Adam J Fagan

and 5 more

Robert T. Letscher

and 3 more

Earth System Models generally predict increasing upper ocean stratification from 21st century planetary warming, which will cause a decrease in the vertical nutrient flux resulting in declining marine net primary productivity (NPP) and carbon export fluxes. Recent advances in quantifying marine ecosystem carbon to nutrient stoichiometry have identified large latitudinal and biome variability, with low-latitude oligotrophic systems harboring pico-sized phytoplankton exhibiting large phosphorus to carbon cellular plasticity. Climate forced changes in nutrient flux stoichiometry and phytoplankton community composition is thus likely to alter the ocean’s biogeochemical response and feedback with the carbon-climate system. We have added three pico-phytoplankton functional types within the Biogeochemical Elemental Cycling component of the Community Earth System Model while incorporating variable cellular phosphorus to carbon stoichiometry for all represented phytoplankton types. The model simulates Prochlorococcus and Synechococcus populations that dominate the productivity and sinking carbon export of the tropical and subtropical ocean, and pico-eukaryote populations that contribute significantly to productivity and export within the subtropical to mid-latitude transition zone, contributing a combined 50 – 70% of these fluxes. Pico-phytoplankton cellular stoichiometry and resulting sinking export patterns inversely track the distribution of surface phosphate, with the western subtropical regions of each basin supporting the most P-poor stoichiometries. Collectively, pico-phytoplankton contribute ~58% of global NPP and ~46% of global particulate organic carbon export below 100 meters. Subtropical gyre recirculation regions along the poleward flanks of surface western boundary currents are identified as regional hotspots of enhanced carbon export exhibiting C-rich/P-poor stoichiometry, preferentially inhabited by pico-eukaryotes and diatoms.
Climate warming is likely resulting in ocean deoxygenation, but models still cannot fully explain the observed decline in oxygen. One unconstrained parameter is the oxygen demand for respiring particulate organic carbon and nitrogen (i.e., the total respiration quotient, rΣ-O2:C). It is untested if rΣ-O2:C systematically declines with depth. Here, we tested for such depth variance by quantifying particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphorus (POP), particulate chemical oxygen demand (PCOD, the oxygen demand for respiring POC), and total oxygen demand (-O2 = PCOD + 2PON) concentrations down to a depth of 1000 m in the Sargasso Sea. C:N and -O2:N changed with depth, but values at the surface were similar to those at 1000 m. C:P, N:P, and -O2:P exponentially decreased with depth. The respiration quotient (r-O2:C = PCOD:POC) and total respiration quotient (rΣ-O2:C = ‑O2:POC) were both higher below the euphotic zone. We hypothesize that rΣ-O2:C is linked to multiple environmental factors that change with depth, such as phytoplankton community structure and the preferential production/removal of biomolecules. Using a global model, we show that the global distribution of dissolved oxygen is sensitive to changes in the PCOD surface production (PPCOD) and depth attenuation (bPCOD). These variables mostly affect oxygen in the tropical and North Pacific Ocean, where deoxygenation rates and model discrepancy are the highest. This study aims to improve our understanding of biological oxygen demand as warming-induced deoxygenation continues.