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Abstract 14 

Interferometric synthetic aperture radar (InSAR) has been successfully used to map ground 15 

displacements associate with landslides. One challenge with InSAR is that the basic 16 

measurement of interferometric phase takes values between 0 and 2π instead of values 17 

representing total displacement relative to some stable reference frame. Phase unwrapping is 18 

necessary to reconstruct measurements of total displacement for use in quantitative analysis. 19 

Unwrapping approaches often assume that the absolute phase difference between two 20 

neighboring pixels should be a small fraction of a cycle (π or less). In the presence of noise or 21 

high strain rates associated with fast-moving landslides, aliasing of the phase (under-sampling of 22 

the wrapped signal) can result in unwrapping errors and under- or overestimates of total 23 

displacement. Here we use a pattern-based strategy for phase unwrapping of InSAR observations 24 

of fast-moving landslides, where we determine the unwrapped deformation field that is most 25 

similar to a scaled reference displacement map. We also describe a range of metrics that we use 26 

to evaluate the most appropriate scaling for each interferogram and demonstrate the range of 27 

conditions where they perform well using synthetic data. For evaluation of the results, we 28 

generated UAVSAR wrapped interferograms over the Slumgullion landslide in Colorado where 29 

phase aliasing for interferograms with temporal baselines larger than seven days is common. We 30 

show the interferograms unwrapped with our approach and compare them against results from 31 

range offsets (pixel tracking), demonstrating that our approach can be used for time spans well 32 

beyond those where traditional phase unwrapping performs well.  33 

Plain Language Summary 34 

InSAR allows measurement of surface displacement due to earthquakes, landslides, and many 35 

other factors.  However, InSAR requires a step known as "unwrapping" to convert the raw 36 

observations into quantitative measurements of displacement.  Most unwrapping methods 37 

assume some degree of spatial and/or temporal continuity within the signal. In the presence of 38 

high strain rates, such as those observed on fast-moving landslides, these unwrapping approaches 39 

are not reliable. We use a pattern-based strategy for InSAR phase unwrapping that seeks the final 40 

model that best fits a scaled initial estimate of the deformation signal.  We demonstrate this 41 

approach using synthetic data and UAVSAR observations over the Slumgullion landslide in 42 

Colorado, which has a displacement rate of up to 2 cm/day. With such a fast displacement rate, 43 

InSAR observations that span more than 7 days contain so much deformation that traditional 44 

unwrapping approaches almost always fail. We show that our approach can reliably unwrap 45 

interferograms spanning much larger time intervals, and validate these results with independent 46 

measures of the displacement between each pair of images. 47 

1. Introduction 48 

Landslides and other forms of mass wastage are some of the most devastating processes 49 

shaping the modern landscape, and present significant hazards to populations and human 50 

structures that lie in their path. Landslide movement is regulated by a wide range of 51 

environmental and geological factors (e.g., Wang et al., 2018; Handwerger et al., 2019; 52 

Handwerger et al., 2019; Shi et al., 2019), which combine to make predicting their behavior very 53 

challenging (Iverson et al., 2000). Their unpredictability makes landslides one of the most 54 

dangerous geo-hazards (e.g., Kirschbaum & Stanley, 2018; Kirschbaum et al., 2015; Froude & 55 

Petley, 2018); they are often the cause of human casualties and injuries, disruption of 56 

transportation and communication networks, destruction of property and other economic and 57 
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social costs (e.g., Oven, 2009). Recent studies suggest that landslide-related hazards are 58 

worsening, due to a combination of climate change and population growth in areas that are 59 

impacted by landslides (e.g., Froude & Petley, 2018; Gariano & Guzzetti, 2016). Earthquakes, 60 

severe rainfall, and anthropogenic or natural changes in vegetation are all factors that can 61 

contribute to changes in the rate of movement or catastrophic failure of a previously inactive or 62 

slow-moving landslide.  63 

One of the most basic tools for understanding and forecasting landslide behavior is the 64 

measurement of displacement rates and their variability over time (e.g., Wasowski & Bovenga, 65 

2014; Bekaert et al., 2020). Interferometric Synthetic Aperture Radar (InSAR), which has a 66 

spatial resolution of tens of meters or better, provides an all-weather, day-or-night capability to 67 

generate mm–cm scale displacement time-series under a range of different climate and 68 

geomorphologic regimes (e.g., Bürgmann et al., 2000; Rosen et al., 2000). SAR images have 69 

wide spatial coverage, with a swath width of tens to hundreds of kilometers (e.g., Lu & Dzurisin, 70 

2014), and can achieve sub-weekly repeat times, including repeat observations as frequently as 71 

every 6-days for the free and open data from the Sentinel-1a/b constellation. InSAR has been 72 

successfully used to detect surface deformation due to various mechanisms, such as volcanism 73 

(e.g., Lu & Dzurisin, 2014), subsidence (e.g., Qu et al., 2015), permafrost (e.g., Molan et al., 74 

2018), earthquakes (e.g., Lohman & Barnhart, 2010; Scott & Lohman, 2016) and landslides 75 

exhibiting a range of behaviors and rates of motion (e.g., Wasowski & Bovenga, 2014; Bekaert 76 

et al., 2020; Hu et al., 2020). 77 

One challenge facing InSAR users stems from a limitation inherent to the data itself.  The 78 

basic observation in InSAR is of the change in travel time between the ground and the satellite, 79 

but this observation is only made to within a fraction of a wavelength, rather than in the absolute 80 

number of cycles traveled by the radar signal. This measurement of InSAR phase is often 81 

described as being "wrapped" to the fraction of 2π radians in each cycle; there is always an 82 

ambiguity in terms of the total change in distance.  Even within a single interferogram, 83 

deformation and atmospheric noise can contribute more than one cycle of travel time change, 84 

resulting in ambiguities even in the strain present between any two points within the image. 85 

Therefore, unwrapping, or a model of the 2π transitions that would result in a physically 86 

reasonable deformation field, is necessary. Unwrapping is a mathematically ill-posed problem 87 

and, particularly in the presence of high strain rates or larger amounts of noise, can have more 88 

than one solution. Aliasing of the phase (i.e., undersampling of the wrapped signal) in deforming 89 

regions is particularly problematic when the displacement between two adjacent pixels within the 90 

interferogram is large relative to the wavelength of the radar (e.g., Itoh, 1982; Ghiglia & Pritt, 91 

1998; Yu et al., 2019). This problem can occur either when the displacement rates are high, as in 92 

a fast-moving landslide, or when the time between high-quality acquisitions is long, which can 93 

occur in areas with seasonal snow cover or for satellites with infrequent observations.  Even 94 

when the deformation signal is not formally undersampled, the presence of noise in high-strain 95 

regions can introduce ambiguities in terms of the appropriate choice of phase unwrapping. 96 

Several unwrapping approaches have been introduced to find the solution for the 97 

unwrapping problem (e.g., Chen & Zebker, 2011; Costantini, 1998). Phase unwrapping is often 98 

performed entirely in the spatial domain, on individual interferograms, and usually involves the 99 

assumption that the absolute phase difference between two neighboring pixels should be small, 100 

usually smaller than π (e.g., Itoh, 1982; Ghiglia & Pritt, 1998; Yu et al., 2019). As mentioned 101 

above, for fast-moving landslides there may be large numbers of phase discontinuities within the 102 
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deforming region, even for interferograms spanning short time intervals. In such cases, 103 

unwrapping approaches that assume spatial continuity may not perform well (e.g., Manconi, 104 

2021; Hu et al., 2020). For example, almost all UAVSAR interferograms over Slumgullion 105 

landslide in Colorado with baselines greater than 7 days suffer from phase aliasing and are not 106 

used in studies of that slide (Hu et al., 2020). 107 

 108 

 109 

Figure 1. Location of UAVSAR tracks 12502 and 21501 within the study area (location shown in inset), 110 

with flight path and viewing direction (red symbols and arrows) and outline of the Slumgullion and Camp 111 

Trail landslides (black lines). The study areas are shown in white. Figure was generated using the pyGMT 112 

package (Wessel et al., 2019; Uieda et al., 2021). 113 

Here, we develop a pattern-based strategy for unwrapping interferometric phase over 114 

landslides where current unwrapping methods fail due to fast displacement rates. We apply our 115 

approach to a set of UAVSAR interferograms covering a landslide in southeastern Colorado, 116 

here referred to as the Camp Trail landslide (Figure 1, sample interferograms shown in Figure 2). 117 

The two landslides, Camp Trail and Slumgullion landslides, are located in the San Juan 118 

Mountains, southwestern Colorado, USA (Lipman, 1976). The Camp Trail landslide, which is 119 

introduced for the first time in this paper and is named after a trail that passes the landslide 120 

(USGS, 2016), is located 12 km south of the well-studied Slumgullion landslide (e.g., Wang et 121 

al., 2018; Hu et al., 2020). We demonstrate the performance of our algorithm on a set of 122 
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synthetic interferograms generated using displacement rates similar to those found in the real 123 

data. We also show the results of our approach on UAVSAR interferograms over both of the 124 

landslides. 125 

 126 

 127 

Figure 2. a) Unwrapped phase in radians (UNW) for the reference interferogram covering the Camp Trail 128 

landslide (20180802-20181003). b), and c) are interferograms spanning 20170905-20171025, and 129 

20180725-20181003, respectively. Location of panels (b) and (c) is shown in Figure 1, (a) extends 130 

slightly to the north. The reference area is boxed in white, and the subsection used in our synthetic 131 

scenarios is outlined in dark blue. All the interferograms are shown in the same color scale (-1.5π – 1.5π). 132 

In the following, we define our unwrapping approach in Section 2. We generate synthetic 133 

interferograms with predefined displacement rates to demonstrate the feasibility of our method in 134 

Section 3. Then, in Section 4, we evaluate our method using real interferograms covering the 135 

Slumgullion landslide.  We investigate the temporal behavior of the Slumgullion landslide, using 136 

a combination of longer-timescale interferograms and range-offset pixel tracking.  In Section 5, 137 

we present our conclusions and discuss the relevance of this work to other regions.  138 

2. Methods 139 

2.1 Phase unwrapping 140 

As described above, transforming the original, modulo-2π interferometric phase into a 141 

physically meaningful map of deformation requires the process of phase unwrapping. Several 142 

approaches have been introduced to find the solution for the unwrapping problem. Unwrapping 143 

algorithms based on single interferograms (i.e., 2-D unwrapping approaches) can generally be 144 

divided into two main categories: path following, and optimization-based methods. The 145 

assumption in the path following methods is that the Itoh condition (the requirement that the 146 

correctly unwrapped phase difference between two adjacent pixels is less than ) is met along 147 

the integration path (e.g., Ghiglia & Pritt, 1998; Madsen et al., 1993; Xu & Cumming, 1999; 148 

Flynn, 1997). One example of this methods is Goldstein’s branch-cut algorithm (Goldstein et al., 149 

1988).  150 
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The optimization-based methods rely on objective functions that have characteristics 151 

similar to those we expect to see in realistic unwrapped interferograms (e.g., Yu et al., 2013; Dias 152 

& Leitao, 2002). This category includes statistics-based methods and L-p norm methods. The L-153 

p norm methods minimize the difference between gradients in the unwrapped phase and wrapped 154 

phase gradients. This category includes least square (LS) (Fried, 1977), and minimum cost flow 155 

(MCF) (Costantini, 1998), respectively for p=2, and p=1. The statistics-based methods attempt to 156 

maximize the conditional probability of the phase unwrapping results, often by placing 157 

constraints on how spatially smooth the final unwrapped solution should be (e.g., Yu et al., 158 

2019). The SNAPHU software package (Chen & Zebker, 2011) is one of the most frequently 159 

used implementations of these statistics-based methods. 160 

Other phase unwrapping approaches take advantage of assumptions that can be made 161 

about deformation behavior over time. These assumptions are often based on the existence of an 162 

InSAR time series instead of single interferograms. So far, several unwrapping methods of this 163 

sort, sometimes referred to as “3D” unwrapping methods, have been introduced (e.g., Costantini 164 

et al., 2002; Pepe & Lanari, 2006; Hooper & Zebker, 2007; Pepe et al., 2011; Fornaro et al., 165 

2011; Devanthéry et al., 2014).  These approaches generally require that the unwrapped phase be 166 

as close as possible to a model of deformation behavior that varies smoothly over time or is even 167 

constant (e.g., Mora et al., 2003; Goel & Adam, 2014; Perissin & Wang, 2012; Crosetto et al., 168 

2008; Ferretti et al., 2001). The assumption of a constant, or even a smoothly varying 169 

displacement history, however, can potentially cause significant unwrapping errors in locations 170 

where the actual deformation varies significantly in time (e.g., Crosetto et al., 2016). 171 

2.2 Pattern-based phase unwrapping 172 

Studies of fast-moving landslides face many of the challenges described above. The 173 

spatial continuity which is the core assumption in 2-D unwrapping methods is often not 174 

preserved at landslide boundaries where non-moving pixels outside of the landslide can be 175 

immediately adjacent to rapidly moving pixels. The same condition can also happen at the 176 

boundary between two landslide subsections moving at different rates. These high strain rates 177 

and discontinuities can result in phase jumps between pixels that violate the Itoh condition and 178 

make it impossible for 2-D approaches to resolve the 2π ambiguities present in the wrapped 179 

interferograms.  Similarly, 3D unwrapping approaches are hampered by the temporal variability 180 

of behavior within landslides, which is often closely related to rainfall and freeze/thaw 181 

conditions, or to triggering events such as earthquakes or anthropogenic activity (e.g., 182 

Handwerger et al., 2019; Chen et al., 2017; Carrière et al., 2018; Huang et al., 2017; Schulz & 183 

Wang, 2014; Petley et al., 2007). We demonstrate an approach for addressing the unwrapping 184 

problem associated with fast-moving landslides through a requirement that the pattern of 185 

deformation, but not the magnitude, be as similar as possible within a set of unwrapped 186 

interferograms.  This can be viewed as an extension of the 3D approaches that use a constant 187 

displacement rate model, with the addition that we also solve for the best-fit scaling term for that 188 

model for each interferogram.   189 

The wrapped phase, wi, at a given pixel, i is related to the correctly unwrapped phase, 190 

ui
true

 as: 191 

  ui
true 

= 2ci
true

 + wi                                                               (1) 192 

where ci
true

 is the actual number of cycles between the unwrapped and wrapped phase, in 193 

reference to some region within the interferogram that is defined as zero. In the examples below, 194 
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we define a 40 × 40 (pixels) window in a stable area close to the landslide as our reference (see 195 

Figure 2). The estimated unwrapped phase is: 196 

𝑢𝑖 = 2𝜋𝑐𝑖 + 𝑤𝑖                                                                 (2) 197 

where, for the 3D approaches that use a constant displacement rate model, ci is an integer chosen 198 

to minimize the difference between the unwrapped phase and a displacement rate, vi, scaled by 199 

the timespan of the interferogram, t: 200 

𝑐𝑖 = 𝑟𝑜𝑢𝑛𝑑(
𝑡𝑣𝑖−𝑤𝑖

2𝜋
)                                                           (3)  201 

This strategy can be used only when the expected displacement rate for each pixel can be 202 

inferred, either from an average over a subset of the interferograms or from the set of data as a 203 

whole, and where this rate remains fairly constant over time. However, the behavior of landslides 204 

can be complex and time-varying, with potentially very short-lived precursors and transients. 205 

Generally, landslides move faster in summer and slower in winter (e.g., Delbridge et al., 2016). 206 

The rate and style of deformation can change significantly for different years depending on the 207 

amount of precipitation and recharge. Therefore, the average displacement rate may not serve as 208 

an appropriate metric to use in phase unwrapping of a given interferogram. However, for some 209 

landslides, there may be similarities in the style of deformation between different regions over 210 

time, even when the landslide as a whole is moving more rapidly or slowly than on average.  To 211 

explore this, we add a “scaling factor” to Equation 3 to account for the accelerations and 212 

decelerations that occur during the time series. Instead of the predicted displacement for a given 213 

interferogram with timespan t being tvi, we also solve for a scaling factor, R, that is constant over 214 

the entire area of interest (landslide) during each interferogram.  This approach assumes that a 215 

given region of the landslide that moves faster than other portions would tend to move even 216 

faster if the landslide as a whole accelerates, and would continue to move more quickly than 217 

slow regions during time periods where the landslide exhibited little deformation. Under this 218 

formulation, the choice of ci becomes an equation for two unknowns, vi, which varies from pixel 219 

to pixel, and R, which is a constant over the entire area of the landslide:  220 

𝑐𝑖 = 𝑟𝑜𝑢𝑛𝑑(
𝑅𝑡𝑣𝑖−𝑤𝑖

2𝜋
)                                                           (4) 221 

making the final unwrapped interferogram: 222 

𝑢𝑖 = 2𝜋 𝑟𝑜𝑢𝑛𝑑 (
𝑅𝑇𝑣𝑖−𝑤𝑖

2𝜋
) + 𝑤𝑖    (5) 223 

 The above analysis contains two unknowns, vi and R. We resolve the first unknown, vi, 224 

by assigning this value based on one or more unwrapped interferograms with short timespans, 225 

for which we have confidence in the phase unwrapping. In the examples below, we explore the 226 

robustness of this assumption through the use of synthetic data. We also have tested our 227 

approach using a range of difference short-timescale interferograms and found no major impact 228 

on the final unwrapped longer-timescale interferograms. 229 

We examine two methods for determining the appropriate scaling value, R, for each 230 

interferogram.  Both are based on different measures of the size of the residual between the 231 

unwrapped data and the scaled reference velocity:  232 

    𝑢𝑖
𝑟𝑒𝑠 = 𝑢𝑖 − 𝑅𝑡𝑣𝑖   (7) 233 

𝑢𝑖
𝑟𝑒𝑠 contains the impact of true variations in strain behavior within the slide (i.e., a region that 234 

moves more quickly relative to other regions than it does in the reference interferogram) as well 235 

as noise within the data and errors in the unwrapping.  For instance, when the value of R is much 236 
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too low or too high, there will be many unwrapping errors relative to the case where the value of 237 

R is chosen appropriately.  The nonlinearity in equation (4) and the spatial variability of the 238 

reference displacement rate, vi, impact how 𝑢𝑖
𝑟𝑒𝑠varies across the landslide for a given value of R. 239 

By definition, the values of ui can only differ from the wrapped values, wi, by quantiles of 2, 240 

but the values of R where the 2 jumps occur will differ from pixel to pixel, unless vi is a 241 

constant across the entire landslide (in which case, this approach would neither work, nor be 242 

necessary). The optimal value of R will result in a predicted displacement field, 𝑅𝑡𝑣𝑖 that is most 243 

similar to the correctly unwrapped phase. Our first metric is based on the root-mean-squared 244 

error (RMSE) of the real-valued unwrapped residual in Equation 7: 245 

    𝑅𝑀𝑆𝐸 = √∑ (𝑢𝑖
𝑟𝑒𝑠)

2𝑛
𝑖=1

𝑛
     (8) 246 

Values of R that result in poorly-unwrapped outcomes will contain short-spatial-scale 247 

discontinuities that differ from the predicted displacement field and result in larger values of 248 

RMSE.  In cases where the data has low levels of noise and the actual deformation during that 249 

time interval is similar in character to a scaled version of vi, this approach should result in the 250 

correct unwrapping, such that ci ~ ci
true 

and ui ~ tvi
true

 = ui
true

. However, for noisier data, or time 251 

periods where the pattern of strain within the landslide differs significantly from the pattern 252 

present during the reference time periods, this approach will not be reliable.  253 

 The second metric is based on the size of the residual term within the complex domain, 254 

which we refer to as the displacement pattern similarity index (DPSI): 255 

    𝐷𝑃𝑆𝐼 = |∑ 𝑒𝑗𝑢𝑖(𝑒𝑗𝑅𝑡𝑣𝑖)
∗𝑛

𝑖=1 |    (9) 256 

The similarity function, DPSI, takes positive values between zero and one indicating no 257 

similarity and full similarity. 258 

 259 

Figure 3. RMSE (solid cyan line) and DPSI (solid orange line) for simplified four-pixel synthetic 260 

scenario with ui
res=0. The vertical olive lines are the location of 2π jumps which corresponds to the value 261 

of R where the ambiguity number ci jumps to a higher value for that pixel. Black solid lines indicate the 262 
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difference between the unwrapped interferogram (red dashed line) and scaled displacement rate, Rtvi 263 

(blue dashed line) for each pixel and value of R. Note that the peak value of DPSI and the minimum value 264 

of RMSE agree, and that RMSE has secondary, broader minima as well.   265 

Figure 3 illustrates these quantities for a simplified scenario involving only four pixels, 266 

where the displacement, ui
true

 = 0.82 tvi. For this scenario, we add no noise, so RMSE = 0 at the 267 

correct value of R=0.82. vi is different at each pixel, as would be expected for a real-world 268 

scenario. Figure 3 shows the scaled deformation rate for each pixel, Rtvi (blue dashed line), 269 

unwrapped values for the four pixels (red dashed lines, 2 jumps shown in olive), and the 270 

residual, 𝑢𝑖
𝑟𝑒𝑠 (black lines) for each value of R between 0 and 2.  Note how each pixel has 271 

multiple minima where 𝑢𝑖
𝑟𝑒𝑠 = 0, but that the positions of these minima vary except for the one 272 

at the correct value of R=0.82.  RMSE and DPSI both have their minima and maxima at the 273 

correct value, respectively. As the number of pixels used, n, increases, the secondary minima in 274 

RMSE will decrease in importance. 275 

3. Synthetic tests 276 

 3.1 Synthetic interferograms for Camp Trail landslide, including noise 277 

Here, we extend the simple scenario which is shown in Figure 3 to include noise, a larger 278 

number of points, and variations in v over time. Figure 2 shows three unwrapped interferograms 279 

from track T21501 covering the Camp Trail landslide (location in Figure 1). We select the 280 

interferogram 20180802-20181003 (61-day temporal baseline) as the reference interferogram 281 

that we use in our synthetic tests. Then, we generate synthetic unwrapped interferograms and 282 

define vi based on the reference interferogram.  283 

𝑢𝑖
𝑠𝑦𝑛

= 𝑡𝑣𝑖𝑅0 + 𝑛𝑖    (10) 284 

where here we use t=305 days (5 times the reference time interval) and R0 = 0.75, and add 285 

normally distributed noise, ni, with a range of values for the standard deviation,.  We then wrap 286 

the synthetic interferograms onto the interval [−𝜋, +𝜋] to generate the synthetic wrapped 287 

interferogram values, 𝑤𝑖
𝑠𝑦𝑛

 and then solve for the estimated unwrapped phase, ui for each value 288 

of R. In Figure 4, we use ni with  = 1.0 radian and show the resulting unwrapped values and 289 

RMSE/DPSI for a range of R. We also show how the results of this synthetic scenario vary for  290 

= 0.0, 0.75 and 1.5 radians (Figure 5). In Figure 5, we only show the phase jumps of individual 291 

pixels, not their unwrapped values, for clarity. Figure 5 also shows the associated corrected 292 

unwrapped interferograms. 293 
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 294 

Figure 4. Camp Trail synthetic scenario, symbols as in Figure 3.  Only 20% of the pixels are shown, for 295 

clarity.  296 

 297 

Figure 5. The synthetic unwrapped interferograms generated using normally distributed random errors 298 

with the standard deviations of 0.0, 0.75, and 1.5 radians illustrated in a, b, and c, respectively. RMSE and 299 

DPSI plots for the three synthetic interferograms are shown, respectively, in d, e, and f.  300 

The examples shown in both Figures 3 and 4 show that the correct value of R=R0 can be 301 

found using either the RMSE or DPSI metric, although the sensitivity to the correct value is 302 
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much lower for the noisiest example considered here. However, even the correct value of R=R0 303 

will result in incorrectly unwrapped pixels, to a degree that increases with the level of noise. 304 

Figure 6 illustrates how the estimated value of R and the percentage of incorrectly 305 

unwrapped pixels changes as the level of noise increases. We show the result of increasing the 306 

value of  for different levels from 0 to 2 radians with the interval of 0.1 radians. For each level 307 

of , 201 random realizations of the data set were generated. Then, for each random set, RMSE, 308 

DPSI, R, and the percentage of incorrectly unwrapped pixels were calculated. Both metrics 309 

perform well up to a noise level of around =1.2 radians, above which the DPSI metric starts to 310 

diverge from the correct value of R and leads to a higher percentage of incorrectly unwrapped 311 

pixels. The RMSE metric estimates the correct scaling value and leads to a negligible number of 312 

incorrectly unwrapped pixels below =1.65. Above a value of around  radians for the 313 

standard deviation of the noise , the percentage of incorrectly unwrapped pixels using the 314 

RMSE metric increases rapidly. 315 

 316 
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Figure 6. a) RMSE and DPSI plotted for different level of noise. The black vertical dashed line marks 317 

=. The plots of inferred scaling value and incorrectly unwrapped pixels are illustrated in b and c, 318 

respectively. The black horizontal solid lines in (b) and (c) mark the true scaling value (0.75) and zero 319 

incorrectly unwrapped pixels.  320 

3.2 Synthetic interferograms for Camp Trail Landslide: Sub-sections with different 321 

behaviors 322 

A deforming region such as a landslide can contain sub-regions that accelerate and 323 

decelerate at different rates (e.g., Delbridge et al., 2016). To examine the impact of temporal 324 

complexity, we generate synthetic interferograms for the Camp Trail scenario that contain a 325 

smaller sub-section of the slide with a 20% higher value of the actual scaling values, R0. Figure 326 

2a shows the reference interferogram we used and the boundary of the subsection (R0=0.88), 327 

which has a 20% higher actual scaling value, R0 than the rest of the landslide (R0=0.72). The 328 

average value of R0 across the entire area of the landslide is 0.75.  329 

We calculated RMSE, DPSI, R, and the percentage of incorrectly unwrapped pixels for 330 

different levels of  from 0 to 2 radians with the interval of 0.1 radians in the same manner as in 331 

Section 3.1 (Appendix A, Figure A-1). Just as seen in the example explored in Section 3.1, the 332 

error function RMSE is successful in estimating the correct average value of scaling, R, and 333 

results in very small (<1%) percentages of incorrectly wrapped pixels when the noise is 334 

generated with standard deviation values smaller than about 1.65 radians. As expected, the 335 

number of incorrectly wrapped pixels is larger than for the case where the data was generated 336 

using a constant value of R0. The DPSI metric begins to diverge from the correct solution for 337 

noise generated with standard deviation values larger than about 1.2 radians. The plots of 338 

estimated scaling values and incorrectly unwrapped phases in Figures 6, and A-1 show that the 339 

number of mismatched pixels, i.e., unwrapping errors, increases drastically for both data sets 340 

when the standard deviation of residual phase becomes greater than 1.65 radian. Also, at the 341 

standard deviation higher than 1.65, DPSI decreases to smaller than 0.15 values. Therefore, 342 

RMSE=1.65 and DPSI=0.15 (equivalent to σ≈ 1.65) can be considered as the threshold to 343 

distinguish correctly unwrapped images, at least for scenarios similar in spatial scale and strain 344 

rates as those explored here. 345 

4. Evaluation using real data 346 

We used UAVSAR data over the Slumgullion landslide to evaluate our pattern-based 347 

unwrapping approach. Remote sensing studies and in-situ measurements suggest that the 348 

Slumgullion landslide is characterized by rapid deformation with rates of up to 2 cm/day (e.g., 349 

Delbridge et al., 2016; Coe et al., 2003). Much of the motion appears to occur during the spring 350 

and summer, suggesting that variations in pore pressure associated with precipitation and snow 351 

melt may play a large role in controlling the amount of deformation (e.g., Delbridge et al., 2016; 352 

Coe et al., 2003). The active slide is about 300 m wide and 4 km long, with a front to toe 353 

elevation difference of about 540 m (e.g., Coe et al., 2003; Mohlenbrock, 1989; Gomberg et al., 354 

1995). InSAR has been successfully used to measure the spatial and temporal behavior of some 355 

creeping landslides, including Slumgullion (e.g., Bekaert et al., 2020; Hu et al., 2019; 356 

Handwerger et al., 2013). However, the rapid, several cm/day displacement rate of the 357 

Slumgullion landslide results in aliasing and loss of coherence for most UAVSAR 358 
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interferograms covering timespans longer than a week and limits the time periods that can be 359 

studied using this data and traditional unwrapping approaches.  360 

One strategy that has been successfully used to map deformation in fast-moving 361 

landslides is the tracking of pixel offsets in both optical and SAR imagery. Various offset 362 

tracking methods have been developed so far and applied to deformation mapping and 363 

monitoring (e.g., Le Bivic et al., 2017; Raspini et al., 2015). The advantages of offset tracking 364 

compared to use of the InSAR technique are that offset tracking is not influenced by the need for 365 

phase unwrapping and difficulties with aliasing, and the need for a reference point or region is 366 

reduced. Tracking of pixel offsets provides measurements in both the azimuth and range 367 

directions, unlike InSAR, which only provides a measurement in the range direction unless split-368 

beam or multiple-aperture interferometry methods are used (e.g., Bechor & Zebker, 2006; 369 

Grandin et al., 2016). However, when correctly unwrapped, InSAR provides a more precise 370 

measurement of deformation in the range direction when compared to offset tracking. The 371 

azimuth and range offset accuracies are estimated to be on the order of 1/16, and 1/32 of the 372 

ground pixel spacing dimensions, respectively (e.g., Casu et al., 2011; Singleton et al., 2014; Sun 373 

& Muller, 2016). In the range direction, using UAVSAR data with range pixel size of 1.67 m, the 374 

accuracy of range offsets tracking is expected to be about 5 cm. Considering that the 375 

displacement rate of the Slumgullion landslide is 1-2 cm/day, this level of accuracy is a small 376 

fraction of total displacement occurring between pairs of images spanning several weeks or 377 

more, so useful measurements of displacements in the range direction can be provided by offset 378 

tracking over those time spans. However, for shorter time-scale pairs, the noise in the offset-379 

tracking results is expected to be larger than the actual ground displacement signal.  380 

We used thirty-four HH polarized UAVSAR single look complex (SLC) images acquired 381 

from path 12502 between Aug. 11, 2011, and July 19, 2019, to generate seventy-six 382 

interferograms spanning time intervals of up to 9.5 months. We downloaded data from NASA’s 383 

UAVSAR data website (https://uavsar.jpl.nasa.gov/). We processed the interferograms using the 384 

ISCE-2 software (Agram et al., 2016). We removed the impact of topography with (put in name 385 

of DEM and reference here).  We multi-looked the interferograms by 6 and 17 in the range and 386 

azimuth directions, respectively. Because the original resolution of the UAVSAR data is 0.6 and 387 

1.67 m in azimuth and range directions, respectively, this is equivalent to pixel sizes of about 10 388 

meters. We performed an initial unwrapping attempt using the Snaphu-Minimum Cost Flow 389 

method (Snaphu-MCF, (Chen & Zebker, 2002)). We also generated pixel offsets in the range 390 

direction based on UAVSAR single-looked amplitude images using AMPCOR, the pixel offset 391 

tracking package embedded in ISCE-2 software. The reference and the search windows were, 392 

respectively 32 × 32 pixels, and 17 × 6 pixels. The correlation oversample factor was 128. 393 

Due to the rapid ground deformation associated with the Slumgullion landslide, all of the 394 

interferograms with temporal baselines larger than seven days and even some of the shorter-395 

timescale interferograms included numerous aliasing-induced phase errors after unwrapping 396 

using the standard approach described above. Only nine of the unwrapped interferograms, all 397 

with temporal baselines of seven days, appear visually to be unaffected by unwrapping errors.  398 

We used the average rate of these nine highest-quality interferograms (Figure A-2) as the 399 

reference displacement rate (Figure 7). We then used this reference displacement rate to unwrap 400 

all the other interferograms (still within range-doppler coordinates to minimize the impact of 401 

geo-referencing-related interpolation errors) using our pattern-based method, as described in 402 

Section 2 403 
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We compare the resulting unwrapped interferograms with pixel offsets in the range 404 

direction to evaluate the results and validate our pattern-based unwrapping approach and how it 405 

performs over a wide range of timescales and conditions. The range offsets can be compared 406 

directly to InSAR phase measurements, which are also in the range direction, but are hampered 407 

by the signal to noise constraints discussed above, particularly for short time-scale pairs. Below, 408 

we show three examples (dates in Table 2) out of the sixty-eight unwrapped interferograms in 409 

our study (Figure 8). Six more examples are shown in Appendix section (Figures A-3 and A-4). 410 

Figure 8 shows examples of the interferograms unwrapped using our pattern-based approach, the 411 

residual phase 𝑢𝑟𝑒𝑠, and the range direction offsets. We also indicate the inferred value of R for 412 

each interferogram. Note that interferogram (c) is associated with a higher value of R (higher 413 

rates) than interferogram (b), which overlaps and spans a longer time interval.  This suggests 414 

some variability in rate over the 133-day time period of (b). 415 

 416 

 417 
Figure 7. The reference rate and individual regions described in the text. Image shown in range-doppler 418 

coordinates, with approximate location and scale indicated in Figure 1. 419 

Table 1. The dates and temporal baselines of the interferograms in Figure 8. 420 

 Interferogram 

Temporal 

Baseline 

(days) 

R RMSE DPSI 

a 
2018-07-25 

2018-10-03 
70 0.81 1.3 0.46 

b 
2016-06-16 

2016-10-27 
133 1.04 1.57 0.39 

c 
2019-06-10 

2019-07-15 
35 1.47 1.05 0.80 

 421 
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422 

423 

 424 
Figure 8. The residual phase, ures (res), unwrapped interferograms (u), and the range direction offsets (ϰ) 425 

of interferograms 2018-07-25 to 2018-10-03 (a), 2016-06-16 to 2016-10-27 (b), and 2019-06-10 to 2019-426 

07-15 (c). 427 

 428 
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 429 
Figure 9. Plot of RMSE and DPSI (color) vs. peak LOS displacement (98th percentile), and RMSE=1.65 430 

cutoff inferred from synthetic tests (black dashed line).  Interferograms with DPSI values < 0.15 are also 431 

outlined in black. Red circle indicates interferograms unwrapped using a “secondary reference” process 432 

described below. 433 

The results of the synthetic data tests described above suggested using DPSI=0.15 and 434 

RMSE=1.65 as the threshold values to identify correctly unwrapped interferograms. Figure 9 435 

illustrates the variations of RMSE (y-axis) and DPSI (color) versus the peak displacement 436 

(shown as the 98
th

 percentile of LOS displacement of our unwrapped UAVSAR interferograms) 437 

over Slumgullion. The black dashed horizontal line on the plot represents RMSE=1.65. All the 438 

interferogram above the threshold line of RMSE=1.65, or with DPSI values < 0.15 (purple-pink 439 

colors) should be considered suspect, according to the synthetic tests. The interferograms with 440 

DPSI values smaller than 0.15 are outlined in black in Figure 9 for clarification. The comparison 441 

with offset-tracking displacement images showed that all interferograms with RMSE values 442 

smaller than 1.65 and DPSI values greater than 0.15 are reliably unwrapped. Some of the 443 

interferograms with DPSI and RMSE values outside of these thresholds agree well with the 444 

pixel-tracking results and do appear to be correctly unwrapped as well. However, we only 445 

consider the forty-five out of sixty-eight interferograms that meet both conditions as “correctly 446 

unwrapped” in our analysis below.  447 

Figure 10 directly compares the set of correctly unwrapped interferograms and offset 448 

tracking displacements, including the nine reference interferograms. For each interferogram time 449 

interval, the 2
nd

 and 98
th

 percentiles of the interferometric and offset-tracking displacements rates 450 

over the entire landslide are shown (Figure 10a) as well as the displacement rates at three 451 

selected locations (Figure 10b). The ranges shown in Figure 10a represent both the noise in the 452 

data as well as actual variability in the rates over the entire landslide.  Overlap between pairs can 453 

be seen in variations of shading. We find a good correlation between interferometric and offset 454 
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tracking displacement rates, with offset tracking showing more variability, particularly for short-455 

term pairs, than the interferometric displacement rates.  456 

Figure 10b illustrates the interferogram-derived displacement rates averaged over three 457 

selected small areas on the Slumgullion landslide (locations shown in Figure 7). The 458 

displacement rates at these three locations possess similar trends but different magnitude.  459 

 460 

 461 
Figure 10. a) The displacement rates (cm/day) from range offset tracking displacements (ϰ) of all 462 

seventy-seven image pairs, and for the fifty-four correctly unwrapped interferograms (u). The 463 

displacement rates between 2nd percentile (P2nd) and 98th percentile (P98th) over the entire landslide are 464 

plotted, in order to represent the spatial variability present in the data. b) The interferogram displacement 465 

rates (cm/day, u) for three selected small areas (locations shown in Figure 7, a1, a2, and a3).  466 

One strategy for unwrapping longer-timespan interferograms with low DPSI and high 467 

RMSE values is to use multiple reference interferograms. This can be done by using a reliably 468 

unwrapped reference interferogram that is closer in time (and, therefore, less likely to include 469 

real variations in displacement rate) to the poor-quality interferogram. We explore this approach 470 

for the poor-quality interferograms described above (black circles in Figure 9) by selecting a new 471 

reference for each from the set of previously unwrapped interferograms by considering the 472 

temporal proximity. The temporal proximity is the average of the absolute time lag between the 473 

first images and the absolute time lag between the second images.  474 

 475 
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 476 
Figure 11. The unwrapped interferogram generated by Snaphu (us), the unwrapped interferogram 477 

generated by our pattern-based approach using a secondary reference image (u), the difference between 478 

the unwrapped interferograms generated using the initial and secondary reference images (δ = secondary 479 

unwrapped phase – initial unwrapped phase), and the range direction offset (ϰ) of the pair 2011-08-12 to 480 

2012-05-09. The temporal baseline is 271 days.  481 

This approach decreases the residual phase, increases the DPSI value, and results in a 482 

larger number of reliably unwrapped interferograms. In Figure 9, five interferograms, which are 483 

circled in red, were initially identified as incorrectly unwrapped interferograms using our initial 484 

velocity reference and DPSI and RMSE cutoff values. However, using secondary reference 485 

images led to higher DPSI values and smaller RMSE values. Figure 11 illustrates the impact of 486 

the use of a secondary reference on one of these five interferograms. The original, much noisier 487 

unwrapped interferogram generated by Snaphu (us) contrasts greatly with the pattern-based 488 

approach (u) using our initial velocity reference, and the range direction offsets (ϰ).  We also 489 

show the phase difference between the unwrapped interferograms generated using the initial 490 

short-baseline reference image and a secondary longer-baseline reference image (δ). The phase 491 

difference between the interferograms generated using initial and secondary references is 2π over 492 

the tail (upper left, in Figure 11) of the landslide. The phase difference for the rest of the pixels is 493 

zero except for small number of pixels where it 4π. The initial DPSI and RMSE values of the 494 

interferogram are 0.11, and 1.72. However, the secondary DPSI, and RMSE values are 0.24, and 495 

1.58, respectively.  496 

5. Conclusions 497 

In this paper, we introduce a pattern-based unwrapping method for use in rapidly 498 

deforming regions. The approach uses a reference interferogram as an initial pattern of 499 

deformation, but allows the overall magnitude of this displacement rates within that reference to 500 

vary over time. The residual phase between the unwrapped interferogram using this approach 501 

and the scaled, reference interferogram contains any noise or real-world variability between the 502 

pattern of deformation used as a reference and the actual deformation occurring within a 503 

particular interferogram. We examine the behavior of two metrics, DPSI and RMSE, to 504 

characterize the size of the residual phase values.  We used a set of synthetic interferograms 505 

generated over a small landslide to the southeast of the Slumgullion landslide to examine the 506 

impact of noise and temporal variability of strain and find that we reliably unwrap pairs when 507 

DPSI is greater than a threshold value of 0.15 and the RMSE is smaller than 1.65. These values 508 

would be expected to vary, given the spatial extent, strain rates and noise levels that characterize 509 

a given target area. 510 
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To evaluate the performance of our approach on real data, and to test how well our 511 

quality metrics perform in a different region, we examined UAVSAR interferograms over the 512 

Slumgullion landslide in Colorado. The Slumgullion landslide moves with a rate of 1-2 cm/day 513 

(e.g., Delbridge et al., 2016; Coe et al., 2003). Therefore, L-band UAVSAR interferograms with 514 

temporal baselines larger than seven days are affected by phase aliasing. We examined a total of 515 

seventy-seven interferograms, but found that only nine interferograms, all with temporal 516 

baselines of seven days or smaller, were reliably unwrapped using the standard workflow. We 517 

applied our pattern-based approach to the remaining sixty-eight remaining interferograms and 518 

compared the results with the results of range offset tracking. We found that our pattern-based 519 

unwrapping method was successful in unwrapping forty-five of the interferograms, and that the 520 

interferograms that were reliably unwrapped all had DPSI values larger than 0.15 and RMSE 521 

value smaller than 1.65.  This result suggests that, even though the Camp Trail landslide differs 522 

from the Slumgullion landslide in some respects, the quality metrics derived from the Camp 523 

Trail synthetic tests are still applicable to the Slumgullion results, and, perhaps, more widely. 524 

As mentioned previously, over the Slumgullion landslide, UAVSAR interferograms with 525 

temporal baselines larger than seven days (and even some interferograms covering shorter 526 

timescales) are impacted by aliasing of the phase and present a challenge to traditional 527 

unwrapping methods. We found our pattern-based unwrapping approach can unwrap 528 

interferograms with displacements of up to about 38 π radians, equivalent to 144 cm, in a manner 529 

that agrees well with the independently generated range offset results. We find that the 530 

magnitude of inferred displacement varies over time, as expected, and the pattern of deformation 531 

within the unwrapped results sometimes has larger or smaller displacement rates in the 532 

uppermost or lower regions of the slide.  533 

We also explored the use of a “secondary” reference, where the initial set of longer-534 

timescale interferometric pairs unwrapped using our method could themselves then be used as a 535 

reference for more problematic pairs.  This allows the use of a reference interferogram that is 536 

closer in time to the pair targeted for unwrapping.  We find that this approach results in better 537 

quality metrics, as expected, with very little change in the actual unwrapped phase.  This 538 

approach shows promise both as a way to increase the time intervals over which unwrapping can 539 

be reliably performed, but also as a means of determining how robust the unwrapping actually is.  540 

In the case shown in Figure 11, the final unwrapped phase differs very little when a primary vs. 541 

secondary reference is used, suggesting that the result does not depend strongly on the existence 542 

of a reference that is temporally close to the target interferogram. 543 

This pattern-based unwrapping approach is simple to implement, somewhat robust to 544 

variability in the pattern of deformation, and allows for true variability in the overall rate of 545 

deformation within a landslide, as may be expected in locations where rainfall is an important 546 

trigger for landslide motion.  The approach will not perform well in the presence of vary large 547 

amounts of noise, or in cases where the true deformation within an interferogram contains 548 

differences in the pattern of strain that are larger than around half of a wavelength.  While both 549 

of these conditions certainly exist in many areas of interest, our approach can still be used to 550 

extend the time periods over which InSAR data can be reliably unwrapped. 551 
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