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Abstract17

End of century projections from Coupled Model Intercomparison Project (CMIP) mod-18

els show a decrease in precipitation over subtropical oceans that often extends into sur-19

rounding land areas, but with substantial intermodel spread. Changes in precipitation20

are controlled by both thermodynamical and dynamical processes, though the impor-21

tance of these processes for regional scales and for intermodel spread is not well under-22

stood. The contribution of dynamic and thermodynamic processes to the model spread23

in regional precipitation minus evaporation (P-E) is computed for 48 CMIP models. The24

intermodel spread is dominated essentially everywhere by the change of the dynamic term,25

including in most regions where thermodynamic changes dominate the multi-model mean26

response. The dominant role of dynamic changes is insensitive to zonal averaging which27

removes any influence of stationary wave changes, and is also evident in subtropical oceanic28

regions. Relatedly, intermodel spread in P-E is generally unrelated to climate sensitiv-29

ity.30

Plain Language Summary31

Climate change will lead to hydroclimate changes, however the physical process(es)32

whereby climate change leads to these hydroclimate change are still uncertain, especially33

on regional scales. The causes of intermodel spread, which determines the uncertainty34

in future projections, are also not well understood. We demonstrate that uncertainty in35

future changes are driven almost everwhere by changes in the large scale winds, while36

the precise amount of warming simulated by a given model is largely irrelevant. This high-37

lights that reducing uncertainty in future hydroclimate changes requires primarily nar-38

rowing uncertainties in the circulation response.39

1 Introduction40

Earth’s water cycle has already begun to change, and these changes will intensify41

as the climate warms (Manabe & Wetherald, 1980; Mitchell, 1983; Cubasch et al., 2001;42

Allen & Ingram, 2002), impacting societies and ecosystems throughout the world. The43

net water flux at the surface - precipitation minus evapotranspiration over land or pre-44

cipitation minus evaporation over ocean (P - E) - is a key aspect of the water cycle as45

it regulates oceanic salinity and continental aridity. While globally averaged P - E must46

be zero both in the present climate and in the future, regional variability in P - E can47

arise from a range of dynamic and thermodynamic processes which are, in turn, affected48

by climate change.49

Over oceans, projected changes in P - E on large scales appear to scale with changes50

in surface temperature in both the tropics (Chou & Neelin, 2004; Chou et al., 2009) and51

further poleward (Mitchell et al., 1987; Held & Soden, 2006; Byrne & O’Gorman, 2015).52

If future changes in relative humidity are assumed small, a simple thermodynamic scal-53

ing yields a change in P - E due to the Clausius-Clapeyron relation, with a moistening54

of the tropics and extratropics and a drying of the subtropics at a rate of approximately55

7%K−1 with respect to the local surface temperature change (Chou & Neelin, 2004; Held56

& Soden, 2006). This “wet-get-wetter, dry-get-drier” response is a consequence of increas-57

ing atmospheric water vapor content under a fixed wind pattern. On large spatial scales,58

this mechanism, along with its extensions to account for changes in temperature and rel-59

ative humidity over land (Byrne & O’Gorman, 2015), appears to account for the multi-60

model mean response in many regions (Held & Soden, 2006; Byrne & O’Gorman, 2015;61

Polson & Hegerl, 2017). In addition to this thermodynamic mechanism, dynamic changes62

in winds contribute to precipitation changes, and can dominate the regional response in63

some regions (Chou et al., 2009; Scheff & Frierson, 2012; Huang et al., 2013; Zappa et64

al., 2015; Fereday et al., 2018; Mindlin et al., 2020; Zappa et al., 2020).65
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These thermodynamic and dynamic factors are important not just for the multi-66

model mean response, but also have been associated with intermodel variability in pro-67

jected drying/wettening. Specifically, a larger increase in mean temperature due to a larger68

climate sensitivity in a given model would imply a stronger thermodynamic effect, while69

intermodel variability in circulation changes are associated with uncertainty in regional70

precipitation (Zappa et al., 2015; T. Shaw et al., 2016; Simpson et al., 2016, 2018; Garfinkel71

et al., 2020; Cao et al., 2020). An example of a region with a wide spread in model pro-72

jections is the Eastern Mediterannean: CMIP models project a decrease of 20-30% of Mediter-73

ranean precipitation by the end of the 21st century as compared to present-day averages74

if the multi-model mean is computed (Giorgi & Lionello, 2008; Kelley et al., 2012; Po-75

lade et al., 2017; Tuel & Eltahir, 2020; Garfinkel et al., 2020). However, there is a wide76

spread among models participating in the fifth phase of CMIP (CMIP5), with projec-77

tions ranging from essentially no change to over a 50% precipitation reduction (Zappa78

et al., 2015; Polade et al., 2017; Garfinkel et al., 2020). Spread in precipitation projec-79

tions exists among models participating in the sixth phase of CMIP (CMIP6) as well,80

as demonstrated for different regions (Almazroui et al., 2020; Jiang et al., 2020; Monerie81

et al., 2020). As adaptation efforts will necessarily differ if the reduction is, say, 10% vs.82

40%, a better understanding (and even narrowing) of the source of this spread is of cru-83

cial importance.84

The goal of this work is to characterize the importance of dynamic vs. thermody-85

namic factors for the multi-model mean response and the intermodel spread in future86

P - E changes. After introducing the data and diagnostic tool in Section 2, we demon-87

strate that even in regions where multi-model mean changes in P - E are driven primar-88

ily by thermodynamic processes, intermodel spread both regionally and also upon tak-89

ing zonal averages is driven by dynamical processes. This highlights that uncertainty in90

future hydro-climate changes both regionally and also on larger scales is driven in large91

part by poorly-constrained circulation changes.92

2 Data and Methods93

The comprehensive model simulations used here are taken from those submitted94

to the fifth and sixth phase of CMIP (CMIP5/6) (Taylor et al., 2012; Eyring et al., 2016).95

We focus on the high-emissions scenarios, RCP8.5 and SSP5-8.5, respectively. We con-96

sider 48 model simulations - 29 CMIP5 simulations and 19 CMIP6 simulations (Table97

1). These models were selected according to the availability of the requisite data in the98

Earth System Grid Federation at the time this study was conducted. We consider the99

change between two 20-year periods, January 2015-December 2034 and January 2079-100

December 2098. Our analysis mainly focuses on the boreal extended winter half-year of101

November through April (NDJFMA), with results for May through October (MJJASO)102

in the supplemental material.103

The contribution of thermodynamical and dynamical processes to P - E is diag-
nosed using the steady-state moisture budget in isobaric coordinates, using discrete model
pressure levels (Seager, Liu, et al., 2014; Seager, Neelin, et al., 2014; Seager et al., 2019):

P − E = −
1

gρw
∇ ·

K
∑

k=1

ukqkdpk (1)

where P is precipitation, E is evapotranspiration, g is the gravity acceleration, ρw is the
density of water, q is specific humidity, u is the vector horizontal velocity, k is the pres-
sure level ranging from k=1 (surface) to K, and dp is the pressure thickness of each level.
The variables in Eq. 1 can be separated into monthly means (overbars), departures from
monthly means (primes - daily and sub-daily variations), and climatological monthly means
(double overbars). Following Seager and Henderson (2013) and neglecting sub-monthly
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variations in dpk, the climatological steady-state moisture budget can be written as:

¯̄P − ¯̄E ≈ −
1

gρw

[

∇ ·
K
∑

k=1

ūk q̄kdpk +∇ ·
K
∑

k=1

u′
kq

′

kdpk

]

. (2)

The first term on the right-hand side (RHS) of Eq. 2 is the moisture convergence
by the mean flow, and the second term is the moisture convergence by transient eddies.
In this study we focus on the mean flow term only, and leave for future work the con-
tribution of transient eddies or surface processes to intermodel spread in the moisture
budget. Note, however, that for all regions discussed in the results, more than 70% of
the intermodel variance in P - E is linearly related to the monthly mean terms, and hence
the neglected terms are relatively smaller. Next, we decompose the mean convergence
into moisture advection and mass divergence terms,

¯̄P − ¯̄E ≈ −
1

gρw

[

K
∑

k=1

(ūk · ∇q̄k + q̄k∇ · ūk)dpk

]

. (3)

Denoting changes between the end-of-the-century (2079-2098) and the beginning-
of-the-century (2015-2034) by ∆, Eq. 3 now becomes

∆( ¯̄P − ¯̄E) ≈ −
1

gρw

K
∑

k=1

∆(ūk · ∇q̄k)dpk −
1

gρw

K
∑

k=1

∆(q̄k∇ · ūk)dpk. (4)

Each of the two terms on the right-hand-side of Eq. 4 can be expanded out, and
then rearranged as:

∆( ¯̄P − ¯̄E) ≈ ∆thermodynamic + ∆dynamic, (5)

where

∆dynamic = −
1

gρw

K
∑

k=1

∆(ūkdpk) · ∇¯̄qk,botc −
1

gρw

K
∑

k=1

¯̄qk,botc∆(∇ · ūkdpk) (6)

and

∆thermodynamic = −
1

gρw

K
∑

k=1

¯̄uk,botc ·∆(∇q̄kdpk)−
1

gρw

K
∑

k=1

∇ · ¯̄uk,botc∆(q̄kdpk) (7)

where botc in a subscript denotes “beginning-of-the-century” values. Here, terms104

involving ∆ūk and ¯̄qk,botc constitute the dynamic component of the mean change, while105

terms involving ∆q̄k and ¯̄uk,botc constitute the thermodynamic component. The second106

thermodynamic term is most closely identified with the “wet-get-wetter” argument, as107

it involves a fixed mass divergence field acting on an altered moisture field, but note that108

the thermodynamic term also includes an advection term of altered humidity gradients109

which is not necessarily small (Seager et al., 2019).110

This decomposition of the mean flow moisture convergence is calculated for every111

month in each of the two study periods, and then averaged seasonally. All terms are com-112

puted using each model’s spatial resolution, and then are interpolated to a common grid113

using linear interpolation. We use monthly data as these were available for more mod-114

els than daily or sub-daily data and allowed for the inclusion of additional models. Fu-115

ture work should consider the role of the transient term in contributing to intermodel116

spread in projected (P - E) for regions in which the monthly mean terms do not account117

for most of the intermodel spread, though note that for all regions discussed in section118
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3 the monthly mean terms dominate and the residual is small. Statistical significance119

for correlation coefficients of the intermodel spread is computed using a two-tailed Student-120

t test at the 95% confidence level, and given 48 distinct models a correlation must ex-121

ceed ±0.29 for a p-value of 0.05. If the effective degrees of freedom is (arbitrarily) cut122

in half due to the fact that many models share code, the minimal correlation rises to ±0.4.123

All results discussed in this paper exceed this higher ±0.4 threshold too. One ensemble124

member is used for each model so as to not exclude modeling groups that only included125

one member but otherwise uploaded all data necessary to compute the (P - E) budget.126

When considering factors leading to intermodel spread in ∆ (P - E), we evaluate127

the linear correlation of ∆ (P - E) with ∆ thermodynamic and with ∆ dynamic, with128

a higher positive correlation implying more explanatory power for the intermodel un-129

certainty in ∆ (P - E). We also assess the extent to which model spread in ∆ (P - E) is130

associated with model spread in changes over the same period of ∆ globally averaged131

surface temperature (i.e. a measure of transient climate sensitivity), calculated as the132

difference in area-weighted global surface temperatures.133

3 Results134

The multi-model decomposition of changes to the moisture budget into a dynamic135

component and a thermodynamic component in NDJFMA is presented in Fig. 1. Fig.136

1a and Fig. 1d show the multi-model mean changes in P - E in CMIP5 and CMIP6 re-137

spectively, and demonstrate that the overall projected changes in the two phases are sim-138

ilar. This similarity extends to the dynamic and thermodynamic terms (Equation 6 and139

7) as well (Fig. 1bcef). In agreement with previous work, the dynamic term is dominant140

over the Mediterranean (Seager, Liu, et al., 2014) while the thermodynamic term dom-141

inates over the Pacific Northwest (Seager, Neelin, et al., 2014). The thermodynamic term142

dominates precipitation changes over tropical Africa, while the dynamic term is most im-143

portant over the tropical Pacific, though in most of the rest of the tropics there is sub-144

stantial cancellation as expected from energetic considerations (Chou & Neelin, 2004;145

Vecchi & Soden, 2007; Xie et al., 2010). Because of the similarity between CMIP5 and146

CMIP6 in Figure 1, similarities in dynamical changes discussed in Harvey et al. (2020)147

and Grise and Davis (2020), and also because CMIP5 and CMIP6 models are interspersed148

in subsequent figures in this paper showing intermodel scatter, we combine both gen-149

erations in the rest of this paper. Zonally and annually averaged drying trends in the150

subtropics are driven primarily by the thermodynamic term (Supplemental Figure S1),151

in agreement with the dry-get-drier mechanism.152

While both the dynamic and thermodynamic terms are important for multi-model153

mean changes, intermodel spread almost everywhere is dominated by the dynamic term.154

This is demonstrated in Figure 2, which shows the across-model correlation coefficient155

between ∆(P−E) and the ∆ dynamic (Figure 2a) and ∆ thermodynamic (Figure 2b)156

terms. Over most oceanic and coastal regions, and also over many continental regions,157

intermodel spread in ∆(P − E) is more closely related to intermodel spread in the ∆158

dynamic term. In contrast, there are only two regions where the spread in the ∆ ther-159

modynamic term is more important: the subtropical eastern margin of oceans (e.g. off160

the coast of West Africa, Namibia, and northern Chile), and also over the Sahara.161

In many subtropical regions, including the Eastern Mediterranean over the Balkan162

Peninsula and over the Pacific north of Hawaii, the ∆ thermodynamic term is negatively163

correlated with the simulated ∆(P −E). In other words, a model with a particularly164

strong drying due to the thermodynamic term in these regions actually tends to simu-165

late an overall wettening. We demonstrate this effect explicitly for the Balkan Peninsula166

(enclosed with a black square in Figure 2) in Figure 3ab. Figure 3 contrasts the ∆(P−167

E) as simulated by each model with the ∆ dynamic (Figure 3a) and ∆ thermodynamic168

terms (Figure 3b) from each model. Consistent with previous work (Seager, Liu, et al.,169
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2014), the multi-model mean change is driven by the dynamic term, and Figure 3a demon-170

strates that the intermodel spread is also driven by the dynamic term, with a statisti-171

cally significant correlation coefficient of 0.83. The thermodynamic term acts as if it were172

a negative feedback (correlation coefficient of -0.6): models with a stronger decrease in173

(P − E) tend to also simulate a moistening from the thermodynamic term.174

Even in regions where the multi-model mean change in ∆(P − E) is dominated175

by the ∆ thermodynamic term, the ∆ dynamic term is in most cases more important176

for intermodel spread. An example of such a region is the Pacific Northwest (enclosed177

with a blue square in Figure 2), and we show the changes in each model for this region178

in Figure 3cd. The ∆ thermodynamic term leads to projected moistening in almost all179

models, however the magnitude of ∆ thermodynamic in a given model is generally un-180

related to the actual change in ∆(P−E) simulated by that model (Figure 3d). In con-181

trast, the intermodel spread in the ∆ dynamic term determines the intermodel spread182

in ∆(P−E) , and this intermodel spread is several times larger in amplitude than the183

multi-model mean ∆ thermodynamic change. The net effect is that uncertainty in the184

circulation response to global warming dominates future uncertainty in the hydrologic185

cycle especially at regional scales.186

Thermodynamic effects play a particularly large role for multi-model mean future187

drying in the subtropical oceans (Fig. 1), and we now focus on whether thermodynamic188

effects play a role in inter-model spread in such a region in Figure 3ef. Specifically, Fig-189

ure 3ef compares the actual ∆(P−E) in the subtropical North Pacific ocean (enclosed190

with a magenta square in Figure 2) simulated by each model to its ∆ dynamic (Figure191

3e) and ∆ thermodynamic components (Figure 3f) in the annual average. Note that the192

chosen region is broader than the regions selected for Figure 3a-d. The intermodel spread193

in subtropical Pacific drying is dictated entirely by the ∆ dynamic term (Figure 3e). In194

contrast, the ∆ thermodynamic term is negatively correlated with the actual ∆(P−E)195

(Figure 3f; similar to the Balkan region discussed in Figure 3ab), with models simulat-196

ing a greater thermodynamic drying also simulating an overall wettening. Hence, aver-197

aging over a broad region, or over a subtropical oceanic region, does not necessarily lead198

to a larger role for the thermodynamic term in explaining intermodel spread.199

For two of the regions considered in Figure 3, the sign of the correlation of inter-200

model spread with the ∆ dynamic term was opposite that of the ∆ thermodynamic term.201

Note that changes in the dynamic and thermodynamic components generally tend to bal-202

ance each other in the multi-model mean as well (Figure 1). While the mechanism for203

compensation likely differs regionally, one example of such a mechanism is the “venti-204

lation effect” (Su & Neelin, 2005) where increased land-sea contrasts drive stronger cir-205

culation which increases precipitation, but reduce relative humidity, which decreases pre-206

cipitation. It is therefore not a trivial result that thermodynamic changes contribute so207

little to model spread in Figure 2 in most other regions.208

Thus far we have focused on regional changes in the hydrologic cycle, and perhaps209

it is not surprising that for regional changes intermodel uncertainty is driven by circu-210

lation uncertainty, as changes in stationary waves (Wills et al., 2019) are known to in-211

fluence regional hydroclimate (Wills & Schneider, 2016; Simpson et al., 2016). In order212

to minimize the effect of such stationary wave changes on the dynamic term, we now fo-213

cus on the role of the thermodynamic and dynamic terms for intermodel spread in ∆(P−214

E) after zonal and meridional averaging.215

Figure 4ab shows the correlation of zonally averaged ∆(P −E) with the zonally216

averaged ∆ thermodynamic and ∆ dynamic terms. For most latitude bands and both217

in NDJFMA and MJJASO, spread in zonally averaged ∆(P −E) is dominated by in-218

termodel spread in the ∆ dynamic term. The only exceptions are the poleward edges219

of the subtropics in the winter hemisphere, where the dynamic and thermodynamic terms220

have a roughly equal contribution to intermodel spread in ∆(P − E).221
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The relative dominance of dynamic changes for intermodel spread in ∆(P − E)222

is also evident if we additionally perform a limited meridional average. Specifically, we223

average each of ∆(P−E), ∆ dynamic, and ∆ thermodynamic both zonally and merid-224

ionally within a running 10◦ window (5◦ to the north and south at each latitude), and225

then compute the correlations (Figure 4cd). Results are generally a smoothed version226

of Figure 4ab, with the ∆ thermodynamic term only comparable to the ∆ dynamical term227

in the subtropical winter hemisphere and between 50◦ and 60◦ in the extratropics. Only228

if a 20◦ averaging window (10◦ north and south) is adopted are the thermodynamic and229

dynamic terms roughly of equal importance for intermodel spread in midlatitude ∆(P−230

E) (not shown), and for an averaging window of 30◦ meridionally the ∆ dynamic term231

is no longer important for intermodel spread in midlatitude ∆(P − E). Such a result232

is perhaps expected from Fig. 1, as the dynamic changes are relatively more confined233

to specific latitude bands.234

Thus far we have demonstrated that the thermodynamic term is generally unim-235

portant for the uncertainty in hydroclimate changes with only limited exceptions. At first236

glance this result may be surprising, as the thermodynamic term has been linked to the237

overall globally averaged warming, and hence we now explore this result. First, we con-238

firm that the spread in ∆ thermodynamic is strongly related to the spread in projected239

warming among the models. Figure 2c shows the correlation of the intermodel spread240

of the change in near-surface globally averaged temperature (∆Tglobal) with the ∆ ther-241

modynamic term at each grid point. Correlations are generally positive in the tropics242

and negative in the subtropics, which implies a model with more warming will experi-243

ence a stronger wettening in the tropics and more drying in the subtropics. That is, we244

confirm that in a model with more warming, the “wet-get-wetter” thermodynamic ef-245

fect is even more pronounced, as predicted by the Clausius-Clapeyron equation.246

However this thermodynamic effect is largely irrelevant for the overall intermodel247

spread in ∆(P−E). We demonstrate this in Figure 2d, which shows the correlation of248

the intermodel spread of the change in globally averaged temperature (∆Tglobal) with249

intermodel spread in ∆(P − E). The patterns in Figure 2c and Figure 2d differ (pat-250

tern correlation of 0.16). The patterns are similar only over Africa, the Middle East, and251

the North Atlantic, but over other regions are in general opposite, implying that any con-252

tribution from the thermodynamic term is overwhelmed by other processes. Hence, tran-253

sient climate sensitivity is indeed important for thermodynamic changes (consistent with254

Clausius-Clapeyron), but not for the inter-model uncertainty in net regional hydrocli-255

mate changes.256

This effect is shown explicitly for the subtropical North Pacific in Figure 3gh. Fig-257

ure 3g contrasts ∆Tglobal with the ∆ dynamic term in each model, and Figure 3h is sim-258

ilar but for the ∆ thermodynamic term. The change in the thermodynamic term is highly259

correlated with the globally-averaged warming (correlation of -0.73), with a model ex-260

hibiting more warming also simulating more drying via the thermodynamic term. In con-261

trast, intermodel spread in the ∆ dynamic term and globally-averaged warming are only262

weakly related (Figure 3g). However, for this region, the ∆ thermodynamic term is anti-263

correlated with intermodel spread of ∆(P−E) (Figure 3f), and consistent with this the264

relationship between intermodel spread in ∆Tglobal and ∆(P−E) is opposite what one265

would expect if the thermodynamic term dominated. Namely, if the thermodynamic term266

dominated then models simulating more warming should also simulate a more negative267

∆(P−E), but in reality, the opposite occurs: models simulating a large ∆Tglobal sim-268

ulate a positive ∆(P − E) (magenta square on Figure 2d).269

Results are generally similar for the Southern Hemisphere winter season. Drying270

over the subtropical Indian and Atlantic Oceans is mostly from the thermodynamic term,271

and this drying extends over Southern Africa and Central Chile from 35S to 45S (Sup-272

plemental Figure S2). However intermodel uncertainty in most regions in ∆ (P - E) is273

driven by the ∆ dynamic term (Supplemental Figure S3), with central Chile the main274
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exception over land. The net effect is that even though multi-model mean drying over275

South Africa is driven by the ∆ thermodynamic term (Supplemental Figure S4b), the276

across model spread is driven by the ∆ dynamic term (Supplemental Figure S4a).277

4 Discussion278

A relatively robust projection from CMIP models is that the poleward edge of the279

subtropics in most regions will dry in response to climate change, however the magni-280

tude of this projected change varies among the models from essentially no change to a281

50% reduction in some regions (Zappa et al., 2015; Polade et al., 2017; Garfinkel et al.,282

2020). As the scope of adaptation efforts will depend on the magnitude of the drying,283

it is important to understand the causes of this spread, with the hope of potentially nar-284

rowing it.285

One of the simplest mechanisms that aims to explain this subtropical drying is a286

thermodynamic effect: the dry get dryer and wet get wetter due to Clausius Clapeyron287

scaling (Held & Soden, 2006). We demonstrated in this paper that while this thermo-288

dynamic effect may be important for the multi-model mean response, it is overwhelmed289

by other sources of uncertainty and thus rendered irrelevant for understanding the inter-290

model spread. This irrelevance is not just due to dynamical stationary wave changes, as291

even if we zonally average, the uncertainty from dynamical processes is still dominant292

in most latitude bands. This irrelevance also extends to the subtropical oceans, which293

are perhaps the clearest example of dry-get-dryer when considering the multi-model mean.294

Rather, dynamical processes govern future hydroclimate uncertainty almost everywhere295

(the only notable exceptions are the eastern margin of the subtropical oceans).296

There are many dynamical mechanisms that could lead to a drying on the equa-297

torward flank of currently wet midlatitude regions (T. A. Shaw, 2019), and future work298

should consider whether these mechanisms are represented differently among models and299

hence may shed light on the causes of intermodel differences in future drying. Relatedly,300

dynamical changes can be driven as the residual of a tug-of-war of many competing ther-301

modynamic starting points (e.g., large-scale changes in Arctic amplification or tropical302

upper tropospheric warming; T. Shaw et al., 2016), and while changes in each thermo-303

dynamic starting point are robust and well-understood (Shepherd, 2014; Vallis et al., 2015;304

T. A. Shaw, 2019), the magnitude of projected net changes are uncertain, though this305

uncertainty can be utilized to offer a storyline of possible dynamical changes (Zappa &306

Shepherd, 2017; Zappa, 2019; Mindlin et al., 2020; Garfinkel et al., 2020). Furthermore,307

stationary wave changes can influence the regional hydroclimate (Simpson et al., 2016;308

Tuel & Eltahir, 2020), and using the framework of Section 2 this effect occurs through309

the dynamic term. In addition to such (potentially reducible) model structural differ-310

ences in dynamical changes, models also may differ in the dynamic term due to inter-311

nal variability (i.e. unforced changes in the climate state; Deser et al., 2012). The dy-312

namical changes identified here include both these model structural differences and in-313

ternal variability, and only by considering large ensembles (e.g. McKenna & Maycock,314

2021) can these possibilities be distinguished. However the limited number of modeling315

centers producing such large ensembles likely limits the conclusions that could be reached316

concerning whether model structural differences may lead to differences in projected dry-317

ing.318

Regardless of the source of this intermodel uncertainty in dynamics, narrowing this319

dynamical uncertainty is crucial for future adaptation given its importance for uncer-320

tainty in future hydroclimate. In contrast, narrowing climate sensitivity will not help nar-321

row uncertainty in future hydroclimate in most regions. This implies that it is more im-322

portant for regional downscaling excercises, e.g., CORDEX to sample models with a wide323

range of circulation responses to climate change, while it is relatively less critical to sam-324

ple models with a wide range of climate sensitivities.325
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Figure 1. CMIP5 multi-model mean of average NDJFMA changes in (a) precipitation minus

evapotranspiration, (b) dynamic component, and (c) thermodynamic component. (d-f) Same as

(a-c) for CMIP6 multi-model mean, (g-i) same as (a-c) for CMIP5 and CMIP6 combined multi-

model mean. Boxes show the boundaries of the Mediterranean region, Pacific Northwest region

and subtropical Pacific region for Figure 3. The contours and colorbars are chosen to emphasize

midlatitude changes.
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(a)

 Dynamic
(b)

 Therm
Correlation of NDJFMA (P-E) with

 Therm
(c)

 P-E
(d)

correlation of NDJFMA  Global near-surface T with 
cor((c),(d))=0.16

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 2. (top) Correlation coefficients across all 48 models of the NDJFMA change in pre-

cipitation minus evapotranspiration with the NDJFMA change in the (a) dynamic component

and (b) thermodynamic component. (bottom) Correlation of the change in ∆Tglobal with the

change in the (c) thermodynamic term and (d) P - E for each gridpoint. Boxes show the bound-

aries of the Mediterranean region, Pacific Northwest region, and subtropical Pacific region for

Figure 3. Correlation coefficients exceeding ±0.29 can lead to the rejection of a null hypothesis

of no relationship at the 95% confidence level using a two-tailed Student-t test given 48 distinct

models.
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Figure 3. The change in (P −E) actually simulated by each model as compared to the change

in the dynamic and thermodynamic terms for (ab) the Balkan Peninsula region (enclosed with

a black square in Figure 2); (cd) the Pacific Northwest (enclosed with a blue square in Figure

2); (ef) the subtropical Pacific Ocean (enclosed with a magenta square in Figure 2). (gh) The

change in Tglobal simulated by each model as compared to the ∆ dynamic and thermodynamic

terms for the subtropical Pacific Ocean (enclosed with a magenta square in Figure 2). Corre-

lation coefficients exceeding ±0.29 (±0.40) can lead to the rejection of a null hypothesis of no

relationship at the 95% confidence level using a two-tailed Student-t test given 48 (24) distinct

models. Numbering of models follows Table 1, with CMIP6 models in green and CMIP5 models

in blue.
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Figure 4. Correlation coefficients across all 48 models of the (top) NDJFMA and (bottom)

MJJASO change in precipitation minus evapotranspiration with (blue) ∆ dynamic component

and (red) ∆ thermodynamic components, after (left) first performing a zonal average, and (right)

first performing a zonal average and a meridional averaging over a window of 10◦. Gray shading

indicates a correlation not statistically significant at the 95% level using a two-tailed Students-t

test.
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Table 1. CMIP5 models (1-29) and CMIP6 models (30-48) used in this study

1 ACCESS1-0 2 ACCESS1-3 3 BNU-ESM

4 CNRM-CM5 5 CSIRO-Mk3-6-0 6 CanESM2

7 FGOALS-s2 8 GFDL-CM3 9 GFDL-ESM2G

10 GFDL-ESM2M 11 GISS-E2-H 12 GISS-E2-H-CC

13 GISS-E2-R 14 GISS-E2-R-CC 15 HadGEM2-AO

16 HadGEM2-CC 17 HadGEM2-ES 18 IPSL-CM5A-LR

19 IPSL-CM5A-MR 20 IPSL-CM5B-LR 21 MIROC-ESM

22 MIROC-ESM-CHEM 23 MIROC5 24 MRI-CGCM3

25 MRI-ESM1 26 NorESM1-M 27 bcc-csm1-1

28 bcc-csm1-1-m 29 inmcm4 30 ACCESS-CM2

31 ACCESS-ESM1-5 32 AWI-CM-1-1-MR 33 BCC-CSM2-MR

34 CanESM5 35 CMCC-CM2-SR5 36 EC-Earth3

37 EC-Earth3-Veg 38 FGOALS-f3-L 39 GFDL-CM4

40 GFDL-ESM4 41 INM-CM4-8 42 INM-CM5-0

43 IPSL-CM6A-LR 44 KACE-1-0-G 45 MIROC6

46 MPI-ESM1-2-HR 47 MPI-ESM1-2-LR 48 MRI-ESM2-0

5 Open Research326

Data is freely available for download from the Earth System Grid Federation (ESGF)327

https://esgf-node.llnl.gov/projects/cmip6/.328
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