References
Abraham, F. F., Brodbeck, D., Rudge, W. E., & Xu, X. (1997). A molecular dynamics investigation of rapid fracture mechanics.Journal of the Mechanics and Physics of Solids , 45 (9), 1595–1619.
Andrews, D. J. (1976). Rupture Propagation With Finite Stress in Antiplane Strain. Journal of Geophysical Research , 81 (20), 3575–3582.
Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid Earth ,110 (1), 1–14.
Ben-Zion, Y., & Shi, Z. (2005). Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk. Earth and Planetary Science Letters , 236 (1–2), 486–496.
Bleyer, J., & Molinari, J. F. (2017). Microbranching instability in phase-field modelling of dynamic brittle fracture. Applied Physics Letters , 110 (15), 151903.
Bouchbinder, E., Goldman, T., & Fineberg, J. (2014). The dynamics of rapid fracture: Instabilities, nonlinearities and length scales.Reports on Progress in Physics , 77 (4), 046501.
Broughton, J. Q., Meli, C. A., Vashishta, P., & Kalia, R. K. (1997). Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices. Physical Review B - Condensed Matter and Materials Physics , 56 (2), 611–618.
Buehler, M. J., & Gao, H. (2006). Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature , 439 (7074), 307–310.
Buehler, M. J. (2008). Atomistic modeling of materials failure . Springer Science & Business Media.
d’Amour, H., Denner, W., & Schulz, H. (1979). Structure determination of α-quartz up to 68 x 108 Pa. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry , 35 (3), 550–555.
Di Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics ,402 (1-4 SPEC. ISS), 55–80.
Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the SanAndreas fault. Nature Geoscience , 2 (10), 709–712.
Dor, O., Ben-Zion, Y., Rockwell, T. K., & Brune, J. (2006). Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters , 245 (3–4), 642–654.
Fineberg, J., Gross, S. P., Marder, M., & Swinney, H. L. (1991). Instability in dynamic fracture. Physical Review Letters ,67 (4), 457–460.
Glinnemann, J., King Jr, Η. E., Schulz, H., Hahn, T., La Placa, S. J., & Dacol, F. (1992). Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure.Zeitschrift Für Kristallographie-Crystalline Materials ,198 (1–4), 177–212.
Guren, M.G. (2022). Supplementary data for “Nanoscale modelling of dynamic rupture and damage generation in alpha-quartz” [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5873712
Hazen, R. M., Finger, L. W., Hemley, R. J., & Mao, H. K. (1989). High-pressure crystal chemistry and amorphization of α-quartz.Solid State Communications , 72 (5), 507–511.
Iwasaki, H., & Torikai, D. (1993). Thermal shock of quartz lascas.Journal of Materials Science , 28 (19), 5223–5228.
Johri, M., Dunham, E. M., Zoback, M. D., & Fang, Z. (2014). Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations. Journal of Geophysical Research: Solid Earth , 119 , 1251–1272.
Jorgensen, J. D. (1978). Compression mechanisms in α‐quartz structures—SiO2 and GeO2. Journal of Applied Physics ,49 (11), 5473–5478.
Kendall, K. (1978). The impossibility of comminuting small particles by compression. Nature , 272 (5655), 710–711.
Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A. M., & Ito, H. (2007). Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology , 29 (8), 1282–1300.
Leong, A. F. T., Robinson, A. K., Fezzaa, K., Sun, T., Sinclair, N., Casem, D. T., Lambert, P. K., Hustedt, C. J., Daphalapurkar, N. P., & Ramesh, K. T. (2018). Quantitative in situ studies of dynamic fracture in brittle solids using dynamic X-ray phase contrast imaging.Experimental Mechanics , 58 (9), 1423–1437.
Livne, A., Cohen, G., & Fineberg, J. (2005). Universality and hysteretic dynamics in rapid fracture. Physical Review Letters ,94 (22), 224301.
Madariaga, B. Y. R. (1976). Dynamics of an expanding circular fault.Bulletin of the Sesimological Society of America , 66 (3), 639–666.
Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology , 31 (8), 802–816.
Muto, J., Nakatani, T., Nishikawa, O., & Nagahama, H. (2015). Fractal particle size distribution of pulverized fault rocks as a function of distance from the fault core. Geophysical Research Letters ,42 (10), 3811–3819.
Nakano, A., Kalia, R. K., & Vashishta, P. (1994). First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations. Journal of Non-Crystalline Solids , 171 (2), 157–163.
Parks, G. A. (1984). Surface and interfacial free energies of quartz.Journal of Geophysical Research: Solid Earth , 89 (B6), 3997–4008.
Paul, P. K., Zoback, M. D., & Hennings, P. H. (2007). Fluid Flow in a Fractured Reservoir Using a Geomechanically-Constrained Fault Zone Damage Model for Reservoir Simulation. In SPE Annual Technical Conference and Exhibition (p. SPE-110542-MS).
Petley-Ragan, A., Ben-Zion, Y., Austrheim, H., Ildefonse, B., Renard, F., & Jamtveit, B. (2019). Dynamic earthquake rupture in the lower crust. Science Advances , 5 (7), 1–8.
Plimpton, S. (1995). Fast Parallel Algorithms for Short – Range Molecular Dynamics. Journal of Computational Physics ,117 (1), 1–19.
Prasher, C. L. (1987). Crushing and grinding process handbook . Wiley, New York.
Ravi-Chandar, K., & Knauss, W. G. (1984). An experimental investigation into dynamic fracture: II. Microstructural aspects. International Journal of Fracture , 26 (1), 65–80.
Reches, Z., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth and Planetary Science Letters , 235 (1–2), 361–374.
Rempe, M., Mitchell, T., Renner, J., Nippress, S., Ben‐Zion, Y., & Rockwell, T. (2013). Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research: Solid Earth , 118 (6), 2813–2831.
Rudnicki, J. W. (1980). Fracture mechanics applied to the Earth’s crust.Annual Review of Earth and Planetary Sciences , 8 , 489–525.
Sammis, C., King, G., & Biegel, R. (1987). The kinematics of gouge deformation. Pure and Applied Geophysics , 125 (5), 777–812.
Sammis, C. G., & Ben-Zion, Y. (2008). Mechanics of grain-size reduction in fault zones. Journal of Geophysical Research: Solid Earth ,113 (2), 1–12.
Sharon, E., & Fineberg, J. (1996). Microbranching instability and the dynamic fracture of brittle materials. Physical Review B - Condensed Matter and Materials Physics , 54 (10), 7128–7139.
Sharon, E., & Fineberg, J. (1998). Universal features of the microbranching instability in dynamic fracture. Philosophical Magazine B , 78 (2), 243–251.
Vashishta, P., Kalia, R. K., Rino, J. P., & Ebbsjö, I. (1990). Interaction potential for SiO 2: A molecular-dynamics study of structural correlations. Physical Review B , 41 (17), 12197.
Vinh, P. C., & Ogden, R. W. (2005). On the Rayleigh wave speed in orthotropic elastic solids. Meccanica , 40 (2), 147–161.
Wilson, J. E., Chester, J. S., & Chester, F. M. (2003). Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California. Journal of Structural Geology ,25 (11), 1855–1873.
Wilson, B., Dewers, T., Reches, Z., & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature ,434 (7034), 749–752.
Zhou, S. J., Lomdahl, P. S., Thomson, R., & Holian, B. L. (1996). Dynamic crack processes via molecular dynamics. Physical Review Letters , 76 (13), 2318–2321.