed624

to reflect fluctuating grain motions, but here further taken to describe the effects625

of fluctuating motions of fluid patches and interfaces.626

5. At the stationary limit of Tm the new theory predicts rate-independence, where627

once drying or wetting stop at any given suction-saturation point the system re-628

mains metastable. The metastability highlights that these states are rather pre-629

carious to small perturbations by wetting-drying cycles or grain agitations.630

6. When Tm does not have enough time to relax to its stationary limit, the system631

shows rate-dependence, as the motion of fluid patches and interfaces means that632

suction is dynamic.633

7. Where the equilibrium and non-equilibrium stationary values of the measured and634

intrinsic suctions do not depend on experimental sample dimension, the theory635

reveals that the rate of the approach of the non-equilibrium suction to its station-636

ary value should depend on it.637
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6.1 Perspectives638

6.1.1 Experimental639

Apart from explaining previously reported phenomena of soil water retention curves,640

the proposed theory opens many possible avenues for future research and experiments.641

For example, a useful experimental contribution could be to further probe the concept642

of unique equilibrium in partially saturated soils. To this end, one could start applying643

small amplitude wetting-drying cycles from various degrees of saturation Sr. These cy-644

cles could be done as slowly as needed in order to ensure the system travels closely along645

rate-independent response, visiting only metastable states. Under faster cycles hetero-646

geneities in experimental samples might develop, meaning theoretically a heterogeneous647

field of meso-related temperature Tm. However, at each point in the domain the true equi-648

librium retention curve is independent of the magnitude of Tm. A local variation of Tm649

only modifies the time needed to arrive at this curve, not its form.650

A second experimental approach to explore the concept of unique equilibrium would651

be to apply acoustic waves. Choosing a sound wave that is much larger than the solid652

particles, neighbouring particles would develop slightly different velocities in them, lead-653

ing to dissipation of the sound wave, which according to the theory will also increase the654

meso-related temperature Tm (without even needing to change the saturation Sr). This655

is quite analogous to viscous heating in water. The smaller the wavelength, the larger656

are the velocity differences and dissipation. This physics changes when using other forms657

of waves with a wavelength much smaller than the grains. In this case, if a wave prop-658

agates through a grain, the dissipation only heats up the true temperature of this grain,659

and may not elevate Tm.660

Using either of these proposed experimental protocols, whether the initial suction661

s corresponds to the primary drying or wetting curves, or any other initial state, the fi-662

nal states should end up on a unique relationship between saturation Sr, void ratio e and663

suction s.664

Similarly, the new theory opens new questions on the dependence of the retention665

of water in a given soil on the dimension of the experimental specimens. The main fo-666

cus should be on inspecting the slope of the retention curves upon wetting-drying rever-667

sals. Furthermore, it followed from the theory that hysteresis in s may also develop at668

constant Sr yet under cyclical variations in e – developing careful experiments that could669

impose such conditions could thus be instructive too. Another example for potential ex-670

perimental exploration would be to study the effect of previous loading rate on metastable671

states, e.g., according to the theory, the level of suction s should mostly get closer to its672

equilibrium value seq while letting it relax after faster drying (or wetting) than slower673

drying (or wetting).674

6.1.2 Theoretical675

The proposed theory also opens new questions for further fundamental analyses676

and developments. For example, while in the current paper the rate-dependent simula-677

tions involved controlled saturation rates, these do not actually represent the actual load-678

ing conditions in the previous experimental studies (Topp et al., 1967; Vachaud et al.,679

1972; Oung et al., 2005). Here, neither the rate of saturation nor the suction were ac-680

tually controlled, but rather measured at local points in space. It is possible to take the681

measured rate of saturation and integrate along it to study the progression of suction682

over time. Alternatively, it would be useful to adopt the theory for solving full bound-683

ary value problems, involving naturally a hysteretic permeability, thus simulating directly684

the boundary conditions in these tests, while evaluating the rates of saturation and suc-685

tion at local points in space and see how they compare with those experiments.686
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Finally, in this paper the effect of the spatial gradient of the meso-related temper-687

ature ∇Tm has been neglected from the entropy production term Fm
i ∇iTm in Eq. (45),688

and as such from the meso-scale entropy balance in Eq. (40). Accounting for it would689

mean that the rate equation of the meso-related temperature dtTm should further involve690

a diffusive term ∝ ∇2Tm. More specifically, this non-local diffusive term (∝ ∇2
iTm) in691

the evolution equation for the meso-related temperature (Tm) introduces a diffusive time-692

scale, which may explain the development of rate-dependent localised patterns within693

experimental samples, as those are strongly related to the speed of wetting/drying. Cap-694

turing such localised features is then possible by treating the experimental sample as a695

full boundary value problem, with ∇2
iTm being evaluated at any point in the experimen-696

tal domain. An additional diffusive term could be added to the mass conservation of the697

species in a way that would not violate the overall mass conservation, which would need698

to be evaluated for any point in the specimen domain. Future research could look deeper699

into the implication of this term, as it could bring a diffusive length scale to continuum700

models as it could help them resolving complex patterns in partially saturated media and701

porous media such as wormholes and fingering (Homsy, 1987; Cueto-Felgueroso & Juanes,702

2008).703

Considering soil water retention specimens as boundary value problems may also704

allow capturing additional emerging rate-dependent phenomena, beyond those stated in705

Sec. 5. For example, each of the mentioned diffusive terms introduces a timescale, in ad-706

dition to the typical rate-dependence time τ in Eq. 75. Each of these timescales would707

depend on soil-specific features (e.g., pore and interfacial sizes) and affect measured air708

entry value and/or hydraulic conductivity. The relative position of the rate of hydraulic709

loading with respect to any of these material times could inject more quantitative rea-710

soning to why different experimental techniques could be favoured for different materi-711

als (e.g., fast imbibition by axis translation for sand, as opposed to drying/wetting through712

vapour controlled techniques for clay).713

Appendix A Parallel flux decomposition of the total entropy production714

As mentioned in Sec. 4.5, we considered two possible ways to decompose the JW
i ∇iXW

term into R and Rm within the total entropy production R+Rm of Eq. (47). The for-
mulation in Sec. 4.5 considered a ‘parallel force decomposition’ of ∇iXW, which was cho-
sen for simplicity. Here, we follow the slightly longer ’parallel flux decomposition’ of JW

i

into an atomistic JWa
i and meso-related JWm

i parts, accordingly:

Rm =JWm
i ∇iXW − γT 2

m, (A1)
R =JWa

i ∇iXW + YξZξ + γT 2
m. (A2)

with
JWa
i + JWm

i ≡ JW
i , (A3)

so that by summing R and Rm above, we retain the form of Eq. (47). In other words,
in the context of our theory the parallel flux decomposition refers to the way the water
flux JW

i is being decomposed into its atomistic and mesoscopic contributions. In this case,
Onsager’s reciprocity conditions for the thermal entropy production R are given by(

Zξ

∇iXW

)
=

(
rξξ rξW

j

rWξ
i rWW

ij

)
·
(

Yξ

JWa
j

)
, (A4)

where the conditions on the generalised resistivity coefficients remain as those stated in
Eq. (52). Nevertheless, notice that the meaning of these coefficients changed, and thus
their values need not be similar. However, for ease of comparison we do not distinguish
the corresponding symbols. Also notice that unlike Eq. (55) in the parallel force formu-
lation, here, in order to ensure R+Rm ≥ 0:

∇iXW = ηJWm
i . (A5)
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For convenience, relevant vectors could be represented by their corresponding mag-
nitudes times the unit vector êi along their directions:

JWa
i = JWaêi, JWm

i = JWmêi, JW
i = JWêi. (A6)

As before, the stationary solution for the meso-related temperature requires Rm =
0, which here means γT 2

m0 = JWm
i ∇iXW, so that using the above:

Tm0 =
√

η
γ |JWm|. (A7)

Inserting Zξ from Eq. (A4) into the evolution equation for ξ in Eq. (39):

∂tξ + rξξYξ + rξWJWa = 0, (A8)

since rξW
i = rξWêi and êiêi = 1.715

Similar arguments follow to use Eq. (63), yet the new stationary solution for Tm
in the form of Tm0 in Eq. (A7) above give:

rξξ = rTm = r
√

η
γ |JWm|. (A9)

Combining the second Onsager relation in Eq. (A4), the expression for ∇iXW in
Eq. (A5), and the one for JWm

i in Eq. (A3) gives:

JWa =
ηJW + rξWbξ

η + rWW
ij δij

, (A10)

where δij = êiêj is the Kronecker delta. It thus follows that

∂tξ = −rb
√

η
γ

∣∣∣∣∣∣JW −
JW +

(
rξW

η b
)
ξ

1 +
rWW
ij δij

η

∣∣∣∣∣∣ ξ − rξW

JW +
(

rξW

η b
)
ξ

1 +
rWW
ij δij

η

 . (A11)

The above relation serves the same purpose as Eq. (65), which resulted from the
parallel force formulation, yet unlike before it is not necessarily rate-independent. How-
ever, using the expression for JW in Eq. (59), rate-independence can again be recovered
at the limit of rξW

η b → 0

∂tξ = −rb
√

η
γ

(
rWW
ij δij

rWW
ij δij+η

)
C |∂tSr| ξ − rξW

(
η

rWW
ij δij+η

)
%WC∂tSr. (A12)

so that we retain the main result of this paper, as boxed in Eq. (66), where instead of
Eq. (67), the coefficients in it are now given by

A = rb
√

η
γ

(
rWW
ij δij

rWW
ij δij+η

)
C, B = rξW

(
η

rWW
ij δij+η

)
C. (A13)

716

Therefore, the parallel flux formulation retains the same evolution equation as boxed717

in Eq. (66) for rate independent processes. Facing with the same experimental data, the718

values of the coefficients A and B in the evolution equation for ξ would remain similar,719

yet the values of the Onsager coefficients {r, rξW, rWW
ij } may generally be different.720

For physical samples, use the IGSN persistent identifier, see the International Geo721

Sample Numbers section: https://www.agu.org/Publish-with-AGU/Publish/Author722

-Resources/Data-and-Software-for-Authors#IGSN723
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