Kaihe Yamazaki

and 5 more

The advent of under-ice profiling float and biologging techniques has enabled year-round observation of the Southern Ocean and its Antarctic margin. These under-ice data are often overlooked in widely used oceanographic datasets, despite their importance in understanding seasonality and its role in sea ice changes, water mass formation, and glacial melt. We develop a monthly climatology of the Southern Ocean (south of 40°S and above 2,000 m) using Data Interpolating Variational Analysis, which excels in multi-dimensional interpolation and consistent handling of topography and horizontal advection. The climatology successfully captures thermohaline variability under sea ice, previously hard to obtain, and outperforms other observation-based products and state estimate simulations in data fidelity, with smaller root-mean-square errors and biases. To demonstrate its multi-purpose capability, we present a qualitative description of the seasonal variation, including 1) the surface mixed layer, 2) the water mass volume census, 3) the Antarctic Slope Front, and 4) shelf bottom waters. Particularly, the circumpolar variation in the extent of dense shelf water and the annual volume overturning rate of water masses are revealed for the first time. The present work offers a new monthly climatology of the Southern Ocean and the Antarctic margin, which will be instrumental in investigating the seasonality and improving ocean models, thereby making valuable winter observations more accessible. We further highlight the quantitative significance of under-ice data in reproducing ocean conditions, advocating for their increased use to achieve a better Southern Ocean observing system.

Natalia Ribeiro

and 6 more

Antarctic Bottom Water (AABW) production supplies the deep limb of the global overturning circulation and ventilates the deep ocean. While the Weddell and Ross Seas are recognised as key sites for AABW production, additional sources have been discovered in coastal polynya regions around East Antarctica, Vincennes Bay being the latest. Vincennes Bay, despite encompassing two distinct polynya regions, is considered the weakest source, producing Dense Shelf Water (DSW) only just dense enough to contribute to the lighter density classes of AABW found offshore. Importantly, the network of local glaciers and upstream Totten Ice Shelf system are all reportedly thinning and the freshwater input from such melting is likely to influence water mass structure. Accordingly, Vincennes Bay presents an interesting test case for DSW/AABW sensitivity to climate-driven changes in Antarctic coastal oceanography. Here we provide the first detailed observations of the Vincennes Bay shelf region and surrounds, using CTD data from instrumented elephant seals in late summer/early fall. We find that Vincennes Bay has East Antarctica’s warmest recorded intrusions of modified Circumpolar Deep Water (mCDW), intrusions that both hinder sea-ice production and contribute salt to new DSW formation. Warm mCDW is also observed to be driving basal melt in Vincennes Bay, as seal CTD data provide the first direct observational evidence for inflow of basal melt to this region. As the most marginal of AABW sources, Vincennes Bay is a particularly useful region for assessment of the sensitivity of AABW production to changes in climate.