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Text S1. The global Finite Element Sea ice–Ocean Model FESOM (Wang et al., 2014)

solves the governing equations for the ocean and sea ice on the vertices of tetrahedral

elements of irregular size, i.e. an Arakawa-A-like grid. A subgrid-scale (SGS) flux for pa-

rameterizing the eddy effects tracer mixing along isopycnals (Redi, 1982) and advection

due to adiabatic stirring (Gent & McWilliams, 1990) is enabled in both model config-

urations and scaled with the local horizontal resolution and stratification of the flow.

Diapycnal mixing is implemented via the k-profile parameterization (KPP; Large et al.,

1994). For salinity, a flux correction was applied at the sea surface towards climatological

values with a (moderate) velocity of 50 m 300 days−1. Further model specifications can be

found in Danek, Scholz, and Lohmann (2019) and Wang et al. (2014). At the sea surface,

FESOM was driven by the ∼1.8◦ × ∼1.8◦ atmospheric reanalysis dataset CORE-II in

an 6-hourly interval (the regular forcing data was bilinear interpolated to the irregular

FESOM grids; Large & Yeager, 2009). According to the CORE (Griffies et al., 2012) and

OMIP (Griffies et al., 2016) protocols, we integrated FESOM for five full 62-year long

cycles from 1948-2009. The first cycle was initialized from the PHC3 dataset (Steele et

al., 2001) and the subsequent cycles were initialized from the last time step of the previous

cycle. All shown analysis are based on the fifth, i.e. last, cycle.

To analyze the resolution-dependence of the involved dynamical processes during MLD

restratification, low- and high-resolution FESOM grids were designed (Fig. S1). Based

on a global average horizontal resolution of 130 (40) km, the element size was reduced

to 40 (20) km along the coasts and the equator in the low (high) -resolution setup to

improve the modeling of upwelling. Upon this, the resolution was further reduced in the

subpolar gyre, the Arctic Ocean, deep convection areas and along the Greenland coast.
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The low-resolution grid with 39 vertical levels was utilized in earlier FESOM experiments

and showed good agreement with the LS deep water variability compared to observations,

albeit missing fluxes between the boundary current and the LS interior (Scholz et al.,

2014). In the high-resolution setup with 61 vertical levels, the element size was reduced

in the North Atlantic where measured 1) SSH variability is high (AVISO), 2) bottom

slopes are steep (Amante & Eakins, 2009) and 3) horizontal temperature gradients in

200 m depth are large (Locarnini et al., 2013). With these constraints we ensured an

appropriate representation of important dynamic processes related to mesoscale eddies,

fronts, boundary currents, upwelling, and topographic features.
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Figure S1. Colors show horizontal resolution (in km) of the utilized low- (left) and high-

resolution (right) FESOM setups. See Text S1 for details. Orthographic projection realized with

the R package ”oce” (Kelley & Richards, 2021).
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Figure S2. Eddy component of horizontal buoyancy advection divergence volume-integrated

over a box located at Fram Strait (-20 to 20◦E, 76 to 82◦N) calculated based on monthly (black)

or daily (red) model output (larger values indicate buoyancy gain in summer; see methods section

for eddy component calculation). Model data taken from another FESOM run with the same

model version and parameters as in this study (Wekerle et al., 2017).
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Figure S3. Average (1948-2009) seasonal cycle of low- (black) and high-resolution (red) EKE

changes due to a) area-integrated eddy wind work at the sea surface FeKe, b) horizontal (HRS),

c) vertical barotropic (VRS) and d) baroclinic PeKe volume-integrated instabilities in the LS

interior (index area shown in Fig. 1 a,b; positive values indicate an EKE generation; different

y-axes). e,f) show the volume-integrated EKE and its contribution to total kinetic energy.
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