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Likely weakening of the Florida Current during the past1

century revealed by sea-level observations2

Christopher G. Piecuch1
3

1Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA4

The Florida Current marks the beginning of the Gulf Stream at Florida Straits, and plays5

an important role in climate. Nearly continuous measurements of Florida Current transport6

are available at 27◦N since 1982. These data are too short for assessing possible multidecadal7

or centennial trends. Here I reconstruct Florida Current transport during 1909–2018 using8

probabilistic methods and principles of ocean physics applied to the available transport data9

and longer coastal sea-level records. Florida Current transport likely declined steadily dur-10

ing the past century. Transport since 1982 has likely been weaker on average than during11

1909–1981. The weakest decadal-mean transport in the last 110 y likely took place in the past12

two decades. Results corroborate hypotheses that the deep branch of the overturning circu-13

lation declined over the recent past, and support relationships observed in climate models14

between the overturning and surface western boundary current transports at multidecadal15

and longer timescales.16

Swiftly flowing north through the narrow, shallow Florida Straits, the Florida Current marks17

the headwaters of the Gulf Stream1–4 (Figure 1). Together with the weaker Antilles Current5–8, the18

Florida Current forms the major western boundary current in the subtropical North Atlantic Ocean19

at 27◦N, providing closure to the wind-driven interior gyre circulation9–11, and acting as a vital20
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limb of the Atlantic meridional overturning circulation12. Due to its transport of heat and other21

tracers, the Florida Current plays an important role in climate13–15.22

The integrated volume transport of the Florida Current, hereafter Florida Current transport,23

has been monitored nearly continuously at 27◦N since 1982 through abandoned submarine tele-24

phone cables between West Palm Beach and Grand Bahama Island1–4 (Figure 1). Before then, ob-25

servations were made occasionally as part of short hydrographic cruises or brief field campaigns,26

each measuring a different component of the current at a distinct location. Earlier observations16, 17
27

only measured near-surface transports, missing any transports at depth. Later full-depth trans-28

port measurements18–22 were made variously between Florida and Havana, Cay Sal Bank, the29

Cat Cays, or Bimini, which captured the flow through Yucatán Channel, but omitted transports30

through Nicholas, Santaren, or Northwest Providence Channels, all of which contribute to the31

transport at 27◦N (Figure 1). Such disparities make it difficult to produce a stable instrumental32

estimate of Florida Current transport through time. Without such a coherent, longterm estimate,33

it has been unclear whether the Florida Current has undergone multidecadal- or longer-timescale34

change. Meinen et al.3 concluded that the extant data, “provide no evidence for a longterm trend35

in the Florida Current transport,” during 1964–2009. However, it remains unclear whether a trend36

would emerge in a longer, more complete transport history.37

Questions of possible longterm changes in the Florida Current bear on hypotheses that the38

Atlantic meridional overturning circulation has weakened or is weakening. Proxy indicators, in-39

cluding surface and subsurface ocean temperatures at subpolar latitudes and sortable silts from40
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sediment cores off Cape Hatteras, suggest that the deep return flow of the meridional overturning41

circulation weakened either continuously during the twentieth century or earlier near the end of the42

Little Ice Age23–27. However, the proxies and their relation to the overturning are uncertain, so it43

is unclear how robust these suggestions are. Climate models simulate that weakening of the deep44

branch of the overturning circulation on multidecadal and longer timescales is balanced, in the45

sense of mass conservation, by weakening of the surface western boundary current28–31. Indeed,46

in paleoceanographic studies, changes in Florida Current transport have often been interpreted in47

terms of changes in the deep branch of the overturning circulation on centennial and millennial48

timescales32. Thus, a determination of whether the Florida Current transport changed during the49

past century, and by how much, based on instrumental observations would serve as a test of model50

simulations and proxy-based hypotheses regarding the deep branch of the overturning circulation,51

as well as inform paleoceanographic studies.52

Previous authors argued that sea level from coastal tide gauges is informative of changes53

in Florida Current transport17, 18, 33–37. These arguments are based on geostrophic balance: at pe-54

riods & 1 day, the northward flow through Florida Straits imparts an eastward acceleration due55

to the Coriolis force that is counteracted by a pressure gradient across the Florida Straits, which56

manifests as a sea-level difference that can be observed by tide gauges on opposite sides of the57

Florida Current. However, circulation inferences based on tide gauges need to be made cautiously.58

Tide gauges measure the distance between the sea surface and Earth’s crust at the coast. They59

capture not only the large-scale geostrophic circulation, but can also be impacted by remotely60

driven coastal-trapped waves and currents; local forcing and frictional dynamics over the conti-61
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nental shelf; changes in the gravity field, rotation vector, and viscoelastic deformation of the solid62

Earth; and other isostatic geophysical and oceanographic processes38–40. Tide-gauge data are also63

heterogeneously distributed in space and time. Long, continuous records are available at some64

southeastern USA and Caribbean sites far afield of the submarine cable at 27◦N, but extant tide-65

gauge records close to the cable’s endpoints near West Palm Beach and Grand Bahama are short,66

incomplete, and largely not overlapping41 (Supplementary Figures 1, 2).67

To overcome these challenges, I use Bayesian data analysis42–44 to estimate annual Florida68

Current transport at 27◦N during the past 110 y (see Methods). The estimate uses 1,390 y of69

annual coastal sea level from 46 tide gauges41 along the southeastern USA and Caribbean dur-70

ing 1909–2018 and 36 y of annual Florida Current transports from cable measurements1–4 over71

1982–2018 (Figures 1, 2; Supplementary Figures 1, 2). Sea level is represented as a process with72

spatial correlation and temporal memory. The Florida Current transport is related to the difference73

in sea level across Florida Straits through geostrophy, but account is taken of non-oceanographic74

and ageostrophic effects on sea level and transport. The data are modeled as corrupt, imperfect75

versions of the processes. Bayes’ rule is used to invert the model equations, and solutions are gen-76

erated using numerical methods. The model equations are coupled, so that information is shared77

across space, time, and processes, which allows data gaps to be filled and unobserved processes to78

be estimated. The solution is fully probabilistic, and comprises thousands of ensemble members,79

each an equally likely history of transport that is consistent with the data and model equations. This80

allows subtle spatiotemporal statistics to be calculated, for example, the probability density func-81

tion of the magnitude or timing of the minimum or maximum decadally averaged transport value82
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during the study period (Methods). Residual analyses and synthetic data experiments demonstrate83

the appropriateness of the algorithm and show that it accurately infers the quantities of interest84

given the data (Methods).85

Weakening of the Florida Current86

The probabilistic reconstruction of Florida Current transport is summarized in Figure 2. The 110-y87

mean transport is 32.6± 1.4 Sv (Supplementary Figure 3a; 1 Sv ≡ 106 m3 s−1). Unless otherwise88

indicated, ± values represent the median plus and minus twice the standard deviation inferred89

by the Bayesian model, which roughly corresponds to the 95% posterior credible interval. The90

average transport since 1982, when transport has been continuously monitored, is 31.8 ± 0.1 Sv.91

This value is likely weaker (probability P = 0.86) than the average transport during 1909–198192

(32.9 ± 2.1 Sv) before continuous monitoring of the Florida Current (Supplementary Figure 3a).93

Estimated uncertainties since 1982 are relatively small, and mostly reflect instrumental errors on94

the cable data, which strongly constrain the posterior solutions of the transport process. Before95

1982, cable data are unavailable at 27◦N, and the inference is largely constrained by the tide-gauge96

records, which have a more uncertain relationship to transport and become sparser earlier in time,97

resulting in comparatively larger errors that grow into the past.98

Superimposed on the time-mean are interannual-to-decadal fluctuations in transport (Fig-99

ure 2). The standard deviation of annual transports is 1.3 Sv (posterior median estimate). A100

−3.3 ± 1.1 Sv weakening from 1997–1998 to 1999–2000, when there was a gap in cable data101
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and low transports were observed upstream in Yucatán Channel45, was followed by a 2.5± 1.1 Sv102

strengthening between 1999–2000 and 2001–2002 (Supplementary Figure 3c). Decadal-average103

transports during 1922–1932 (33.6±2.8 Sv) and 1956–1966 (33.0±1.7 Sv) were likely (P ≥ 0.79)104

higher than the longterm 110-y mean transport, whereas decadal-mean transports over 1946–1956105

(32.2± 2.0 Sv) and 1986–1996 (31.7± 0.2 Sv) were likely lower than the longterm mean (Supple-106

mentary Figure 3d). Wavelet coherence analysis reveals that transport fluctuations can be related107

to major modes of surface climate variation (Supplementary Figure 4). Transport is probably108

(P > 0.68) coherent with the North Atlantic Oscillation46 over 2–8-y periods centered between109

the late 1970s and early 2000s, consistent with past studies of the cable data2, 47. Coherence is also110

evident at 2–4-y periods around 1960, and 8-y periods between the late 1930s and early 1950s,111

which have not been reported previously, and possibly result from changes in forcing by wind-112

stress curl over the subtropics and mediated by planetary Rossby waves47. Transport is also likely113

(P > 0.68) coherent with Atlantic Multidecadal Variability48 at 2–16-y periods centered on the114

mid 1990s and 16-y periods from the late 1940s to early 2000s. Weaker coherence earlier in time115

could reflect nonstationary relationships between transport and climate or the growth of transport116

uncertainties into the past.117

Weakening of the Florida Current transport is apparent on longer timescales. The centennial118

trend during 1909–2018 is−1.7±3.7 Sv century−1, which overlaps zero, but implies that the trend119

is likely negative (P = 0.82; Supplementary Figure 3b). The inference of a longterm weakening120

is qualitatively insensitive to the choice of time period. Computing changes between all pairs of121

non-overlapping decadal averages, I find that transport likely (P > 0.68) declined from one decade122
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to another 65% of the time (i.e., 65% of pixels in Figure 3 are blue and not stippled). Considering123

only changes over > 50-y intervals, I find that the percentage of periods showing a likely decline124

increases to 92% (Figure 3). For example, it is very likely (P = 0.90) that transport weakened125

from 1920–1930 (−2.1 ± 2.9 Sv) and from 1960–1970 (−1.4 ± 1.6 Sv) to the present more than126

expected from a stationary red-noise process. Indeed, if transport was stationary, extrema would127

be uniformly likely to occur at any point on a given time interval, whereas in the presence of a128

longterm decline, the maximum transport would be more likely to happen closer to the beginning,129

and the minimum transport closer to the end of the interval. Consistent with the latter case, the130

minimum decadal-average transport (31.1±1.0 Sv) likely started sometime after 2002 (P = 0.74),131

whereas the maximum decadal average (34.1 ± 2.5 Sv) probably ended before 1936 (P = 0.70;132

Figure 4a). The timing of these extrema cannot be explained in terms of fluctuations about a133

stationary mean: after removing the longterm trend (Supplementary Figure 3b), I find it unlikely134

that the minimum transport started after 2002 (P = 0.18), and chances are lower that the maximum135

ended before 1936 (P = 0.38; Figure 4b).136

Relation Between Florida Current Transport and Sea-Level Difference Across Florida Straits137

In addition to transport, the Bayesian algorithm also estimates the regression coefficient between138

transport and sea-level difference across Florida Straits (see Methods). This estimated change in139

transport per unit change in sea-level difference is 0.21±0.11 Sv cm−1 (Supplementary Figure 5a).140

I use geostrophy to interpret this value in terms of an effective depth characterizing the vertical141

scale over which velocity variations decay in amplitude from the surface to the bottom in Florida142
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Straits49, 50. Following Little et al.50, I multiply by the ratio of Coriolis parameter over gravity143

(6.7 × 10−6 s m−1 at 27◦N) to obtain an effective depth of 144 ± 74 m. This estimate is roughly144

consistent with the vertical structure of northward currents observed by shipboard acoustic doppler145

current profiler aboard the research vessel Walton Smith during 70 cruises across Florida Straits at146

27◦N over 2001–2018. At the longitude of the core of the current, the average meridional velocity147

over all cruises decays almost linearly in the vertical from ∼ 1.2 m s−1 near the surface to ∼ 0.9148

m s−1 and ∼ 0.6 m s−1 at 200- and 400-m depth, respectively (Figure 5a). Computing standard149

deviations in meridional velocities across cruises, I find that the decay in flow-variation amplitude150

with depth takes a more exponential form, decreasing rapidly from∼ 0.6 m s−1 near the surface to151

∼ 0.3 m s−1 and ∼ 0.2 m s−1 at 200- and 400-m depth, respectively (Figure 5b). Similar vertical152

structures of mean and variable meridional currents were reported from earlier observations made153

during 1982–1984 as part of the Subtropical Atlantic Climate Studies Program51.154

In designing the Bayesian algorithm, I assumed that the regression coefficient between sea155

level and transport is time invariant (see Methods). To test if this assumption is reasonable, I an-156

alyze sea level and transport simulated by an ocean circulation model52 over 1871–2010 in the157

time and frequency domains. Performing admittance and coherence analyses53, I determine that158

modeled sea-level differences across Florida Straits and Florida Current transports are coherent159

over all accessible timescales, and that the admittance (or transfer function) amplitude is relatively160

insensitive to frequency band, such that the change in transport per unit change in sea-level dif-161

ference is similar at interannual and multidecadal timescales (Supplementary Figure 6). I also162

perform correlation and regression analyses on the simulated sea-level differences and transports163
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using a sliding 20-y time window. Correlation and regression coefficients are relatively robust to164

the choice of time period, such that values for any 20-y epoch are within about 20% and 5%, re-165

spectively, of the average value over all 20-y epochs over 1871–2010 (Supplementary Figure 7).166

These results show that the link between transport and sea-level difference in this ocean model167

is not strongly dependent on time period or frequency band, which suggests that my assumption168

of a constant-in-time regression coefficient between the two variables is justifiable. The Bayesian169

algorithm also successfully infers the correct regression-coefficient value in a synthetic data exper-170

iment based on this ocean circulation model (Methods; Supplementary Figures 6, 7), which means171

that the algorithm correctly estimates the relationship between sea level and transport given the172

available (gappy, noisy) data.173

Distinguishing Dynamic and Static Trends in the Sea-Level Difference Across Florida Straits174

The meaningfulness of the transport estimate hinges on the Bayesian algorithm’s ability to iden-175

tify and distinguish dynamic from static components of the sea-level difference across the Florida176

Straits, given the available data. Here “dynamic” indicates ocean dynamic sea level, which is the lo-177

cal sea-surface height relative to the geoid and corrected for the inverted-barometer effect, whereas178

“static” refers to relative sea-level changes unrelated to ocean circulation, including global-mean179

sea-level changes, the inverted-barometer effect, and sea-level changes arising from changes in180

Earth’s gravity, rotation, and viscoelastic solid-Earth deformation54. The posterior solution for the181

110-y trend in sea-level difference across the Florida Straits, between Grand Bahama minus West182

Palm Beach, is −0.2 ± 1.0 mm y−1 (Supplementary Figure 5b). This trend results from the com-183

9



peting influences of a dynamic trend in sea-level difference of −0.9 ± 2.2 mm y−1 and a static184

trend of 0.7±2.3 mm y−1 (Supplementary Figure 5b), which I interpret respectively as differential185

trends in sea-surface height and vertical land motion across Florida Straits.186

Several lines of independent evidence corroborate these inferences, and support my inter-187

pretation in terms of sea-surface height and vertical land motion. The Global Positioning System188

(GPS) provides instrumental observations of vertical land motion. Version 6b of the dataset from189

Université de la Rochelle55 gives continuous GPS records from three locations in southeastern190

Florida and two Bahamas locations (Supplementary Figure 8; Supplementary Table 1). I compute191

the average vertical velocity for the two Bahamas sites, and do the same for the three sites in south-192

eastern Florida. Taking the difference between the two averages, I find that sea level is statically193

rising 1.0±1.3 mm y−1 faster in the Bahamas than on southeastern Florida due to differential land194

subsidence. Here the ± value is the best estimate plus and minus twice the estimated standard er-195

ror, assuming that the standard errors provided with the GPS data are independent (Supplementary196

Table 1). This rate of sea-level rise agrees with the static trend in the sea-level difference across197

Florida Straits inferred by the Bayesian model.198

Proxy sea-level reconstructions are informative of background rates of change unrelated to199

ocean dynamics. I consider recent standardized compilations of Holocene sea-level index points200

from the Caribbean and southeastern USA derived from coral reefs, mangrove peats, and other201

indicators56, 57. To estimate present-day rates of background change unrelated to circulation and202

climate, I only consider locations in the databases that have at least three sea-level index points203
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with best-estimate ages between 2,000 and 150 y before present. This criterion is satisfied by two204

southeastern Florida sites and one Bahamas site (Supplementary Figure 8; Supplementary Table 2).205

Taking the difference between the linear trend fit to the index points from the Bahamas site and206

the average of the trends fit to the data at the two southeastern Florida locations, I estimate that sea207

level rose 0.6±0.6 mm y−1 more rapidly in the Bahamas relative to southeastern Florida in the pre-208

industrial Common Era (Supplementary Table 2). Here the ± value is the best estimate plus and209

minus twice the standard error from ordinary least squares applied to the best estimates of proxy210

age and sea level, assuming white-noise residuals. Interpreted in terms of vertical land motion,211

this sea-level trend difference from proxy data suggests that the difference in rates of vertical land212

motion between the Bahamas and southeastern Florida observed by GPS is, at least partly, due to213

background geological processes (e.g., glacial isostatic adjustment).214

Modern radar altimeters have observed sea-surface height over nearly the global ocean since215

1993. Once adjusted for static effects, altimeter data can be interpreted in terms of surface currents216

and ocean dynamics. I consider along-track sea-surface height from the Centre for Topography of217

the Oceans and the Hydrosphere58 at the altimeter data points closest to Settlement Point on Grand218

Bahama Island and Virginia Key in southeastern Florida (Supplementary Figure 8). Differencing219

the two altimetric time series and fitting a linear trend, I determine that the rate of change in220

sea-surface-height difference across Florida Straits during 1993–2017 was −2.2 ± 3.0 mm y−1
221

(Supplementary Figure 9). Here± is the best estimate plus and minus twice the estimated standard222

error based on simulations with synthetic time series, with the same Fourier amplitude as the223

data but random phase, to account for autocorrelation in the residuals59, 60 (see Supplementary224
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Information). This altimetric trend, while covering a relatively short interval, basically agrees in225

sign and magnitude with the dynamic trend in sea-level difference across Florida Straits from the226

Bayesian model. Note that, while closer to the western end point of the submarine cable than227

Virginia Key, the West Palm Beach tide gauge is not considered. Due to the geometry of the228

satellite tracks, the closest altimeter point to West Palm Beach is about 50 km offshore, east of the229

current core, and does not reflect western boundary sea level (Figure 5; Supplementary Figure 8).230

Relation to Large-Scale North Atlantic Ocean Circulation231

Assuming there were no changes in Bering Strait throughflow, or evaporation and precipitation232

over the basin, mass conservation demands that weakening of the Florida Current transport must233

be balanced by equal and opposite changes in transports by other components of the circulation234

at 27◦N. This mass-conservation requirement can be met by weakening of the southward-flowing235

interior gyre, strengthening of the northward Antilles Current, weakening of the southward deep236

return flow of the overturning, or some combination thereof.237

To consider possible changes in wind-driven interior gyre transports, I compute geostrophic238

Sverdrup streamfunction9 using wind-stress curl from two reanalyses for the twentieth century61, 62.239

I find a mean southward transport of between−21 and−25 Sv at 27◦N for 1900–2010 (Figure 6a).240

This agrees with historical and modern estimates of the mean interior geostrophic gyre transport241

at 27◦N from gridded wind products5, 11, 63–65 and hydrographic observations66 for different time242

periods, which range from −16 to −27 Sv. However, the two reanalyses give conflicting estimates243
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of longterm trends in Sverdrup transport (Figure 6b; Supplementary Figure 10). For 1900–2010,244

one reanalysis61 gives a weaker northward trend (1.9 ± 2.0 Sv century−1), while the other62 pro-245

duces a stronger southward trend (−4.2 ± 1.3 Sv century−1) at 27◦N (Figure 6b). Here ± is the246

best estimate plus and minus twice the standard error based on synthetic data simulations to ac-247

count for residual autocorrelation59, 60 (Supplementary Information). Discrepancies in Sverdrup248

transport trends are apparent broadly over the subtropics. One reanalysis62 produces significant249

negative trends suggesting spin-up of the gyre, while the other61 shows significant positive trends250

indicating gyre spin-down over 1900–2010 (Figure 6b). Such discrepancies are evident more gen-251

erally at multidecadal and centennial periods. Considering all periods starting between 1900 and252

1980 and ending in 2010, I consistently find significant trends in the residual difference in Sverdrup253

transport between reanalyses at 27◦N (Supplementary Figure 10). These findings are unchanged if254

ageostrophic Ekman transports are also considered (Figure 6b; Supplementary Figure 10). Thus,255

while they do not paint a consistent portrait of whether the interior gyre strengthened or weak-256

ened over the past century, reanalyses suggest that longterm trends in gyre transports of several Sv257

century−1 are possible.258

The Antilles Current is a subsurface western boundary current constrained to the upper slope259

east of Abaco at 26.5◦N. Data from the RAPID array since 2004 show that the Antilles Current has260

a mean northward transport of between 1 and 6 Sv (refs.6–8, 66). While weaker in a time-average261

sense, the Antilles Current transport is as variable as, if not more variable than, the Florida Cur-262

rent transport7, 8. Variation in Antilles Current transport has been attributed to a combination of263

westward-propagating eddies and large-scale wind forcing associated with the Bermuda High5, 7.264
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Continuous measurements of Antilles Current transport during 1986–1991 and since 2004 (refs.5, 8)265

are too short for diagnosing longterm trends. However, one can put bounds on stochastic trends266

based on the time-series properties of the available data. Performing simulations of a random267

stationary process, with the same integral timescale and variance as the observed Antilles Cur-268

rent transport over 2005–2015 (ref.8), I find that stochastic transport trends of ±2.9 and ±1.2269

Sv century−1 are possible on 50- and 100-y timescales, respectively (Supplementary Information;270

Supplementary Figure 11). Here ± values are 95% confidence intervals determined from the sim-271

ulations. These results imply that multidecadal and centennial trends in Antilles Current transport,272

on the same order of magnitude as the trends in Florida Current transport estimated here, cannot273

be ruled out.274

Previous studies argued that the deep branch of the overturning circulation declined in the275

recent past23–27. These arguments were partly based on: (1.) strong correlation between over-276

turning streamfunction and subpolar North Atlantic sea-surface temperature on multidecadal and277

longer timescales in climate models23, 24, 67, 68; and (2.) observations69, 70 of a “warming hole” in the278

subpolar North Atlantic23, 24, where sea-surface temperature cooled by −0.6 ± 0.4 ◦C century−1
279

relative to the global average during 1909–2018 (Figures 7, 8). Here ± is the best estimate plus280

and minus twice the standard error accounting for residual autocorrelation59, 60 (Supplementary In-281

formation). However, it has been unclear what processes mediate links between the overturning282

and subpolar sea-surface temperature in models71, 72. All else being equal, the trend in sea-surface283

temperature implies a trend in surface heat flux of 16 ± 11 W m−2 century−1 over the warming284

hole (Supplementary Information). If this heat was stored locally in the North Atlantic and Arctic285
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Ocean, from 27◦N to Bering Strait, it would manifest in an average temperature acceleration of286

0.7± 0.5◦C century−2 over the entire water column, or a full-depth warming of 0.4± 0.3◦C during287

1909–2018 (Supplementary Information). This is larger than published estimates of northern North288

Atlantic warming over the past century73, 74. For example, the model-data synthesis of Gebbie and289

Huybers73 suggests an average regional warming of ∼ 0.1◦C for 1910–2015 (Supplementary Fig-290

ure 12). Thus, in addition to satisfying mass conservation, any circulation changes across 27◦N291

must also generate a heat transport divergence that, to leading order, balances the surface heat flux292

due to the declining subpolar sea-surface temperatures.293

Knowing Florida Current transport and subpolar gyre sea-surface temperature, and requiring294

mass conservation at 27◦N and heat conservation across the North Atlantic and Arctic north of295

27◦N, I estimate past changes in the deep branch of the overturning at 27◦N (see Supplementary296

Information for details and caveats). The estimate depends on the mean wind speed and sea-surface297

temperature over the warming hole as well as the vertical and horizontal temperature stratification298

at 27◦N (Supplementary Information). Making reasonable choices for these parameters, I esti-299

mate that the deep branch of the overturning slowed by 1.4± 1.8 Sv century−1 during 1909–2018300

(Supplementary Figure 13a). Here ± is the best estimate plus and minus twice the standard error.301

More generally, for long periods starting before 1950 and ending in 2018, I find that best estimates302

of trends in the deep return flow are positive (northward) and more than one standard error from303

zero, whereas for shorter periods beginning more recently, errors are larger and trends are mostly304

indistinguishable from zero (Supplementary Figure 13a). This points to a probable decline in trans-305

port by the deep branch of the overturning circulation over the past 70–110 y, but reveals that any306
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trends in the deep return flow over shorter, more recent time periods cannot be detected from these307

principles and knowledge of the Florida Current transport and subpolar sea-surface temperature.308

I also estimate past changes in the transport of the thermocline recirculation75, defined as309

the sum of all interior upper-ocean circulations across 27◦N, including the Antilles Current and310

Sverdrup gyre (Supplementary Information). Given the weakening Florida Current transport and311

cooling subpolar sea-surface temperature, I estimate a thermocline recirculation trend of−0.3±4.9312

Sv century−1 for 1909–2018 (Supplementary Figure 13b). This value is more uncertain than the313

change estimated in the deep branch of the overturning circulation over the past century. The dif-314

ference has to do with the dependence of ocean heat transport on temperature gradients. Vertical315

temperature gradients are much stronger than horizontal temperature gradients at 27◦N (Supple-316

mentary Figure 14). Thus, a change in the deep branch of the overturning leads to a larger heat317

transport than an equal change in the thermocline recirculation, given the weakening of the Florida318

Current. In consequence, there is a narrow window of transport histories of the deep return flow319

that, together with the cooling subpolar sea-surface temperature and weakening Florida Current320

transport, satisfy heat and mass conservation. There is a wider window of possibility for the ther-321

mocline recirculation that allows these constraints to be met. Indeed, thermocline recirculation322

trends computed for other time periods are similarly uncertain (Supplementary Figure 13b). This323

reveals that knowledge of past changes in the Florida Current and subpolar sea-surface temperature324

is relatively uninformative of the thermocline recirculation on long timescales.325
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Conclusions326

Lack of knowledge regarding longterm changes in major ocean currents has been a key observa-327

tional uncertainty related to climate change. I applied Bayesian data analysis42–44 to observations328

from submarine cables and tide gauges to infer the changes in the Florida Current transport at 27◦N329

during 1909–2018. I found that Florida Current transport probably declined steadily over the past330

century, such that transport since 1982 was likely weaker on average than it was during 1909–331

1981, and the weakest decadal-mean transport in the last 110 y probably took place in the past two332

decades. While past changes in the gyre circulation are uncertain, these results corroborate earlier333

hypotheses based on proxy indicators that the deep branch of the Atlantic meridional overturning334

circulation weakened continuously during the twentieth century23–27. These findings also support335

model simulations showing that changes in the deep return flow of the overturning circulation are336

nearly balanced by comparable changes in the surface western boundary current on multidecadal337

and longer timescales28–32.338

Future studies should build on this foundation. Uncertainties on this Florida Current transport339

estimate are large. More observations could be folded into a more general probabilistic framework340

to better constrain the transport over the past century. My goal was to quantify how informative341

tide-gauge sea-level data are of past changes in the Florida Current. However, I showed that the342

results were consistent with exploratory analyses of GPS data, sea-level index points, and satellite343

altimetry. These datasets could be assimilated by specifying additional equations in the Bayesian344

algorithm (e.g., following ref.76) to test whether Florida Current transports are better constrained345
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and uncertainties are reduced. There are also short records from the 1960s and 1970s of transport346

upstream in Florida Straits (e.g., at 26◦N between Miami and Bimini19–21) that could be leveraged,347

provided that the uncertain flow through Northwest Providence Channel is taken into account. With348

a more tightly constrained estimate, it could be possible to identify the mechanisms responsible for349

past changes in Florida Current transport and the deep branch of the overturning circulation, and350

to determine whether the interior gyre strengthened or weakened.351

Future studies should try to infer Florida Current transports earlier in time. Results here352

show that coastal sea-level data place valuable constraints on past changes in transport. Yet, the353

reconstruction was limited by the duration of the available tide-gauge records, which only go354

back about a century or so in this region41. Archival tidal data going back to the mid 1800s355

have been identified for several locations along the southeastern USA77, which (if recovered and356

digitized) could allow for a longer reconstruction. New sea-level reconstructions derived from357

salt-marsh sediment along the Florida coast78–80, with roughly decadal temporal resolution, might358

make it possible to reconstruct longer-term changes in Florida Current transport over the Common359

Era. Pseudoproxy experiments81 will be informative to determine whether such a reconstruction is360

viable. If such a longterm reconstruction is possible, it would allow for a test of the hypothesis13
361

based on oxygen isotope records from Dry Tortugas and Grand Bahama Bank that Florida Current362

transport strengthened by ∼ 10% from the mid 1700s to the mid 1900s, at the same time that other363

proxy indicators suggest the deep branch of the overturning circulation was stable or in decline23–27.364

365
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52. Giese, B. S., and S. Ray. El Ninõ variability in simple ocean data assimilation (SODA), 1871–493

2008, J. Geophys. Res., 116, C02024 (2011).494

53. Emery, R. E., and W. J. Thomson. Data analysis methods in physical oceanography, 3rd Edi-495

tion, Elsevier, 728 pp (2014).496

25



54. Gregory, J. M., S. M. Griffies, C. W. Hughes, J. A. Lowe, J. A. Church, I. Fukumori, N.497

Gomez, R. E. Kopp, F. Landerer, G. Le Cozannet, R. M. Ponte, D. Stammer, M. E. Tamisiea,498

and R. S. W. van de Wal. Concepts and terminology for sea level: mean, variability, and change,499

both local and global, Surv. Geophys., 40, 1251–1289 (2019).500
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for all processes and parameters.621
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622

Figure 1. Florida Current and study region. a, Gray squares (circles) are locations of tide gauges623

in the southeastern USA (Caribbean). Shading is mean ocean surface current speed (m s−1) from624

surface-drifter data82. Red box is area shown in (b). b, Details of Florida Straits. Shading is ocean625

depth (m). Red bold (black oblique) font indicates ocean channels (land locations) mentioned in626

the text. Thick red lines are locations of submarine cable measurements1–4. Thin black lines are627

locations of in situ measurements from past studies18–21.628
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629

Figure 2. Florida Current transport. Blue shows posterior median (thick line), 95% pointwise630

(light shading) and pathwise (dash dot) credible intervals, along with two arbitrary, randomly se-631

lected ensemble members (thin lines) from the probabilistic Florida Current transport solution.632

Orange shows annual transport from raw submarine cable data plus and minus twice the standard633

error estimated following refs.3, 4.634
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635

Figure 3. Weakening of Florida Current transport over different periods. Shading shows636

posterior median estimates of the change in decadal-average Florida Current transport between all637

pairs of decades (Sv). Negative values indicate that transport fell between the start and the end638

of the period. Stippling indicates that it is as likely as not (0.33 < P < 0.67) that transport rose639

or fell. White (black) contours encircle periods when it is very likely (P > 0.90) that transport640

weakened (strengthened) from the start to the end decade more than expected from a stationary red641

noise process; see Methods for discussion of significance calculations. Black dashes mark > 50-y642

periods (values below and to the right of the line correspond to periods with duration > 50 y).643
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644

Figure 4. Timing of Florida Current decadal transport extrema. a, Histograms of modeled645

probabilities that the minimum (blue) and maximum (orange) decadal average transport occurred646

centered on a given year. b, As in (a) but histograms were calculated after removing the corre-647

sponding longterm trend. See Methods for discussion of statistics and uncertainty measures.648
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649

Figure 5. Structure of the Florida Current within Florida Straits. a, Mean northward velocities650

(m s−1) through Florida Straits from shipboard acoustic doppler current profiler data from 70651

research cruises of the research vessel Walton Smith between 2001–2018. Values are computed by652

interpolating all data between 26.9◦N and 27.1◦N from a given cruise onto a common grid using653

a linear scattered data interpolant, and then averaging over all cruises. For a value to be shown654

at a longitude and depth, data must have been available from at least 14 cruises. b, As in (a) but655

showing the standard deviation in meridional velocities (m s−1) across cruises. Black lines mark656

the bathymetry.657
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658

Figure 6. Changes in wind-stress curl and gyre circulation. a, Thick lines are time-mean659

geostrophic Sverdrup streamfunction9 based on wind-stress curl from NOAA 20CR61 and ERA660

20C62 reanalyses over 1900–2010 as a function of latitude in the North Atlantic. Thin lines are the661

same, but also incorporate the ageostrophic Ekman transport integrated across the basin. b, Median662

estimates (thick lines) and formal 95% confidence intervals (colored shading) of the trend in Sver-663

drup streamfunction versus latitude during 1900–2010 from the two reanalyses. Thin and dashed664

lines represent median estimates and confidence intervals, respectively, with Ekman transports also665

included.666
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667

Figure 7. Changes in sea-surface temperature. Shading shows trends in sea-surface temperature668

over 1909–2018 (◦C century−1) averaged over two products: HadISST69 and Kaplan70. Stippling669

indicates that the magnitude of the trend is less than twice the standard error estimated taking into670

account autocorrelation of the residuals59, 60 as described in the Supplementary Information. The671

black contour outlines the “warming-hole” region of Caesar et al.24. Note that the time series of672

global-ocean area-averaged sea-surface temperatures has been removed before computing trends.673
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674

Figure 8. Sea-surface-temperature changes over the warming hole. Time series of anomalous675

sea-surface temperature (◦C; time-mean value removed) averaged over the “warming-hole” region676

of Caesar et al.24 (see black contouring in Figure 7) from HadISST69 (blue), Kaplan70 (orange),677

and the average between the two products (black). Note that the time series of global-ocean area-678

averaged sea-surface temperatures has been removed.679
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Methods680

Observational data used in the Bayesian model I use annual relative sea level from 46 tide681

gauges along the southeastern USA (19 records), Caribbean Islands (20 records), southeastern682

Central America (5 records), and northern South America (2 records) during 1909–2018 (Fig-683

ure 1a; Supplementary Figures 1, 2; Supplementary Table 3). Data were downloaded from the684

Permanent Service for Mean Sea Level (PSMSL) Revised Local Reference (RLR) database41 on 4685

February 2019. The study period is the longest interval such that, for each year, data is available686

from at least one southeastern USA tide gauge and at least one gauge in the Caribbean Islands,687

southeastern Central America, or northern South America. Over the study period, each tide gauge688

returns on average ∼ 30 y of data, but some have as few as ∼ 10 y of data, whereas others have689

as many as ∼ 100 y. Fewer data are available earlier in time. The time series together constitute690

1,390 y of data over the study period (27% completeness).691

I also use Florida Current transport from submarine telephone cables at 27◦N between West692

Palm Beach and Grand Bahama (Figures 1b, 2)1–4. Using electromagnetic theory, one can estimate693

changes in the flow from voltages induced across the cable due to the transport of charged parti-694

cles by the variable current1. The original cable spanned from Jupiter Inlet to Settlement Point,695

giving measurements from 18 March 1982 to 22 October 1998. Observations resumed on 19 June696

2000 based on a cable running from West Palm Beach to Eight Mile Rock. Cable-based trans-697

port estimates are calibrated against independent observations from dropsonde and lowered acous-698

tic doppler current profiler made as part of regular (roughly bi-monthly) cruises across Florida699
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Straits3, 4. Data are provided by the National Oceanic and Atmospheric Administration (NOAA)700

at 1-day intervals, but the data have an effective sampling rate of 3 days, due to low-pass filtering701

applied to the original observations. I use annual averages of the daily data (Figure 2). To estimate702

standard errors on the annual averages, I divide the standard error on the daily data (∼ 1.7 Sv;703

ref.4) by the square root of the effective degrees of freedom, which is the number of daily transport704

measurements in a year divided by the integral timescale of Florida Current transport (∼ 10 days;705

ref.3). This gives standard errors of 0.30–0.35 Sv, depending on data availability in any given year,706

consistent with values computed by Garcia and Meinen4. Note that Bayesian model solutions are707

not overly sensitive to the standard errors placed on the cable data, and similar results are found if708

the errors are doubled (see below).709

Bayesian framework710

I apply a hierarchical dynamical spatiotemporal model42–44 to the submarine-cable data and tide-711

gauge records to infer annual changes in Florida Current transport and coastal sea level. The model712

comprises three levels: a process level describing how the physical quantities of interest relate to713

one another, and vary in space and time; a data level specifying how the imperfect available data714

correspond to the quantities of interest; and a parameter level placing prior constraints on the un-715

certain parameters in the process and data levels. My model builds on the Bayesian algorithm of716

Piecuch et al.76, who studied the origin of spatial variation in sea-level trends on the east coast of717

the USA during 1900–2017. Here I develop new equations to consider an expanded geographic re-718

gion, incorporate the submarine-cable data, and represent the relationship between Florida Current719
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transport and the difference in coastal sea level across the Florida Straits. See below for residual720

analyses and synthetic data experiments that establish the appropriateness of the model given the721

data, and exemplify its ability to accurately estimate the quantities of interest given the available722

incomplete, noisy, biased data.723

Process level724

Coastal sea level Coastal relative sea level is a process with spatiotemporal covariance60, 83. As725

in Piecuch et al.76, I model sea level, ηk = [η1,k, . . . , ηN,k]T, at steps k ∈ {1, . . . , K} and locations726

n ∈ {1, . . . , N}, where K is the total number of time steps and N the total number of target727

locations, as the sum of a spatially correlated autoregressive process of order 1 and a large-scale728

spatial field of linear temporal trends,729

ηk − btk = r
(
ηk−1 − btk−1

)
+ ek. (1)

In Eq. (1), tk is the time at step k, r is the lag-1 autocorrelation coefficient, b is the spatial vector of730

temporal trends, and ek is an innovation sequence, which can be interpreted as the forcing function731

driving changes in the autoregressive process (e.g., as in a simple stochastic climate model84).732

Supplementary Table 4 describes all of the model parameters. I set
∑K

k=1 tk = 0 to represent ηk as733

anomalies from a time mean. The trend vector b is modeled as a random normal field with spatial734

structure, b ∼ N (µ1N ,Π), such that µ is the spatial mean, 1X is a X × 1 column vector of ones,735

where X is any positive integer, and,736

Πij = π2 exp (−λ |si − sj|) . (2)
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Here π2 is the partial sill, λ is the inverse range, and |si − sj| is distance between target sites si and737

sj . The symbol ∼ means “is distributed as” and N (p, q) is the multivariate normal distribution738

with mean vector p and covariance matrix q.739

I model ek as a temporally independent, identically distributed (iid), but spatially correlated740

vector with zero mean, ek ∼ N (0N ,Σ), where 0X is a X × 1 column vector of zeros, and,741

Σij = (cij)σ
2 exp (−φ |si − sj|) . (3)

Here σ2 is the partial sill and φ is the inverse range. Matrix element cij = 1 if locations si and742

sj are either both on the southeastern USA or both along the Caribbean, Central America, or743

South America. Otherwise, cij = 0. That is, sea level covaries within, but not between, these re-744

gions. This spatial covariance structure is motivated by previous analyses of tide-gauge records and745

satellite-altimetry data. Thompson and Mitchum85 applied clustering methods to low-pass-filtered746

tide-gauge records during 1952–2001, finding that the Caribbean Sea (which in their analysis com-747

prised Cuba, Puerto Rico, and Colombia) formed one cluster of coherent sea-level variation, and748

the southeastern USA (from Florida to North Carolina) formed another cluster. Zhao and Johns86
749

determined that Florida Current transports over 1993–2011 were positively correlated with sea-750

surface height over the Caribbean Sea (including the Bahamas) and along southeastern Central751

America, but negatively correlated with sea-surface height on the southeastern USA coast on in-752

terannual timescales; Domingues et al.87 showed similar results for seasonal timescales.753
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Florida Current transport For periods≥ 1 day, the momentum balance across Florida Straights754

is nearly geostrophic. Assuming that subsurface pressure signals are vertically coherent49, 50, vari-755

ations in Florida Current transport should therefore be correlated with changes in the sea-level756

difference across Florida Straits. Based on this reasoning, I assume that the relationship between757

annual Florida Current transport, T = [T1, . . . , TK ]T, and coastal sea level, η = [η1, . . . ,ηK ], at758

times t = [t1, . . . , tK ]T can be written as,759

T = T1K + ρηT∆ + αt+w. (4)

Here T is the time-mean transport and ρ is a scalar coefficient representing the change in transport760

per unit change in sea-level difference across Florida Straits. I assume that ρ is constant, and does761

not vary with time period or frequency band. While it might appear simplistic, this assumption762

is justified based on analysis of an ocean general circulation model (see below; Supplementary763

Figures 6, 7). The N × 1 vector ∆ is a differencing operator, such that ∆i = 1 if site i is764

Settlement Point (the tide gauge nearest to the eastern end of the submarine cable in the Bahamas),765

∆i = −1 if site i is West Palm Beach (the closest tide gauge to the western end of the cable in766

southeastern Florida), and zero otherwise. Hence, ρηT∆ is the sea-level difference across Florida767

Straits converted into units of a transport.768

The remaining terms in Eq. (4) account for influences on sea level that are unrelated to the769

large-scale geostrophic flow. I include ρηT∆ in Eq. (4) based on geostrophic considerations, but770

this term potentially includes both dynamic and static processes. The scalar α is included in Eq.771

(4) to correct or offset any static trends in sea level unrelated to ocean circulation that should be772

subtracted for estimating Florida Current transport (e.g., glacial isostatic adjustment). That is, αt773
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is designed to remove static trends from ρηT∆. Thus, with reference to Eqs. (1), (4), bT∆ is the774

total difference in sea-level trends across Florida Straits, whereas −α/ρ is the static component775

of the sea-level trend difference. So, the dynamic component of the trend in sea-level difference776

across Florida Straits (total minus static) is bT∆ + α/ρ. As discussed in the main text, posterior777

Bayesian model solutions for the dynamic component are consistent with trends in dynamic sea-778

surface height differences across Florida Straits observed by satellite altimetry, and solutions for779

the static component agree with rates of static sea-level change due to differential vertical land780

motion between the Bahamas and Florida observed by GPS, and differences in longterm geological781

processes as inferred from proxy sea-level index points (Supplementary Figure 5). I also include782

w = [w1, . . . , wK ]T, modeled as iid uncorrelated white noise, wk ∼ N (0, ω2), with variance ω2, to783

parameterize the response to local atmospheric or terrestrial forcing, such as variable river runoff,784

air pressure, or wind stress across Florida Straits.785

Data level786

Tide-gauge records Following Piecuch et al.76, I represent annual data from tide gauges, zk =787

[z1,k, . . . , zMk,k]T, where Mk ≤ N is the number of tide gauges with measurements at time step k,788

as corrupted (incomplete, noisy, biased) versions of the underlying ηk process,789

zk = Hkηk + dk + Fk (atk + `) . (5)

Here dk is a random error sequence, which is modeled as a spatially and temporally uncorrelated790

normal field, dk ∼ N (0Mk
, δ2IMk

), with variance δ2. A vector of location-specific bias offsets `791

are imposed and represented as a spatially uncorrelated Gaussian field, ` ∼ N (ν1M , τ
2IM), with792

46



mean ν, variance τ 2. Here M is the total number of tide gauges that make a measurement at any793

point in time, such that N ≥M ≥Mk ∀k. Purely local error trends in the data a are also modeled794

as a random normal field without spatial correlation, a ∼ N (0M , γ
2IM), with variance γ2. Finally,795

Hk and Fk are selection matrices, filled with zeros and ones, which pick out ηk, a, and ` values796

where observations are made at time tk.797

Submarine-cable measurements I assume that L annual data values from the submarine cable,798

x = [x1, . . . , xL]T, are available and represent imperfect (incomplete and noisy) versions of the799

underlying T process,800

x = GT + u. (6)

Here G is a L × K selection matrix that picks out years when cable data are available, and u =801

[u1, . . . , uL]T is a zero-mean random data error sequence, where ul ∼ N (0, ξ2l ) and the ξ2l are802

set equal to the corresponding submarine-cable data standard error variances mentioned above and803

computed based on the availability of data in any given year.804

Parameter level To close the model, I place priors on the parameters. As in Piecuch et al.76, I use805

proper, mostly conjugate forms. Priors and hyperparameters are given in Supplementary Table 5.806

These choices follow the basic philosophy in Piecuch et al.76. I use diffuse, mostly uninformative807

priors, choosing hyperparameters largely to initialize the Gibbs sampler and Metropolis-Hastings808

algorithm (see below) in an appropriate neighborhood of parameter space. For example, all vari-809

ance parameters (e.g., π2, σ2, δ2) are given inverse-gamma priors, with shape ξ and scale χ. In810
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all cases, I select ξ = 0.5 and base χ on the variance of the data. As explained by Tingley and811

Huybers88, this choice corresponds to 1 prior observation with a variance of 2χ, which is a weak812

constraint that has little influence on the posterior.813

To quantify the relative importances of the priors and the data, after I compute the poste-814

rior solutions (see below), I compare the widths of the 95% credible intervals from the posterior815

and prior probability distribution functions for each parameter (Supplementary Table 6). If the816

prior and posterior credible intervals have similar widths, it means that the posterior solutions are817

largely determined by the prior assumptions. If posterior credible intervals are much narrower818

than the prior credible intervals, it means that the posterior solutions are mostly constrained by819

the observations. Almost universally, the 95% posterior credible intervals are much narrower than820

the 95% prior credible intervals (Supplementary Table 6). This implies that posterior inference is821

drawn predominantly from the information content of the observations, and not overly influenced822

by prior beliefs encoded into the model.823
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Drawing samples from the posterior distribution Given the model equations, I use Bayes’824

rule, and assume that the posterior probability distribution function takes the form,825

p (η,T ,Θ|Z,x) ∝ p (Z,x|η,T ,Θ)× p (η,T |Θ)× p (Θ) (7)

= p (η0)× p
(
T
)
× p (r)× p

(
σ2
)
× p (φ)× p (µ)× p

(
π2
)

× p (λ)× p
(
δ2
)
× p (ν)× p

(
τ 2
)
× p

(
γ2
)
× p (ρ)× p (α)

× p
(
ω2
)
× p

(
b|µ, π2, λ

)
× p

(
`|ν, τ 2

)
× p

(
a|γ2

)
× p (x|T )

× p
(
T |η, ρ, α, ω2, T

)
×

K∏
k=1

[
p
(
zk|ηk,a, `, δ

2
)
× p

(
ηk|ηk−1, b, r, σ

2, φ
)]

In Eq. (7), Z is the structure of all tide-gauge data points, p is used to represent probability distribu-826

tion function, | is conditionality, ∝ is proportionality, and Θ
.

= {r, σ2, φ, . . . } is used to represent827

the set of all model parameters. I assume that the observations are conditionally independent,828

provided the process and parameters.829

Draws from the posterior probability distribution function are made as in Piecuch et al.76.830

I use Markov chain Monte Carlo (MCMC) methods, evaluating the full conditional distributions831

for process and parameter values using a Gibbs sampler, but using Metropolis-Hastings steps for832

the inverse range parameters, which have non-standard full conditionals. I run 200,000 MCMC833

iterations, setting initial process values to zero, and drawing initial parameter values randomly834

from the respective prior distribution. To remove initialization transients, I discard the first 100,000835

iterations as burn in. Then I keep only 1 out of every 100 of the remaining 100,000 iterations to836

reduce serial correlation effects between draws. Results shown here are based on a 3,000-element837

chain produced by performing the above procedure 3 times and stitching together the resulting838
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1,000-member chains. Solutions for scalar parameters are summarized in Supplementary Table 6.839

To evaluate convergence of the solution, I compute the convergence monitor R̂ of Gelman and840

Rubin89, which compares the variance within and between the 3 different 1,000-member solutions.841

In all cases, R̂ ∼ 1.00 (Supplementary Table 6), indicating that the solutions have converged.842

Local and global uncertainty measures843

The fully probabilistic nature of the posterior solutions allows both pointwise and pathwise un-844

certainty measures90 to be calculated. Pointwise statistics measure probabilities locally. The light845

blue shading in Figure 2 represents the 95% pointwise posterior credible intervals computed from846

the transport solutions at each year of the reconstruction. The interpretation is that, for each year,847

there is a 95% chance that the true transport value falls within this blue shading.848

Pathwise statistics measure probabilities more globally. The dashed blue lines in Figure 2849

represent the 95% pathwise posterior credible intervals calculated from the transport estimates850

across all years of the reconstruction. These values are computed by widening the 95% pointwise851

posterior credible intervals until 95% of modeled transport time series are captured in their entirety.852

That is, there is a 95% chance that the full time series of transport does not ever stray outside the853

bounds of these pathwise credible intervals.854

Other examples of pathwise statistics include values quoted in the text for the minimum855

and maximum decadal-average transports and the corresponding histograms of their timing shown856

Figure 4. For each of the 3,000 ensemble members comprising the posterior solution, I smooth857
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the transport time series using an 11-point boxcar window, and then identify the minimum and858

maximum transport values along with the times at which they occurred. These values vary from859

one ensemble member to the next, and so performing this procedure for each ensemble member860

allows me to populate histograms for the transport extrema and their occurrence times.861

Hypothesis testing862

In addition to generating posterior solutions for transport and sea level, the Bayesian model pro-863

vides data-constrained estimates of the various model parameters (e.g., Supplementary Table 6).864

This allows for rigorous hypothesis testing through simulation experiments. For example, in Fig-865

ure 3, I show the change in decadal-average Florida Current transport between all possible pairs866

of non-overlapping decades, and indicate the probability that such changes would have occurred867

from stationary red-noise process with the same autocorrelation and variance characteristics. As a868

specific instance, I state that decadally averaged transport declined by −1.4 ± 1.6 Sv from 1960–869

1970 to the present, and that this decline is very likely (probability P = 0.90) more than would870

be expected from stationary red noise. This conclusion is determined as follows. First, I use the871

posterior transport solutions to compute a histogram of transport averaged over 2008–2018 minus872

the transport averaged over 1960–1970. Next, I use the posterior solutions for the scalar model873

parameters as the basis for the simulation of a parallel set of 3,000 synthetic transport time series874

following Eqs. (1) and (4), but with the trends (b and α) set to zero. Then, I populate histograms875

of the difference between decadally averaged synthetic transport between 1960–1970 and 2008–876

2018. Finally, I compute what fraction of the original posterior transport solutions shows more of877
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a decline than is shown by the stationary synthetic transport process, which, in this example case,878

is 0.90.879

Residual analysis880

Various residual terms appear in the Bayesian model equations (see above). When building the881

model, I made certain assumptions regarding the spatial and temporal structures of these residuals.882

To test whether these assumptions are appropriate given the data, I perform a residual analysis,883

using the posterior solutions and model equations to solve for the sea-level innovations ek, tide-884

gauge errors dk, transport innovations wk, cable-data errors u, tide-gauge error trends a and tide-885

gauge data bias `.886

I assumed that ek, dk, wk, and u behave as iid temporal white noise. If this assumption is887

reasonable, then posterior solutions should look random in time. However, if systematic temporal888

structure is observed, it means that this assumption is inappropriate, and that the model is mis-889

specified given the data. Time series of posterior ek and dk solutions are shown in Supplementary890

Figure 15a, 15b for an arbitrary (randomly chosen) target location, while model solutions for wk891

and u are shown in Supplementary Figure 15c, 15d. The time series look random in time, and892

there are no obvious signs of autocorrelation. The amplitudes of ek, dk, and wk variations are893

consistent with posterior solutions for the respective variance or partial sill parameters σ2, δ2, and894

ω2 (Supplementary Table 6), and the magnitude of fluctuations in u is in keeping with the prior895

error variances placed on the submarine-cable data.896
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To be more thorough, I compute sample autocorrelation coefficients directly from the poste-897

rior solutions for ek, dk, wk, and u across all space and time points. I compare those values to the898

autocorrelation coefficients expected theoretically for temporal white noise, given the same num-899

ber of time steps. Supplementary Figure 16 compares the empirical and theoretical autocorrelation900

coefficients for time lags between 1 and 20 y. Values calculated empirically from the posterior901

solutions are consistent with the theoretically expected values. More quantitatively, 96%, 95%,902

93%, and 95% of empirical autocorrelation coefficients computed respectively from ek, dk, wk,903

and u are captured by the theoretical 95% confidence intervals.904

In addition to being random in time, ek and dk are supposed to have spatially invariant905

amplitudes. In Supplementary Figure 17, I map median estimates of standard deviations computed906

empirically from the posterior model solutions of ek and dk at each tide-gauge location. While907

there is some higher-order spatial variation, these values are to lowest order fairly uniform and908

constant in space, and very similar to the posterior estimates of the partial sill σ2 and variance909

parameter δ2 (Supplementary Table 6).910

Motivated by past studies85–87, I assume that ek is spatially structured, such that there is co-911

variance between sites along the Caribbean, Central America, and South America, and between912

sites on the southeastern USA, but no covariance between these two broad regions. These as-913

sumptions are reflected in the block structure of the theoretical covariance matrix Σ shown in914

Supplementary Figure 18b computed from the posterior median solution for the partial sill σ2
915

(Supplementary Table 6). This theoretical covariance matrix is very similar to the covariance ma-916
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trix determined empirically by comparing all pairs of posterior solutions for ek (Supplementary917

Figure 18a). Indeed, the Pearson correlation coefficient between the two matrices in Supplemen-918

tary Figure 18 is 0.91, and the theoretical covariance matrix explains 82% of the variance in the919

empirical covariance matrix.920

In Supplementary Figure 19a, I show a map of median values of Pearson correlation coeffi-921

cients computed between posterior solutions for the Florida Current transport and sea level at every922

coastal location after removing linear trends from the time series. Correlation coefficients are posi-923

tive over the Caribbean, Central America, and South America, and negative along the southeastern924

USA. The magnitude of the correlation decreases with increasing distance of the sea-level location925

from the Florida Straits. This behavior of the empirically determined correlation coefficients is926

broadly consistent with the correlation pattern expected theoretically (Supplementary Figure 19b),927

given Eqs. (3) and (4) and posterior solutions for the model parameters (Supplementary Table 6).928

Finally, I consider residual spatial fields of the tide-gauge data biases `− ν1 and error trends929

a. According to data-level Eq. (5) for the tide gauges, these two vectors should have zero mean,930

no spatial correlation, and spatial variances of τ 2 and γ2, respectively. Supplementary Figure 20931

facilitates an assessment of these assumptions, showing both posterior solutions for `− ν1 and a932

alongside the solutions expected for a zero-mean random process given the posterior solutions for933

τ 2 and γ2 (Supplementary Table 6). Consistent with model assumptions, these vector fields look934

fairly random, scattered about zero. The spatial spread in `− ν1 and a appears consistent with the935

posterior τ 2 and γ2 solutions. Indeed, 95% of the posterior `−ν1 solutions are captured by the 95%936
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credible intervals predicted for a zero-mean, spatially uncorrelated Gaussian process with variance937

τ 2, and similarly 95% of posterior solutions for a fall within the 95% credible interval produced938

by simulating a zero-mean random normal field with variance γ2 (Supplementary Figure 20).939

In conclusion, the design of my Bayesian algorithm is supported by residual analysis, which940

demonstrates that the model structure is appropriate and warranted given the available data.941

Sensitivity of model solutions to input data942

Posterior solutions for Florida Current transports in the main text are based on the assimilation943

of submarine cable data over 1982–2018 with standard errors of 0.30–0.35 Sv (see above). To944

quantify how robust or sensitive the solutions are to the duration of the data and the selected945

standard errors, I perform two additional data assimilation experiments. In the first experiment, I946

double the standard errors on the cable data given to the Bayesian algorithm during 1982–2018. I947

refer to this first experiment as the “double-error” experiment. For clarity, in this section, I call the948

Bayesian model solution from the main text the “baseline” experiment. In the second sensitivity949

experiment, I maintain the original standard errors, and I give the Bayesian algorithm all of the950

cable measurements for the period 2000–2018, but I withhold all data during 1982–1998. Due to951

an outage in the observing system, no data are available for 1999. I call this second experiment the952

“half-data” experiment.953

Salient features of the sensitivity experiments are summarized alongside the baseline experi-954

ment in Supplementary Figure 21. Baseline and double-error solutions are, in many respects, very955
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similar. For example, Florida Current transport during 1909–1981, transport trend over 1909–956

2018, and regression coefficient between transport and sea-level difference across the Florida957

Straits from these two experiments are nearly the same (cf. blue and orange in Supplementary958

Figure 21). One difference is that widths of the posterior 95% credible intervals on the transport959

during 1982–2018 (i.e., the period when transport observations are available) are about twice as960

large in the double-error experiment compared to the baseline experiment (Supplementary Fig-961

ure 21a). This is consistent with the larger standard errors placed on the data in the former experi-962

ment. In sum, I conclude that model solutions are generally quantitatively insensitive to reasonable963

alternative specifications of the standard error on the cable transport measurements.964

Solutions from the half-data experiment (yellow in Supplementary Figure 21) show similar-965

ities to the other two solutions, but can show larger uncertainty. This is unsurprising, since the966

half-data experiment has fewer data constraints. For example, whereas the posterior 95% cred-967

ible intervals on the 110-y transport trend are −1.7 ± 3.7 and −1.6 ± 3.9 Sv century−1 in the968

baseline and double-error experiments, in the half-data experiment it is −2.3 ± 6.9 Sv century−1.969

The fact that uncertainties from the double-error experiment are smaller than from the half-data970

experiment suggests that having more data with larger errors is more informative for constraining971

the transport history than having fewer data that have smaller errors. Importantly, although the972

trend from the half-data experiment is more uncertain in an absolute sense, the sign of the trend is973

similarly determined in all three experiments. I find that 82%, 80%, and 77% of trend solutions974

in the baseline, double-error, and half-data experiments are negative, respectively (Supplementary975

Figure 21b). That is, all three experiments suggest that Florida Current transport probably declined976
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over the past century. Thus, I reason that the main findings in this study are qualitatively robust to977

reasonable alternative choices for the duration of the transport data assimilated into the Bayesian978

algorithm.979

Synthetic data experiments980

In the half-data experiment, ∼ 90% of the withheld Florida Current transport values during 1982–981

1998 fall within the pointwise posterior 95% credible intervals on the transport. This suggests that982

the uncertainties estimated by the Bayesian algorithm are reasonable. To more thoroughly evaluate983

the meaningfulness of the posterior solutions from the Bayesian algorithm, I perform a number of984

synthetic data experiments. In these experiments, I take a set of known processes and corrupt985

them to look like the observations, and then apply the model to the corrupted process values. By986

comparing the posterior solutions to the known but withheld values, I quantify the accuracy and987

precision of the error bars estimated by the model (e.g., are ∼ 95% of the true values actually988

captured by the posterior 95% credible intervals?).989

First experiment—perfect model I run a perfect model experiment. I choose, from the ensem-990

ble of posterior model solutions presented in the main text, the array of scalar parameter solutions991 (
T , r, σ2, . . .

)
from the ensemble member that minimizes the Mahalanobis distance to the mean992

parameter array. Using these scalar parameter values, I simulate synthetic versions of the sea-993

level and transport processes based on the process-level equations. Using the data-level equations,994

I generate synthetic tide-gauge and submarine-cable data by adding noise, bias, and gaps to the995
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simulated processes, as in the real world, and I apply the Bayesian model to these synthetic data.996

Results are summarized in Supplementary Table 7 and Supplementary Figure 22. For 13997

out of the 14 scalar parameters, or ∼ 93%, the true value is captured by the corresponding 95%998

posterior credible interval from the model (Supplementary Table 7). Considering vector fields, I999

find that 100%, 98%, and 100% of the true values for regional sea-level trends b, tide-gauge biases1000

`, and tide-gauge error trends a, respectively, fall within the corresponding pointwise posterior1001

95% credible intervals (not shown). In terms of the processes, 98% of the true sea-level values and1002

99% of true transport values fall within the estimated pointwise 95% credible intervals, and the1003

true transport time series is entirely encompassed by the pathwise 95% posterior credible intervals1004

(e.g., Supplementary Figure 22). Together, these results show that the model performs well, and1005

that the posterior credible intervals are meaningful, albeit slightly conservative, roughly capturing1006

the correct fraction of true process and parameter values.1007

Second experiment—more realistic case The first synthetic data experiment is informative,1008

showing that the processes and parameters are identifiable given incomplete, noisy, biased data. It1009

is also potentially idealistic, since the model is perfectly specified. The equations governing the1010

spatiotemporal evolution of the processes, and the relationship between the observations and the1011

processes were known perfectly, and the task was to infer the uncertain values of the processes and1012

parameters appearing in those equations. While residual analysis suggests that they are appropri-1013

ate given the data, the model equations probably represent a simplification of the complex, myriad1014

oceanographic and geophysical processes contributing to changes in sea level and transport, and1015
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their correspondence to observations in the real world. While some degree of model misspecifica-1016

tion is inevitable, the salient question is whether the model is robust to misspecification and still1017

provides meaningful posterior estimates.1018

So, I perform a second synthetic data experiment. Rather than use the process equations to1019

simulate sea level and transport, I bring together output from more complex physical models. I1020

begin with ocean dynamics. I take 110 y of monthly Florida Current transport near 27◦N, and1021

sea level from each of the model grid cells nearest to the 46 tide gauges from version 2.2.4 of the1022

Simple Ocean Data Assimilation (SODA) product52. This version of SODA represents a solution1023

to an ocean general circulation model forced at the surface by an atmospheric reanalysis over the1024

period 1871–2010 (I use the past 110 y of output covering from 1901 to 2010). The model has1025

moderate spatial resolution, with 40 vertical levels and a native 0.25◦ × 0.40◦ horizontal grid in1026

longitude and latitude. A version of the solution, which was interpolated onto a regular 0.5◦× 0.5◦
1027

horizontal grid, was downloaded from the Asia-Pacific Data-Research Center (APDRC) of the1028

University of Hawai’i School of Ocean and Earth Science and Technology. After downloading, I1029

removed the monthly time series of global-mean sea level and computed annual means from the1030

resulting monthly sea-level values.1031

The SODA solution represents a tradeoff between spatial resolution and temporal cover-1032

age. Coupled climate models are available that cover comparable or longer time periods91, but1033

most publicly available solutions have coarser horizontal resolution (nominally ∼ 1◦ in longitude1034

and latitude), and may not faithfully represent the Florida Current and coastal sea level. While1035
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much higher-resolution ocean models are available92 that more accurately portray the complexity1036

of Florida Current transport and coastal sea level, these model runs are typically short, and do not1037

span the centennial timescales of primary interest here. Thus, while it has its deficiencies (see1038

below), SODA is perhaps one of the best-suited ocean models for my purposes. For example,1039

Chepurin et al.93 show that version 2.2.4 of SODA simulates interannual-to-decadal variations in1040

coastal sea level along the eastern USA and parts of the Caribbean, Central America, and South1041

America reasonably well over 1950–2011.1042

I superimpose static sea-level effects on the dynamic sea-level fields from SODA. I add a1043

yearly time series of global-mean sea level due to ocean warming and thermal expansion over1044

1901–2010 from the Version 4 of the Community Climate System Model94 (downloaded from1045

the Woods Hole Oceanographic Institution’s Community Storage Server). I also include, at each1046

tide-gauge location, an estimate of the trend in relative sea level due to the combined effects of1047

ongoing glacial isostatic adjustment from Peltier et al.95 (downloaded from the PSMSL) along with1048

twentieth-century melting of mountain glaciers and ice sheets due to Hamlington et al.96 (courtesy1049

of S. Adhikari, Jet Propulsion Laboratory). Finally, I add time series of a temporally random1050

but spatially correlated process with zero mean and temporal variance of ∼ (1 cm)2 to simulate1051

sea-level changes due to the inverted barometer effect linked with the North Atlantic Oscillation97.1052

I apply the data-level equations to the transport and sea-level values, incorporating noise1053

and bias, and imparting data gaps so that the synthetic tide-gauge and submarine-cable data are1054

only available when and where the true observations are available. The synthetic datasets are1055
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subsequently fed into the Bayesian algorithm. The results of this second synthetic data experiment1056

are summarized in Supplementary Table 8 and Supplementary Figure 23. In this case, only four1057

scalar parameters (those appearing in the data-level equations) are known perfectly. For three out1058

of these four parameters, or 75%, the true value is captured by the 95% posterior credible intervals1059

from the model (Supplementary Table 8). For one parameter, δ2, the tide-gauge data error variance,1060

the Bayesian model slightly underestimates the true value. Considering the process time series, I1061

find that 81% of the true transport values and 95% of the true sea-level values are captured by the1062

pointwise 95% posterior credible intervals produced by the Bayesian model, and that, as in the1063

previous experiment, the full time series of the true transport is totally captured by the pathwise1064

95% posterior credible interval (Supplementary Figure 23).1065

It is worth noting that the posterior solution for α, the apparent trend in the transport process1066

Eq. (4), suggests that sea level at Settlement Point on Grand Bahama must have risen 0.2 ± 1.61067

mm y−1 faster than at West Palm Beach near West Palm Beach due to processes unrelated to ocean1068

dynamics. Although uncertain, this is consistent with the trend difference of ∼ 0.1 mm y−1 I1069

imposed between these two sites based on model estimates of GIA and contemporary ice melt95, 96,1070

demonstrating that the model succeeds in separating static and dynamic sea-level trends.1071

Recall that my Bayesian model assumes that the transfer coefficient ρ between sea level and1072

transport is a fixed constant. To test this assumption, I consider in more detail time series of Florida1073

Current transport and sea-level difference across Florida Straits from SODA. Transport and sea-1074

level difference are highly correlated with one another (Pearson correlation coefficient of ∼ 0.9),1075
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and a linear regression suggests that transport increases by ∼ 0.9 Sv for every 1-cm increase1076

in sea level difference (Supplementary Figure 7), consistent with a visual inspection of the two1077

time series (Supplementary Figure 6a). To study the correspondence as a function of frequency1078

band, I apply admittance and coherence analysis53 to the model output. Transport and sea-level1079

difference are significantly coherent at all accessible periods from 2- to 32-y (Supplementary Fig-1080

ure 6b), in agreement with basic expectations from geostrophy. Moreover, the transfer function1081

(using sea-level difference as the input and transport as the output) is qualitatively insensitive to1082

frequency band, with similar values found at interannual and multidecadal timescales (Supplemen-1083

tary Figure 6c). Importantly, the Bayesian model posterior estimate for the transfer coefficient ρ1084

is consistent with SODA and overlaps the values obtained from the admittance analysis (Supple-1085

mentary Figures 6, 7). This suggests that it is reasonable to assume that there is a constant transfer1086

coefficient between sea-level difference and transport on the timescales of this study, and also that1087

the Bayesian model successfully infers the correct transfer-coefficient value.1088

Note that Florida Current transport from SODA is suspicious (Supplementary Figure 23c).1089

The mean transport is ∼ 51 Sv, growing from ∼ 42 Sv at the beginning of the period to ∼ 56 Sv1090

at the end. This value is ∼ 60% larger than the average value observed by submarine cable since1091

1982, and∼ 10 Sv larger than the largest annual transport value inferred at any time in the original1092

Bayesian model solution discussed in the main text. The striking increase of∼ 14 Sv over the 110-1093

y run seems extreme in light of the more subtle trend estimates produced by the original Bayesian1094

model solution (cf. Figure 2; Supplementary Figure 23c). Although it is imperfect, in that it does1095

not realistically represent the true evolution of the Florida Current over the past century, SODA1096
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is nevertheless informative in the present context. For establishing the ability of the Bayesian1097

algorithm to infer the parameters and processes from imperfect data, I do not require that SODA1098

reproduces observed reality, but rather that it portrays a physically plausible scenario, and that the1099

basic “statistics” (e.g., spatiotemporal covariance structure, relationship between state variables,1100

etc.) are believable.1101

In sum, I conclude that, even in a more complex setting, my Bayesian model performs rea-1102

sonably well, giving uncertainty estimates that roughly capture the correct fraction of true values.1103
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S1 A note on symbols and notation in this document6

In the Methods section, where I develop the Bayesian algorithm, I exhaust most of the letters in the7

Roman and Greek alphabets. In what follows here, I present more equations, which are informative8

for interpreting results in the main text. To avoid making these equations cumbersome, I must reuse9

some of the letters from Methods, but for different purposes. To reduce confusion, I have structured10

the text of this section and the Methods so that there is no crossover in symbol meaning between11

the text in the two documents; that is, symbols and letters as defined in the text here are not referred12

to as such in Methods, and vice versa. The one unavoidable exception is the Supplementary Tables13

below, some of which (Supplementary Tables 4–8) reference the symbols and letters defined in14

Methods, and the supplementary figure captions.15
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S2 Using the method of surrogate data to evaluate uncertainty on linear trends computed16

in ancillary datasets accounting for autocorrelation of residuals17

At different points in the text, I quote trends computed from ancillary time series not incorporated18

into the Bayesian model, namely wind-stress curl, sea-surface temperature, and sea-surface height.19

In these cases, I give the best estimate of the trend followed by a ± value that represents twice the20

estimated standard error. Here I describe how the standard errors are estimated.21

Typically, when estimating a trend from ordinary least squares, one assumes that residuals22

are independent and identically distributed (iid) and errors are uncorrelated (e.g., white noise). Yet,23

many geophysical time series do not behave as white-noise processes, but rather exhibit temporal24

autocorrelation1, 2, which is sometimes called long-range dependence or persistence or memory3–5.25

If autocorrelation is not taken into account, then standard errors on trends will be underestimated.26

To account for autocorrelation of the residuals, I use the method of surrogate data6. Given a27

data time series x(t), I compute the best estimate of the trend through the data using ordinary least28

squares. I then remove the trend from the data, leaving the residual series x′(t). Next, I randomly29

generate a large number (e.g., 103) of synthetic time series
{
x̃′i(t)

}
based on x′(t), such that each30

x̃′i(t) has the same Fourier amplitudes as x′(t) but randomized (scrambled) phase. I compute linear31

trends in each x̃′i(t), resulting in a histogram of the possible apparent trends, or stochastic trends,32

in a random stationary process with the same basic timescales and amplitudes of variation and the33

same effective degrees of freedom as the original data series. I take the standard deviation of all of34

the x̃′i(t) trends as the estimated standard error on the original x(t) trend.35
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S3 Simulating the hypothetical transport of the Antilles Current36

The question arose in the text as to whether the probable weakening of the Florida Current transport37

over the past century is partly balanced by compensating changes in the Antilles Current transport.38

Direct measurements of the Antilles Current are short and do not allow for a direct observational39

assessment. However, it is possible to estimate a range of possible stochastic (or random) transport40

trends, given the time-series properties of the available data.41

Meinen et al.7 report, based on ∼ 11 y of daily data (2005–2015), that the Antilles Current42

transport has a standard deviation of 7.5 Sv and an integral timescale of 19.0 days (cf. their Table 3).43

Following Emery and Thomson8, the integral timescale τ of a discrete time series is defined as,44

τ = 2∆t
+∞∑
k=0

Ck, (S1)

where Ck = C (k∆t) is the autocorrelation function of the time series with itself at lag k∆t for a45

time increment ∆t. These statistics form the basis of simple simulation experiments of the Antilles46

Current transport.47

I assume that Antilles Current transport behaves as random stationary red noise that can be48

modeled as an autoregressive process of order 1,49

yk = ϕyk−1 + εk. (S2)

Here yk is Antilles Current transport at time step k, ϕ is the lag-1 autocorrelation coefficient, and50

εk ∼ N (0, σ2) is stationary white noise with zero mean and variance σ2. To simulate this process,51

values for ϕ and σ2 must be assigned based on the Antilles Current transport observations.52
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Based on the properties of an autoregressive processes, the autocorrelation of yk is Ck = ϕk.53

Using this form of Ck in Eq. (S1) and evaluating the sum of the geometric series gives,54

τ =
2∆t

1− ϕ
. (S3)

Rearranging to solve for ϕ, and using τ = 19.0 days and ∆t = 1 day from Meinen et al.7, gives,55

ϕ = 1− 2∆t

τ
= 0.9. (S4)

The variance of yk is var (yk) = σ2
/

(1− ϕ2). Rearranging to solve for σ2, setting ϕ = 0.956

based on Eq. (S4), and using var (yk) = (7.5 Sv)2 from Meinen et al.7 gives,57

σ2 =
(
1− ϕ2

)
var (yk) = (3.3 Sv)2 . (S5)

Using these values for ϕ and σ2, I run simulation experiments to quantify the possible range58

of stochastic trends in Antilles Current transport as a function of timescale. For time-series lengths59

between 1 and 150 y, I generate random values for εk in Eq. (S2) to yield 1,000 separate synthetic60

daily series of surrogate Antilles Current transport. I compute the linear trend in each of these 1,00061

surrogate time series for each specified time-series length. This allows me to populate a histogram62

of the trends possible for a stationary random red-noise process with the same variance and integral63

timescale as the Antilles Current transport data. Shading in Supplementary Figure 11 represents64

the 95% confidence interval (2.5th and 97.5th percentiles) from these simulations as a function of65

timescale, which are ±2.9 and ±1.2 Sv century−1 for periods of 50- and 100-y, respectively.66
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S4 Computing the trend in surface heat flux implied by a trend in sea-surface temperature67

What follows in this section is based on the forms of air-sea fluxes described by Large and Yeager9
68

(their section 2.1). Most symbols used in this section are theirs.69

I start by establishing basic definitions, after Large and Yeager9. The total air-sea heat flux70

Qas (positive into the ocean) is given by a sum of contributions,71

Qas = QS +QL +QE +QH , (S6)

where QS is shortwave solar radiation,72

QS = QI (1− α) , (S7)

where QI is the insolation and α is the surface albedo; QL is the net longwave flux,73

QL = QA − σ (SST)4 , (S8)

where QA is the longwave energy received from the atmosphere, SST is sea-surface temperature,74

and σ = 5.67×10−8 W m−2 K−4 is the Stefan-Boltzmann constant; QE is the latent turbulent flux,75

QE = ΛvρaCE [q (zq)− qsat (SST)]
∣∣∆~U

∣∣, (S9)

where Λv = 2.5 × 106 J kg−1 is the latent heat of vaporization, ρa = 1.22 kg m−3 is air density76

near the surface, q (zq) is the specific humidity of air at a height zq above the surface, CE is the77

transfer coefficient for evaporation, qsat is the specific humidity of air at saturation, and
∣∣∆~U

∣∣ is78

the near-surface wind speed; and QH is the sensible turbulent flux,79

QH = ρacpCH [θ (zθ)− SST]
∣∣∆~U

∣∣, (S10)
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where cp = 1000.5 J kg−1 K−1 is the specific heat of air, CH is the transfer coefficient of sensible80

heat, and θ (zθ) is air temperature at a height zθ above the surface. Note that I ignore heat flux due81

to precipitation, since its contribution is often small and uncertain.82

The transfer coefficients of latent and sensible heat are functions of the drag coefficient CD,83

CE =
34.6

1000

√
CD, (S11)

and84

CH =
18.0

1000

√
CD, (S12)

with85

CD =
2.70 m s−1

UN (10 m)
+ 0.142 +

UN (10 m)

13.09 m s−1
, (S13)

where UN (10 m) is variable wind speed at 10 m under neutral stability. Note that I assume stability86

in defining CH in Eq. (S12); see Large and Yeager9 for more details on forms of CH .87

The specific humidity at saturation qsat is a function of SST,88

qsat (q1, q2, SST) =
q1

ρa
exp

( q2

SST

)
, (S14)

where q1 = 0.98× 640380 kg m−3 and q2 = −5107.4 K are the coefficients.89

All of the above is as in Large and Yeager9. I now use these forms to consider an infinitesimal90

perturbation dSST in sea-surface temperature. The resulting perturbation dQas in surface heat flux91

is exactly,92

dQas =
∂Qas

∂SST

∣∣∣
SST

dSST =

(
∂QL

∂SST

∣∣∣
SST

+
∂QE

∂SST

∣∣∣
SST

+
∂QH

∂SST

∣∣∣
SST

)
dSST, (S15)
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where
∣∣
SST

indicates that values are evaluated at the background average SST value. Contributions93

from QS fall away because they have no explicit dependence on SST. The partial derivatives on94

the right-hand side of Eq. (S15) are,95

∂QL

∂SST

∣∣∣
SST

= −4σ
(
SST

)3
, (S16)

96

∂QE

∂SST

∣∣∣
SST

= ΛvρaCE
∣∣∆~U

∣∣ q2

SST
2 qsat

(
SST

)
, (S17)

and97

∂QH

∂SST

∣∣∣
SST

= −ρacpCH
∣∣∆~U

∣∣, (S18)

whence,98

dQas =

[
ΛvρaCE

∣∣∆~U
∣∣ q2

SST
2 qsat

(
SST

)
− 4σ

(
SST

)3 − ρacpCH
∣∣∆~U

∣∣]︸ ︷︷ ︸
Γ

dSST. (S19)

For a finite but small, linear SST perturbation, Eq. (S19) will hold approximately. Therefore,99

I use Eq. (S19) to estimate theQas trend implied by the SST trend observed over the warming hole.100

Values for Λv, ρa, q1, q2, σ, and cp are given above. Based on examination of a global oceanic state101

estimate10, I determine that CD = 0.0011, CE = 0.0012, and CH = 0.00061 are reasonable values102

for the transfer coefficients over the subpolar gyre. Judging from this state estimate, I also assume103

reasonable distributions SST ∼ U (6.5◦C, 11.5◦C) and
∣∣∆~U

∣∣ ∼ U (7.5 m s−1, 10.5 m s−1) for the104

subpolar gyre, where U (a, b) is the uniform distribution with minimum a and maximum b. Using105

these values, I estimate an approximate 95% confidence interval for the bracketed term (Γ) on the106

right-hand side of Eq. (S19) of −27 ± 4.6 W m−2 ◦C−1. Multiplying this estimate of Γ times the107
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trend in SST over the subpolar warming hole quoted in the main text (−0.6 ± 0.4 ◦C century−1)108

produces the surface heat flux trend of 16± 11 W m−2 century−1 given in the text.109

S5 Converting a trend in surface heat flux over the subpolar warming hole to a temperature110

acceleration over the northern North Atlantic and Arctic Oceans111

From basic conservation principles, if a surface heat flux Qas acts on the ocean surface, and all of112

the heat gained is stored locally in the ocean, then the heat budget is,113

∂Θ

∂t
=

1

ρCpH
Qas, (S20)

where Θ is the depth-averaged ocean (potential) temperature, ρ is seawater density, Cp is the spe-114

cific heat of seawater (distinct from cp, which is the specific heat of air in the past section), and H115

is the depth of the water column. Equivalently, taking a time derivative,116

∂2Θ

∂t2
=

1

ρCpH

∂Qas

∂t
. (S21)

Hence, the right-hand side takes the form of a temperature acceleration. Setting ∂Qas

/
∂t equal to117

16±11 W m−2 century−1 for the warming-hole region from the previous section, choosing typical118

round numbers of ρ = 103 kg m−3 and Cp = 4× 103 J kg−1 ◦C−1, and selecting H = 2.5× 103 m119

as a representative depth for the northern North Atlantic Ocean, I obtain a range for the temperature120

acceleration ∂2Θ
/
∂t2 of 5.0± 3.5 ◦C century−2, which equates to a warming of 3.1± 2.1 ◦C over121

a 110-y period.122

These acceleration and warming numbers apply to the subpolar warming-hole region, which123

has a surface area of about 5.3×1012 m2 (Figure 7). In other words, these are the ocean temperature124
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changes that would be experienced in that region due to the surface heat flux in the absence of any125

lateral redistribution of heat by circulation and mixing. However, given the focus of this paper, it is126

instructive to consider whether the heat gain is stored not locally over the warming hole, but rather127

more broadly across the northern North Atlantic and Arctic Ocean, from 27◦N to Bering Strait.128

The motivation for choosing 27◦N as a boundary of the control volume is obvious, given the focus129

of the paper at that latitude. Bering Strait is typically chosen a convenient boundary to close the130

control volume in studies of Atlantic Ocean heat transport and storage, since transports of mass,131

heat, and freshwater through Bering Strait are relatively small and stable compared to transports in132

the Atlantic11, 12. (Here I assume changes in transports through Bering Strait are totally negligible.)133

The surface area of this larger North Atlantic and Arctic control volume is 3.6× 1013 m2. Hence,134

multiplying the values above by the ratio of surface areas (5.3× 1012 m2
/

3.6× 1013 m2 = 0.15),135

the temperature acceleration and overall warming from earlier become 0.7± 0.5 ◦C century−2 and136

0.4± 0.3 ◦C, respectively, if the heat flux over the warming hole was redistributed evenly over the137

northern North Atlantic and Arctic. These are the values quoted in the main text.138

S6 Estimating trends in the deep branch of the overturning circulation and thermocline139

recirculation from trends in the Florida Current and subpolar sea-surface temperature140

In the main text, I explain that the weakening of Florida Current transport and the surface heat flux141

trend resulting from the cooling of subpolar sea-surface temperatures over the warming hole must142

be physically consistent with two simple conservation principles: the sum of changes in all volume143

transports at 27◦N must equal zero (mass conservation), and the trend in ocean heat transport across144

9



27◦N must match to lowest order the trend in surface heat flux over the warming-hole region (heat145

conservation). I express these requirements for mass and heat conservation respectively as,146

ψ′F + ψ′D + ψ′T = 0, (S22)

and147

−ψ′FΘF − ψ′DΘD − ψ′TΘT =
A

Cpρ
Q′as. (S23)

Here ψF , ψD, and ψT are the volume transports across 27◦N (positive northward) by the Florida148

Current, the deep branch of the overturning circulation, and thermocline recirculation, respectively,149

and ΘF , ΘD, and ΘT are corresponding representative ocean temperatures in Florida Straits, the150

deep ocean (& 1000 m), and the interior upper ocean (. 1000 m), respectively. As before, Qas is151

surface heat flux over the warming hole, ρ ocean density, and Cp specific heat capacity of seawater,152

and here A is the surface area of the warming hole, so that AQas is the total surface heating of153

the control volume. Primes are used here to indicate linear trends whereas overbars represent time154

means. Note that in Eq. (S23), I ignore the time-tendency (local storage) term and heat transport by155

currents acting on temperature anomalies. These assumptions are discussed in more detail below.156

This linear system can be rearranged to solve for ψ′D and ψ′T in terms of ψ′F and SST′, viz.,157

ψ′D =
ΘF −ΘT

ΘT −ΘD

ψ′F +
1

ΘT −ΘD

AΓ

Cpρ
SST′, (S24)

and,158

ψ′T = −ΘF −ΘD

ΘT −ΘD

ψ′F −
1

ΘT −ΘD

AΓ

Cpρ
SST′, (S25)

where Eq. (S19) was used to substitute Γ SST′ for Q′as. Based on examination of climatological159
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temperature from the World Ocean Atlas13 along 27◦N (Supplementary Figure 14), I assume that160

ΘF ∼ U (14.2◦C, 20.5◦C), ΘT ∼ U (12.2◦C, 16.9◦C), and ΘD ∼ U (1.4◦C, 3.6◦C).161

Given the ΘF , ΘT , and ΘD distributions, and values of A = 5.3× 1012 m2, ρ = 103 kg m−3,162

Cp = 4×103 J kg−1 ◦C−1, and Γ = −27±4.6 W m−2 ◦C−1 from before, I can evaluate Eqs. (S24),163

(S25). Using the values of ψ′F = −1.7± 3.7 Sv century−1 and SST′ = −0.6± 0.4 ◦C century−1
164

presented and discussed in the main text for 1909–2018, I find ψ′D = 1.4± 1.8 Sv century−1 and165

ψ′T = −0.3± 4.9 Sv century−1, which are also quoted in the main text. More general estimates of166

ψ′D and ψ′T through time, and shown in Supplementary Figure 13, are generated by computing the167

posterior median and 95% credible interval of the mean rate of change in Florida Current transport168

from the Bayesian model and the linear trend in sea-surface temperature over the warming hole for169

all periods starting between 1909 and 1980 and ending in 2018, and then applying those values for170

the mean rates of change and linear trends to Eqs. (S24), (S25).171

Some caveats should be discussed. The form of heat conservation (S23) assumes that (1.)172

the time rate of change of temperature is negligible and (2.) heat transport due to currents acting173

on variable temperatures can be ignored.174

Assumption (1.), that local ocean heat storage is negligible, was mentioned in the main text.175

I argued, using available estimates of ocean warming, that changes in local ocean heat content176

are too small to account for the surface heat flux implied by the longterm changes in sea-surface177

temperature, and therefore the surface heat flux must be mostly balanced by ocean heat transport.178

Note that, while it is reasonable on long, multidecadal to centennial timescales, assumption (1.)179
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does not apply on shorter, interannual and decadal periods, when changes in local ocean heat180

content become relatively more important. For example, over 1993–2015, decadal changes in181

subpolar North Atlantic Ocean heat content largely balanced ocean heat transport into the region182

due to changes in ocean circulation, and changes in surface heat flux were relatively small in183

comparison14. For this reason, Eqs. (S24) and (S25) are not evaluated for . 40-y periods.184

Assumption (2.), that circulation changes operating on mean temperatures make the leading185

contributions to the heat transport, was not discussed in the text. This assumption has precedent in186

the observational literature and is supported by modeling results. For example, ocean heat transport187

estimates based on data from the RAPID array at 26◦N have largely ignored nonseasonal changes in188

ocean temperature15–17. This assumption has been justified from strong correlation found between189

cable-based volume transports and directly measured temperature transports in Florida Straits15, 18,190

for example. Models generally support this result. Across a range of timescales, from seasonal191

to decadal, modeled ocean heat transports in the subtropical North Atlantic are strongly deter-192

mined by changes in circulation acting on time-mean ocean temperatures, though time variations193

in temperature are not totally negligible19–21.194

These arguments make the case that assumptions (1.) and (2.) are reasonable and justifiable195

in the context of the back-of-the-envelope, order-of-magnitude estimates presented here. However,196

they are simplifications, as acknowledged above. Future studies should revisit these topics in more197

detail (e.g., relative importance of local ocean heat storage versus surface heat flux and ocean heat198

transport, or temperature versus velocity effects on ocean heat transports as a function of timescale)199

12



based on models. However, such in-depth analyses are beyond the scope of the simple calculations200

presented here for purposes of interpreting posterior solutions from the Bayesian model, and so are201

left to more focused future studies.202
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1. Bos, M. S., S. D. P. Williams, I. B. Araújo, & L. Bastos. The effect of temporal correlated noise204

on the sea level rate and acceleration uncertainty, Geophys. J. Int., 196, 1423–1430.205

2. Frankignoul, C., and K. Hasselmann. Stochastic climate models, part II: application to sea-206

surface temperature anomalies and thermocline variability, Tellus, 29, 289–305 (1977).207

3. Dangendorf, S., D. Rybski, C. Mudersbach, A. Müller, E. Kaufmann, E. Zorita, and J. Jensen.208

Evidence for long-term memory in sea level, Geophys. Res. Lett., 41, 5530–5537 (2014).209

4. Fatichi, S., S. M. Barbosa, E. Caporali, and M. E. Silva. Deterministic versus stochastic trends:210

Detection and challenges, J. Geophys. Res., 114, D18121 (2009).211

5. Ocaña, V., E. Zorita, and P. Heimbach. Stochastic secular trends in sea level rise, J. Geophys.212

Res.-Oceans, 121, 2183–2202 (2016).213

6. Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in214

time series: the method of surrogate data, Physica D, 58, 77–94 (1992).215

13



7. Meinen, C. S., W. E. Johns, B. I. Moat, R. H. Smith, E. M. Johns, D. Rayner, E. Frajka-Williams,216

R. F. Garcia, and S. L. Garzoli. Structure and variability of the Antilles Current at 26.5◦N, J.217

Geophys. Res.-Oceans, 124, 3700–3723 (2019).218

8. Emery, R. E., and W. J. Thomson. Data analysis methods in physical oceanography, 3rd Edition,219

Elsevier, 728 pp (2014).220

9. Large, W. G., and S. G. Yeager. Diurnal to decadal global forcing for ocean and sea-ice models:221

the data sets and flux climatologies, NCAR Technical Note, NCAR/TN-460+STR, 112 pp.222

10. Forget, G., et al. ECCO version 4: an integrated framework for non-linear inverse modeling223

and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104 (2015).224

11. Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov.225

Direct measurements of transport and water properties through the Bering Strait, J. Geophys.226

Res., 100(C9), 18443–18457 (1995).227

12. Woodgate, R. A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights228

into seasonal trends and driving mechanisms from year-round Bering Strait mooring data, Prog.229

Oceanogr., 160, 124–154 (2018).230

13. Locarni, R. A., A. V. Mishonov, O. K. Baranova, T. P. Boyer, M. M. Zweng, H. E. Garcia,231

J. R. Reagan, D. Seidov, K. Weathers, C. R. Paver, and I. Smolyar. World Ocean Atlas 2018,232

Volume 1: Temperature, NOAA Atlas NESDIS 81, 52 pp (2018).233

14



14. Piecuch, C. G., R. M. Ponte, C. M. Little, M. W. Buckley, and I. Fukumori. Mechanisms234

underlying recent decadal changes in subpolar North Atlantic Ocean heat content, J. Geophys.235

Res.-Oceans, 122, 7181–7197 (2017).236

15. Johns, W. E., M. O. Baringer, L. M. Beal, S. A. Cunningham, T. Kanzow, H. L. Bryden, J. J. M.237

Hirschi, J. Marotzke, C. S. Meinen, B. Shaw, and R. Curry. Continuous, array-based estimates238

of Atlantic Ocean heat transport at 26.5◦N, J. Clim., 24, 2429–2449 (2011).239

16. Bryden, H. L., B. A. King, G. D. McCarthy, and E. L. McDonagh. Impact of a 30% reduction240

in Atlantic meridional overturning 2009–2010, Ocean Sci., 10, 683–691 (2014).241

17. Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. McDonagh, B. I. Moat, and D. A.242

Smeed. Reduction in ocean heat transport at 26◦N since 2008 cools the eastern subpolar gyre243

of the North Atlantic Ocean, J. Clim., 33, 1677–1689 (2020).244

18. Shoosmith, D. R., M. O. Baringer, and W. E. Johns. A continuous record of Florida Current245

temperature transport at 27◦N, Geophys. Res. Lett., 32, L23603 (2005).246

19. Jayne, S. R., and J. Marotzke. The dynamics of ocean heat transport variability, Rev. Geophys,247

39, 385–411 (2001).248

20. Dong, B., and R. T. Sutton. Variability in North Atlantic heat content and heat transport in a249

coupled ocean-atmosphere GCM, Clim. Dynam., 19, 485–497 (2002).250

21. Piecuch, C. G., and R. M. Ponte. Importance of circulation changes to Atlantic heat storage251

rates on seasonal and interannual time scales, J. Clim., 25, 350–362 (2012).252

15
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Region Site Lon (◦W) Lat (◦N) Duration (years) Rate (mm y−1) Error (mm y−1)
Florida AOML 80.1622 25.7347 6.37 0.27 0.74
Florida CCV6 80.5455 28.4600 6.93 -2.95 0.74
Florida MIA3 80.1602 25.7328 11.00 -0.32 0.80
Bahamas EXU0 75.8734 23.5640 6.50 -1.85 0.54
Bahamas NAS0 77.4623 25.0525 6.51 -2.18 2.42

Supplementary Table 1. Summary of GPS data from Version 6b of the dataset from Uni-

versité de la Rochelle22 used to estimate the difference in static sea-level rate across Florida

Straits due to differential land motion quoted in the main text. Duration is the length of the

data record. Error is twice the formal standard error provided with the dataset. Assuming

errors are independent, the average rate across the two Bahamas sites is −2.02 ± 1.24

mm y−1 and the average rate across the three southeastern Florida sites is −1.00 ± 0.44

mm y−1. The difference between the former and latter average values is −1.02± 1.32 mm

y−1, which represents the rate of differential vertical land motion across Florida Straits

quoted in the main text. Multiplying by −1 to convert from the land-motion frame to the

sea-level frame gives the value of 1.0± 1.3 mm y−1 quoted in the main text.
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Region Site Reference Lon (◦W) Lat (◦N) age (y BP) sea level (m)
Florida Florida Bay Love et al.23 80.6 25 1260± 275 −1.34± 1.27

890± 290 −0.83± 1.39
400± 335 −1.00± 1.26

Florida Bear Point Love et al.23 80.3 27.4 1930± 350 −0.93± 1.45
1380± 225 −1.13± 1.45
1120± 215 −0.83± 1.45

Bahamas Acklins Island Khan et al.24 73.9 22.5 1048± 490 −1.64± 1.14
698± 392 −1.23± 1.26
398± 500 −1.08± 1.22
242± 484 −0.97± 1.18

Supplementary Table 2. Proxy sea-level index points from southeastern Florida and the

Bahamas used to estimate the difference in the rate of late-Holocene sea-level change across

Florida Straits quoted in the main text. Latitudes and longitudes have been rounded to the

nearest tenth of a degree. The “y BP” abbreviation stands for years before present, where

present is 1950. The ± values are twice the standard errors on the age and sea-level

values provided in the given references. Using ordinary least squares to fit a trend line

to the index points at each site, and ignoring age and sea-level uncertainty, I compute

trends of 0.36 ± 0.97, 0.05 ± 0.73 and 0.81 ± 0.22 mm y−1 at Florida Bay, Bear Point,

and Acklins Island, respectively, where ± is twice the formal standard error furnished

by ordinary least squares assuming independent data. The average of the two trends

from southeastern Florida is thus 0.20 ± 0.61 mm y−1 and so the difference between the

Bahamas and southeastern Florida is 0.6±0.6, which is the value quoted in the main text.
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No. Location Lon (◦E) Lat (◦N) Timespan (Completeness) Coast
1 Cristóbal −79.9167 9.35 1909–1979 (100%) 904
2 Puerto Limon −83.0333 10 1949–1968 (90%) 906
3 Cartagena −75.55 10.4 1949–1992 (68%) 902
4 Riohacha −72.9167 11.55 1953–1969 (82%) 902
5 Fort-de-France II −61.0632 14.6015 2006–2017 (100%) 912
6 Santo Tomás de Castilla −88.6167 15.7 1965–1980 (75%) 916
7 Puerto Cortes −87.95 15.8333 1948–1968 (100%) 908
8 Puerto Castilla −86.0333 16.0167 1956–1968 (100%) 908
9 Lime Tree Bay −64.7533 17.6933 1986–2015 (80%) 939

10 Port Royal −76.85 17.9333 1955–1969 (100%) 932
11 Magueyes Island −67.045 17.97 1955–2016 (90%) 938
12 Barahona −71.0833 18.2 1955–1969 (67%) 936
13 Charlotte Amalie −64.92 18.335 1976–2016 (61%) 939
14 San Juan −66.115 18.4583 1963–2016 (81%) 938
15 Port-au-Prince −72.35 18.5667 1950–1961 (100%) 934
16 South Sound −81.3833 19.2667 1976–1993 (89%) 931
17 North Sound −81.3167 19.3 1976–1996 (86%) 931
18 Puerto Plata −70.7 19.8167 1950–1969 (70%) 936
19 Cabo Cruz −77.7333 19.8333 1993–2017 (76%) 930
20 Guantanamo Bay −75.1467 19.9067 1938–1971 (85%) 930
21 Gibara −76.125 21.1083 1976–2016 (100%) 930
22 Nuevitas Punta Practico −77.1095 21.5913 1992–2017 (35%) 930
23 Casilda II −79.9917 21.7533 1984–2014 (48%) 930
24 Cabo de San Antonio −84.9 21.9 1973–2017 (60%) 930
25 Isabela de Sagua −80.0167 22.9333 2000–2016 (71%) 930
26 Key West −81.8067 24.555 1913–2018 (97%) 940
27 Vaca Key −81.105 24.7117 1990–2017 (79%) 940
28 Key Colony Beach −81.0167 24.7183 1978–1994 (71%) 940
29 Virginia Key −80.1617 25.73 1995–2017 (87%) 960
30 Miami Beach −80.1317 25.7683 1932–1980 (92%) 960
31 Naples −81.8067 26.1317 1966–2017 (83%) 940
32 West Palm Beach −80.0333 26.6117 1974–2017 (36%) 960
33 Settlement Point −78.9833 26.6833 2005–2015 (82%) 941
34 Settlement Point −78.9967 26.71 1986–2000 (67%) 941
35 Trident Pier −80.5917 28.415 1995–2017 (91%) 960
36 Daytona Beach Shores −80.9633 29.1467 1967–1983 (71%) 960
37 Daytona Beach −81 29.2333 1925–1969 (51%) 960
38 Jacksonville −81.6167 30.35 1954–1967 (100%) 960
39 Mayport −81.4317 30.3933 1929–1999 (99%) 960
40 Mayport −81.4283 30.3983 2001–2017 (94%) 960
41 Fernandina Beach −81.465 30.6717 1909–2018 (78%) 960
42 Fort Pulaski −80.9017 32.0333 1935–2018 (95%) 960
43 Charleston −79.925 32.7817 1922–2018 (100%) 960
44 Springmaid Pier −78.9183 33.655 1978–2017 (60%) 960
45 Myrtle Beach −78.885 33.6833 1958–1977 (55%) 960
46 Wilmington −77.9533 34.2267 1936–2018 (95%) 960

Supplementary Table 3. Descriptions of tide-gauge sea-level records used in this study.

“Completeness” is the percentage of timespan during which data are available. “Coast”

number is the code used by the PSMSL to indicate the country and coastline of measure-

ment. 19



Parameter Description

η0 Sea-level initial condition

ηk Sea-level values at time tk

T Transport time-mean value

Tk Transport value at time tk

b Spatial vector of regional trends in sea level

a Spatial vector of local trends in sea level

` Spatial vector of tide-gauge biases

r AR(1) coefficient of sea level

µ Mean value of regional trends in sea level

ν Mean value of tide-gauge biases

ρ Transport change per unit sea-level difference

α Transport trend correction

π2 Partial sill of regional trends in sea level

σ2 Partial sill of sea-level innovations

δ2 Tide-gauge error variance

τ 2 Spatial variance in observational biases

γ2 Variance of local trends in sea level

ω2 Variance of transport noise correction

φ Inverse range of sea-level innovations

λ Inverse range of regional trends in sea level

Supplementary Table 4. Descriptions of model processes and parameters.
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Parameter Prior Distribution Hyperparameter Values

η0 N
(
η̃η0

1, ζ̃2
η0
I
)

η̃η0
= −0.2 m , ζ̃2

η0
= (7.6× 10−2 m)2

T N
(
η̃T , ζ̃

2
T

)
η̃T = 32 Sv , ζ̃2

T
= (5.2 Sv)2

r U (ũr, ṽ
2
r) ũr = 0.0 , ṽ2

r = 1.0

µ N
(
η̃µ, ζ̃

2
µ

)
η̃µ = 3.4× 10−3 m y−1 , ζ̃2

µ = (2.7× 10−2 m y−1)2

ν N
(
η̃ν , ζ̃

2
ν

)
η̃ν = 7.0 m , ζ̃2

ν = (0.6 m)2

ρ N
(
η̃ρ, ζ̃

2
ρ

)
η̃ρ = 0.0 Sv m−1 , ζ̃2

ρ = (190 Sv m−1)2

α N
(
η̃α, ζ̃

2
α

)
η̃α = 0.0 Sv y−1 , ζ̃2

α = (0.3 Sv y−1)2

π2 IG
(
ξ̃π2 , χ̃2

π2

)
ξ̃π2 = 0.5 , χ̃2

π2 = (1.9× 10−3 m y−1)2

σ2 IG
(
ξ̃σ2 , χ̃2

σ2

)
ξ̃σ2 = 0.5 , χ̃2

σ2 = (1.8× 10−2 m)2

δ2 IG
(
ξ̃δ2 , χ̃

2
δ2

)
ξ̃δ2 = 0.5 , χ̃2

δ2 = (7.1× 10−3 m)2

τ 2 IG
(
ξ̃τ2 , χ̃

2
τ2

)
ξ̃τ2 = 0.5 , χ̃2

τ2 = (8.5× 10−2 m)2

γ2 IG
(
ξ̃γ2 , χ̃

2
γ2

)
ξ̃γ2 = 0.5 , χ̃2

γ2 = (7.1× 10−4 m y−1)2

ω2 IG
(
ξ̃ω2 , χ̃2

ω2

)
ξ̃ω2 = 0.5 , χ̃2

ω2 = (0.7 Sv)2

φ LN
(
η̃φ, ζ̃

2
φ

)
η̃φ = −7.0 log km−1 , ζ̃2

φ = (2.2 log km−1)2

λ LN
(
η̃λ, ζ̃

2
λ

)
η̃λ = −6.9 log km−1 , ζ̃2

λ = (0.4 log km−1)2

Supplementary Table 5. Prior distributions and hyperparameters. Hyperparameters are

denoted with tildes to distinguish them from the other (uncertain) model parameters. The

scripts are: N normal (or multivariate normal) distribution with mean η̃ and variance ζ̃2; U

uniform distribution with lower bound ũ and upper bound ṽ; IG inverse-gamma distribution

with shape ξ and scale χ; LN log-normal distribution with “mean” η̃ and “variance” ζ̃2.
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Parameter Units R̂ Median Value 95% CI Width Ratio

T Sv 1.001 32.6317 [31.2047, 34.0538] 0.13837

α Sv y−1 1.0007 −0.013584 [−0.054013, 0.0293] 0.085205

r — 1.0066 0.55246 [0.47413, 0.63057] 0.16441

µ (×103) m y−1 1.0007 2.6671 [1.1105, 4.2612] 0.028929

ν m 0.99976 6.9845 [6.9619, 7.0065] 0.018982

ρ Sv m−1 0.9996 21.3501 [10.4544, 32.4271] 0.029465

π2 (×106) (m y−1)2 1.0001 (1.1673)2 [(0.75971)2, (1.9104)2] 0.00056614

σ2 (×106) m2 1.0019 (26.2588)2 [(24.4292)2, (28.3339)2] 0.00024641

δ2 (×106) m2 0.99995 (8.3539)2 [(7.3177)2, (9.4754)2] 0.00037666

τ 2 (×106) m2 0.99973 (66.9832)2 [(54.0808)2, (85.3079)2] 0.00040194

γ2 (×106) (m y−1)2 0.99995 (0.6992)2 [(0.40244)2, (1.1171)2] 0.00090338

ω2 Sv2 0.9997 (0.708)2 [(0.4832)2, (1.0033)2] 0.00058865

φ (×103) km−1 1.0025 0.68742 [0.52277, 0.87158] 0.0040641

λ (×103) km−1 1.0005 0.8429 [0.43847, 1.6407] 0.80349

Supplementary Table 6. Summary of posterior solutions for scalar parameters. The sym-

bol R̂ is a convergence monitor of Gelman and Rubin25, such that values near 1 indicate

convergence. Median Value and 95% credible interval (CI) are computed from the en-

semble of posterior model solutions. The Width Ratio is defined as ratio of the width of

the posterior 95% CI to the prior 95% CI width.

22



Parameter Units Truth Median Value 95% CI

T Sv 32.8942 32.0523 [30.9524, 33.0873]

α Sv y−1 −0.018899 −0.023436 [−0.059135, 0.0090315]

r — 0.54595 0.53247 [0.46355, 0.60654]

µ (×103) m y−1 2.977 3.1574 [1.2438, 5.1438]

ν m 6.9876 6.9947 [6.9739, 7.0165]

ρ Sv m−1 23.5497 20.974 [14.9067, 27.6991]

π2 (×106) (m y−1)2 (1.078)2 (1.4473)2 [(0.94505)2, (2.2444)2]

σ2 (×106) m2 (26.443)2 (25.5557)2 [(23.6732)2, (27.7207)2]

δ2 (×106) m2 (8.7092)2 (9.2437)2 [(8.3297)2, (10.1856)2]

τ 2 (×106) m2 (67.1828)2 (66.178)2 [(54.0051)2, (83.3185)2]

γ2 (×106) (m y−1)2 (0.64645)2 (0.80521)2 [(0.54918)2, (1.1481)2]

ω2 Sv2 (0.77083)2 (0.34671)2 [(0.23695)2, (0.51894)2]

φ (×103) km−1 0.63572 0.60636 [0.46714, 0.78344]

λ (×103) km−1 0.79168 0.83584 [0.44534, 1.6007]

Supplementary Table 7. Summary of first synthetic data experiment. Comparison between

the true (withheld) parameter values and the posterior model estimates.
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Parameter Units True Value Median Value 95% CI

ν m 6.9876 6.9707 [6.9506, 6.9918]

δ2 (×106) m2 (8.7092)2 (7.2674)2 [(6.4296)2, (8.1361)2]

τ 2 (×106) m2 (67.1828)2 (62.0712)2 [(50.8668)2, (78.9978)2]

γ2 (×106) (m y−1)2 (0.64645)2 (0.80316)2 [(0.55894)2, (1.1291)2]

Supplementary Table 8. Summary of second synthetic data experiment. Comparison be-

tween the true (withheld) parameter values and the posterior model estimates.
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265

Supplementary Figure 1. Characteristics of tide-gauge data. a, Record length of tide-gauge266

records (number of y between the first and last measurements made during the study period).267

Yellower (bluer) colors indicate longer (shorter) records. b, Record completeness (percentage of268

y during the record length for which annual data are available). Yellower (bluer) colors indicate269

more (less) complete records. c, Number of tide gauges returning annual sea-level data during the270

course of the study period.271
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272

Supplementary Figure 2. Availability of tide-gauge data over time. Dots show tide gauges with273

at least 1 y of data during a, 1909–1928, b, 1939–1958, c, 1969–1988, and d, 1999–1928.274
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275

Supplementary Figure 3. Aspects of the posterior solution. a, Blue, orange, and yellow are276

histograms of transport T averaged during 1909–2018, 1909–1981, and 1982–2018, respectively277

(Sv). b, Histogram of the transport trend ρbT∆ + α over 1909–2018 (Sv century−1). c, Blue (or-278

ange) is the histogram of the change in transport T between 1997/1998 to 1999/2000 (1999/2000279

to 2001/2002) in units of Sv. d, Histograms of decadally averaged transport T in units of Sv: blue280

1922–1932; orange 1956–1966; yellow 1946–1956; and purple 1986–1996. See Supplementary281

Table 4 for descriptions of symbols.282
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283

Supplementary Figure 4. Wavelet coherences. Magnitude squared wavelet coherence between284

Florida Current transport T and a, North Atlantic Oscillation and b, Atlantic Multidecadal Vari-285

ability. Values are computed as follows. For each ensemble member, the wavelet coherence is286

computed between the transport solution and the climate index. For the same ensemble member,287

two random time series are generated, which have identical Fourier amplitudes to the transport so-288

lution and climate index, but randomized phases, and the wavelet coherence between the random289

time series is computed. Shaded colors represent medians of the set of wavelet-coherence values290

computed between all transport solutions and the given climate index. Black contouring indicates291

where 68% of wavelet coherences computed between transport solutions and the climate index292

exceed the value calculated between the pairs of random time series.293
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294

Supplementary Figure 5. More aspects of the posterior solution. a, Histogram of posterior295

solutions for the regression coefficient ρ (Sv cm−1) between sea-level difference across Florida296

Straits and Florida Current transport. b, Histogram of posterior solutions for the total (blue), static297

(orange), and dynamic (yellow) trends in sea-level difference across Florida Straits, which are com-298

puted respectively as bT∆, −α/ρ, and bT∆ + α/ρ (mm y−1) (see Methods). See Supplementary299

Table 4 for descriptions of symbols.300
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301

Supplementary Figure 6. Frequency-domain analysis of sea level and transport from SODA.302

a, Blue (orange) is annual sea-level difference across Florida Straits (Florida Current transport)303

during 1871–2010 from SODA. Both time series have been detrended. b, Black line is magnitude-304

squared coherence between sea-level difference and transport for the first 128 y of the SODA305

solution (1871–1998). All values are statistically significant at the 95% confidence level based on306

comparison against synthetic time series. c, Black line is amplitude of the transfer function (using307

sea-level difference as the input and transport as the output). Gray shading is the 95% posterior308

credible interval on the transfer coefficient ρ from a synthetic data experiment based on SODA (see309

Methods). Admittance and coherence calculations are based on Welch’s method using a window310

length of 32 and 50% overlap.311
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312

Supplementary Figure 7. Time-domain analysis of sea level and transport from SODA. a,313

Black line is regression coefficient between annual sea-level difference across Florida Straits and314

Florida Current transport for sliding 20-y windows during 1871–2010 from SODA. Gray shading is315

the 95% posterior credible interval on the regression coefficient ρ from a synthetic data experiment316

based on SODA (see Methods). b, Black line is correlation coefficient between annual sea-level317

difference across Florida Straits and Florida Current transport for sliding 20-y windows during318

1871–2010 from SODA.319
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320

Supplementary Figure 8. Locations of ancillary observational assets. Shaded squares are tide-321

gauge locations (blue is Settlement Point; orange is Virginia Key; yellow is West Palm Beach).322

Shaded circles are the along-track satellite-altimeter data points that are nearest the corresponding323

tide gauge. Light gray criss-crossing marks ascending and descending altimeter tracks. Green +324

symbols denote locations of GPS stations (cf. Supplementary Table 1). Purple × symbols are the325

locations of proxy sea-level indicators (cf. Supplementary Table 2).326
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327

Supplementary Figure 9. Altimetric sea-surface height. Monthly time series of anomalous328

sea-surface height from satellite altimetry near a, Settlement Point, Bahamas, b, Virginia Key,329

Florida, and c, the difference between the two time series. Values shown here are calculated by330

bin averaging the raw 1-Hz data provided by Birol et al.26 by year and month. See Supplementary331

Figure 8 for the locations of the time series.332
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333

Supplementary Figure 10. Sverdrup and Ekman transport at 27◦N from reanalyses. a,334

Thick blue and orange lines are annual geostrophic Sverdrup transport at 27◦N computed from335

the NOAA-20CR and ERA-20C reanalyses, respectively, while the thick yellow line is the differ-336

ence between the blue and orange lines. The thin lines are the same as the respective thick lines,337

only they include the ageostrophic Ekman transport in addition to the geostrophic Sverdrup trans-338

port. Time mean values have been removed from all time series. b, Thick line and light shading339

represent the best estimate and 95% confidence interval of the trend in geostrophic Sverdrup trans-340

port difference (thick yellow from a) for all periods starting between 1900 and 1980 and all ending341

in 2010. Thin line and dashed lines are the same, but include the Ekman transport difference in342

addition to the Sverdrup transport difference (thin yellow from a).343
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344

Supplementary Figure 11. Simulated trends in Antilles Current transport. Blue shading345

bounds the 95% confidence interval on stochastic trends in Antilles Current transport, based on346

simulations of a stationary red-noise process and an observed integral timescale of 19 days and347

variance of (7.5 Sv)2 for the Antilles Current. Orange and purple dots mark the trends for 50- and348

100-y periods mentioned in the main text.349
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350

Supplementary Figure 12. Regional ocean warming over the past 250 y. Thick solid blue is the351

time series of ocean temperature averaged over the full-depth northern North Atlantic and Arctic352

Oceans, between 27◦N and the Bering Strait, from the EQ-0015 empirical ocean circulation model353

experiment of Gebbie and Huybers27, where the ocean is in equilibrium with surface conditions354

in the year 15 CE. Note that the time series of global-ocean mean temperature has been removed.355

Thick orange line is the same, but from the EQ-1750 experiment, where the ocean is in equilibrium356

in 1750 CE. Colored dashed lines are second-order polynomials fit to the respective solid lines for357

the period 1910–2015 CE; both dashed lines indicate an overall regional warming of ∼ 0.1◦C358

during that period.359
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360

Supplementary Figure 13. Transport trends. a, Estimated trends in transport by the deep return361

flow of the overturning circulation for all periods starting between 1909 and 1980 and all ending362

in 2018 (positive northwards). Solid blue line is the best estimate while dark and light shading are363

respectively the estimated 68% and 95% confidence intervals. See Supplementary Information for364

more details on the estimates and their caveats. b, As in (a) but showing transport trends due to the365

thermocline recirculation.366

37



367

Supplementary Figure 14. Ocean temperatures. Time-mean (climatological) ocean potential368

temperature along 27◦N in the Atlantic from the World Ocean Atlas 2018 as a function of depth369

and longitude (units ◦C).370
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371

Supplementary Figure 15. Examples of residual time series. Posterior median (solid lines)372

and pointwise 95% credible intervals (light shading) of the sea-level a, process innovations ek373

and b, data errors dk at the San Juan (Puerto Rico) tide gauge. Posterior median (solid lines) and374

pointwise 95% credible intervals (light shading) of the transport c, noise sequence wk and d, data375

errors uk.376
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377

Supplementary Figure 16. Autocorrelation of the residuals. Posterior medians (solid black)378

and pointwise 95% credible intervals (gray shading) of the sample autocorrelation coefficient com-379

puted empirically from posterior solutions for the a, sea-level process innovations ek, b, sea-level380

data errors dk, c, transport noise sequence wk, and d, transport data errors uk. Solid and dashed381

blue lines are the mean ± twice the standard error on the autocorrelation coefficients expected382

theoretically from white noise with the same temporal degrees of freedom.383
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384

Supplementary Figure 17. Amplitude of sea-level residual time series. Median values of the385

standard deviation (m) computed from posterior solutions for the sea-level a, process innovations386

ek and b, data errors dk at all tide-gauge locations.387
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388

Supplementary Figure 18. Spatial covariance of sea-level process innovations. Covariance389

(m2) between all pairs of sea-level process innovations ek computed a, empirically based on poste-390

rior solutions for ek and b, theoretically using posterior solutions for σ2 (Supplementary Table 6)391

and the assumed covariance structure Eq. (2). The “tide-gauge number” along x- and y-axes refer392

to the values given in the leftmost column in Supplementary Table 3.393
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394

Supplementary Figure 19. Correlation between sea level and Florida Current transport. a,395

Shading is the median value of the Pearson correlation coefficient computed empirically between396

posterior Bayesian model solutions for the Florida Current transport and sea level at every location397

after linear trends are removed. b, Shading is the median theoretical value of the Pearson corre-398

lation coefficient based on the Bayesian model process-level equations and posterior solutions for399

the model parameters (Supplementary Table 6).400
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401

Supplementary Figure 20. Spatial structure of tide-gauge residual vectors. Posterior medians402

(black dots) and pointwise 95% credible intervals (black lines) for the tide-gauge a, data-bias403

anomalies `− ν1 (m) and b, error trends a (mm y−1). Also shown are the means (solid blue) and404

95% credible intervals on these fields estimated from their assumed functional forms and posterior405

solutions for the respective variance parameters τ 2 and γ2 (Supplementary Table 6).406
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407

Supplementary Figure 21. Sensitivity of Bayesian model solution to input transport data.408

Summary of results from sensitivity experiments using different forms of the Florida Cable trans-409

port data. a, Time series of transport (thick lines are posterior medians; thin lines bound the pos-410

terior 95% pointwise credible intervals). b, Histograms of the 110-y trend (1909–2018) in Florida411

Current transport. c, Regression coefficient between sea-level difference across Florida Straits and412

Florida Current transport. Blue values are from the “baseline” model experiment discussed in the413

main text. Orange values are based on an “double error” experiment wherein the standard errors414

on the transport data during 1982–2018 are doubled. Yellow values are based on a “half data”415

experiment where the algorithm is only given the cable data during the period 2000–2018 and the416

1982–1998 values are withheld.417
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418

Supplementary Figure 22. Examples of results from first synthetic data experiment. Synthetic419

observations (red), true values (black), and posterior medians (thick blue), pointwise (blue shading)420

and pathwise (dashed blue) 95% credible intervals, and an arbitrary ensemble member (thin blue)421

of a, sea level at the Port-au-Prince (Haiti) tide gauge, a, sea level at the Key West (USA) tide422

gauge, and c, Florida Current transport.423
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424

Supplementary Figure 23. Examples of results from second synthetic data experiment. Syn-425

thetic observations (red), true values (black), and posterior medians (thick blue), pointwise (blue426

shading) and pathwise (dashed blue) 95% credible intervals, and an arbitrary ensemble member427

(thin blue) of a, sea level at the Port-au-Prince (Haiti) tide gauge, a, sea level at the Key West428

(USA) tide gauge, and c, Florida Current transport.429
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