References
Abalos, M., Orbe, C., Kinnison, D. E., Plummer, D., Oman, L. D., Jockel,
P., Morgenstern, O., Garcia, R. R., Zeng, G., Stone, K. A., and Dameris,
M. (2020) Future trends in stratosphere-to-troposphere transport in CCMI
models, Atmos Chem Phys, 20(11), 6883-6901, 10.5194/acp-20-6883-2020.
Anderson, D. C., B. N. Duncan, A. M. Fiore, C. B. Baublitz, M. B.
Follette-Cook, J. M. Nicely, and G. M. Wolfe (2021), Spatial and
temporal variability in the hydroxyl (OH) radical: understanding the
role of large-scale climate features and their influence on OH through
its dynamical and photochemical drivers, Atmos Chem Phys, 21(8),
6481-6508, 10.5194/acp-21-6481-2021.
Brock, C. A., Froyd, K. D., Dollner, M., Williamson, C. J., Schill, G.,
Murphy, D. M., Wagner, N. J., Kupc, A., Jimenez, J. L., Campuzano-Jost,
P., Nault, B. A., Schroder, J. C., Day, D. A., Price, D. J., Weinzierl,
B., Schwarz, J. P., Katich, J. M., Wang, S. Y., Zeng, L. H., Weber, R.,
Dibb, J., Scheuer, E., Diskin, G. S., DiGangi, J. P., Bui, T., Dean-Day,
J. M., Thompson, C. R., Peischl, J., Ryerson, T. B., Bourgeois, I.,
Daube, B. C., Commane, R., and Wofsy, S. C. (2021) Ambient aerosol
properties in the remote atmosphere from global-scale in situ
measurements, Atmos Chem Phys, 21(19), 15023-15063,
10.5194/acp-21-15023-2021.
Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C.,
Blake, D. R., Bui, T. P., Commane, R., Crounse, J. D., Daube, B. C.,
Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T.
F., Hannun, R. A., Hintsa, E. J., Hornbrook, R. S., Kim, M. J., McKain,
K., Moore, F. L., Neuman, J. A., Nicely, J. M., Peischl, J., Ryerson, T.
B., St Clair, J. M., Sweeney, C., Teng, A. P., Thompson, C., Ullmann,
K., Veres, P. R., Wennberg, P. O., and Wolfe, G. M. (2020): Exploring
Oxidation in the Remote Free Troposphere: Insights From Atmospheric
Tomography (ATom), J Geophys Res-Atmos, 125, ARTN e2019JD031685,
10.1029/2019JD031685.
Fishman, J., Watson, C. E., Larsen, J. C., and Logan, J. A. (1990),
Distribution of Tropospheric Ozone Determined from Satellite Data, J
Geophys Res-Atmos, 95, 3599-3617, 10.1029/Jd095id04p03599.
Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L.,
Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler,
B., Horowitz, L. W., Keeble, J., Liu, J., Moeini, O., Naik, V.,
O’Connor, F. M., Oshima, N., Tarasick, D., Tilmes, S., Turnock, S. T.,
Wild, O., Young, P. J., and Zanis, P. (2021) Tropospheric ozone in CMIP6
simulations, Atmos Chem Phys, 21, 4187-4218, 10.5194/acp-21-4187-2021.
Guo, H., Flynn, C. M., Prather, M. J., Strode, S. A., Steenrod, S. D.,
Emmons, L., Lacey, F., Lamarque, J.-F., Fiore, A. M., Correa, G.,
Murray, L. T., Wolfe, G. M., St. Clair, J. M., Kim, M., Crounse, J.,
Diskin, G., DiGangi, J., Daube, B. C., Commane, R., McKain, K., Peischl,
J., Ryerson, T. B., Thompson, C., Hanisco, T. F., Blake, D., Blake, N.
J., Apel, E. C., Hornbrook, R. S., Elkins, J. W., Hintsa, E. J., Moore,
F. L., and Wofsy, S., (2021). Heterogeneity and Chemical Reactivity of
the Remote Troposphere defined by Aircraft Measurements, Atmos. Chem.
Phys., 21, 13729–13746, 10.5194/acp-21-13729-2021.
Holmes, C. D. (2018). Methane feedback on atmospheric chemistry:
Methods, models, and mechanisms. Journal of Advances in Modeling
EarthSystems,10, 1087–1099. doi: 10.1002/2017MS001196.
Holmes, C. D., M. J. Prather, O. A. Sovde, and G. Myhre (2013), Future
methane, hydroxyl, and their uncertainties: key climate and emission
parameters for future predictions, Atmos Chem Phys, 13(1), 285-302,
10.5194/acp-13-285-2013.
Prather, M. J. (2009), Tropospheric O3 from photolysis
of O2, Geophys. Res. Lett., 36, L03811,
10.1029/2008GL036851.
Prather, M.J., Flynn, C.M., Zhu, X., Steenrod, S.D., Strode, S.A.,
Fiore, A.M., Correa, G., Murray, L.T. and Lamarque, J.F., (2018). How
well can global chemistry models calculate the reactivity of short-lived
greenhouse gases in the remote troposphere, knowing the chemical
composition. Atmospheric Measurement Techniques, 11(5), 2653-2668,
https://doi.org/10.5194/amt-11-2653-2018.
Prather, M.J., Zhu, X., Flynn, C.M., Strode, S.A., Rodriguez, J.M.,
Steenrod, S.D., Liu, J., Lamarque, J.F., Fiore, A.M., Horowitz, L.W. and
Mao, J., (2017). Global atmospheric chemistry–which air matters.
Atmospheric Chemistry and Physics, 17(14), 9081-9102,
10.5194/acp-17-9081-2017.
Roelofs, G. J., and J. Lelieveld (1997), Model study of the influence of
cross-tropopause O-3 transports on tropospheric O-3 levels, Tellus B,
49(1), 38-55, 10.1034/j.1600-0889.49.issue1.3.x.
Schill, G. P., Froyd, K. D., Bian, H., Kupc, A., Williamson, C., Brock,
C. A., Ray, E., Hornbrook, R. S., Hills, A. J., Apel, E. C., Chin, M.,
Colarco, P. R., and Murphy, D. M. (2020), Widespread biomass burning
smoke throughout the remote troposphere, Nat Geosci, 13, 422-425,
10.1038/s41561-020-0586-1, 2020.
Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J. F., Shindell, D.
T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen,
T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I.
A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann,
D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee,
Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi,
M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.,
(2013), Tropospheric ozone changes, radiative forcing and attribution to
emissions in the Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP), Atmos Chem Phys, 13, 3063-3085,
10.5194/acp-13-3063-2013.
Strode, S. A., J. H. Liu, L. Lait, R. Commane, B. Daube, S. Wofsy, A.
Conaty, P. Newman, and M. Prather (2018), Forecasting carbon monoxide on
a global scale for the ATom-1 aircraft mission: insights from airborne
and satellite observations and modeling, Atmos Chem Phys, 18(15),
10955-10971, 10.5194/acp-18-10955-2018.
Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco,
T. F., Ryerson, T. B., Fahey, D. W., Apel, E. C., Brock, C. A., Brune,
W. H., Froyd, K., Katich, J. M., Nicely, J. M., Peischl, J., Ray, E.,
Veres, P. R., Wang, S., Allen, H. M., Asher, E., Bian, H., Blake, D.,
Bourgeois, I., Budney, J., Bui, T. P., Butler, A., Campuzano-Jost, P.,
Chang, C., Chin, M., Commane, R., Correa, G., Crounse, J. D., Daube, B.,
Dibb, J. E., Digangi, J. P., Diskin, G. S., Dollner, M., Elkins, J. W.,
Fiore, A. M., Flynn, C. M., Guo, H., Hall, S. R., Hannun, R. A., Hills,
A., Hintsa, E. J., Hodzic, A., Hornbrook, R. S., Huey, L. G., Jimenez,
J. L., Keeling, R. F., Kim, M. J., Kupc, A., Lacey, F., Lait, L. R.,
Lamarque, J., Liu, J., Mckain, K., Meinardi, S., Miller, D. O., Montzka,
S. A., Moore, F. L., Morgan, E. J., Murphy, D. M., Murray, L. T., Nault,
B. A., Neuman, J. A., Nguyen, L., Gonzalez, Y., Rollins, A., Rosenlof,
K., Sargent, M., Schill, G., Schwarz, J. P., St. Clair, J. M., Steenrod,
S. D., Stephens, B. B., Strahan, S. E., Strode, S. A., Sweeney, C.,
Thames, A. B., Ullmann, K., Wagner, N., Weber, R., Weinzierl, B.,
Wennberg, P. O., Williamson, C. J., Wolfe, G. M., & Zeng, L., (2021),
The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of
the Global Atmosphere, Bulletin of the American Meteorological Society,
on-line release, 10.1175/bams-d-20-0315.1.
Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R.,
Blake, D. R., Brune, W. H., Chen, X., Commane, R., Crounse, J. D.,
Daube, B. C., Diskin, G. S., Elkins, J. W., Evans, M. J., Hall, S. R.,
Hintsa, E. J., Hornbrook, R. S., Kasibhatla, P. S., Kim, M. J., Luo, G.,
McKain, K., Millet, D. B., Moore, F. L., Peischl, J., Ryerson, T. B.,
Sherwen, T., Thames, A. B., Ullmann, K., Wang, X., Wennberg, P. O.,
Wolfe, G. M., and Yu, F. Q. (2020), Constraining remote oxidation
capacity with ATom observations, Atmos Chem Phys, 20, 7753-7781,
10.5194/acp-20-7753-2020.
Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M.,
Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames,
A. B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M.,
Price, D., Peischl, J., Nault, B. A., Moller, K. H., Miller, D. O.,
Meinardi, S., Li, Q. Y., Lamarque, J. F., Kupc, A., Kjaergaard, H. G.,
Kinnison, D., Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills,
A., Dollner, M., Day, D. A., Cuevas, C. A., Campuzano-Jost, P.,
Burkholder, J., Bui, T. P., Brune, W. H., Brown, S. S., Brock, C. A.,
Bourgeois, I., Blake, D. R., Apel, E. C., and Ryerson, T. B. (2020),
Global airborne sampling reveals a previously unobserved dimethyl
sulfide oxidation mechanism in the marine atmosphere, P Natl Acad Sci
USA, 117, 4505-4510, 10.1073/pnas.1919344117.
Voulgarakis, A., Naik, V., Lamarque, J. F., Shindell, D. T., Young, P.
J., Prather, M. J., Wild, O., Field, R. D., Bergmann, D., Cameron-Smith,
P., Cionni, I., Collins, W. J., Dalsoren, S. B., Doherty, R. M., Eyring,
V., Faluvegi, G., Folberth, G. A., Horowitz, L. W., Josse, B.,
MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S.
T., Stevenson, D. S., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.,
(2013), Analysis of present day and future OH and methane lifetime in
the ACCMIP simulations, Atmos Chem Phys, 13, 2563-2587,
10.5194/acp-13-2563-2013.
Williamson, C. J., Kupc, A., Rollins, A., Kazil, J., Froyd, K. D., Ray,
E. A., Murphy, D. M., Schill, G. P., Peischl, J., Thompson, C.,
Bourgeois, I., Thomas, B. R. A., Diskin, G. S., DiGangi, J. P., Blake,
D. R., Bui, T. P. V., Dollner, M., Weinzierl, B., and Brock, C. A.
(2021), Large hemispheric difference in nucleation mode aerosol
concentrations in the lowermost stratosphere at mid- and high latitudes,
Atmos Chem Phys, 21, 9065-9088, 10.5194/acp-21-9065-2021.
Wofsy, S.C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace
Gases, and Aerosols. ORNL DAAC, Oak Ridge, Tennessee, USA.
10.3334/ORNLDAAC/1581.
Wolfe, G. M., Nicely, J. M., Clair, J. M. S., Hanisco, T. F., Liao, J.,
Oman, L. D., Brune, W. B., Miller, D., Thames, A., Abad, G. G., Ryerson,
T. B., Thompson, C. R., Peischl, J., McCain, K., Sweeney, C., Wennberg,
P. O., Kim, M., Crounse, J. D., Hall, S. R., Ullmann, K., Diskin, G.,
Bui, P., Chang, C., and Dean-Day, J. (2019), Mapping hydroxyl
variability throughout the global remote troposphere via synthesis of
airborne and satellite formaldehyde observations, P Natl Acad Sci USA,
116, 11171-11180, 10.1073/pnas.1821661116.
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y.,
Neu, J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S.,
Wild, O., Zhang, L., Ziemke, J., Brandt, J., Delcloo, A., Doherty, R.
M., Geels, C., Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A.,
Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G.,
Woodhouse, M. T., and Zeng, G., (2018) Tropospheric Ozone Assessment
Report: Assessment of global-scale model performance for global and
regional ozone distributions, variability, and trends, Elementa-Science
of the Anthropocene, 6, 10.1525/elementa.265.
Table 1. First-order sensitivities of the reactivities (R) with
respect to the dominant species (X), S ≡ ∂[ln(R)]/∂[ln(X)]
(%/%) are calculated with a perturbation of 10%. Results are averaged
over ATom-1234 for Pacific and Atlantic basins (54°S to 60°N), and the
standard deviation is shown. The H2O results include
only ATom-1. The CTM results are calculated using the chemical species
from the UCI CTM on 16 August 2016 as the initial conditions, and
separate large Pacific and Atlantic blocks are used (see Figure S1 of
G2021) and air-mass weighted, with the average of the 2 basins shown
here. For the expanded ATom table showing Pacific and Atlantic, and the
4 deployments separately, plus the other species (HCHO,
H2O2, PAN, HNO3,
HNO4, CH3OOH,
C2H6, C3+-alkanes) see
Supplemental Table S1.