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ABSTRACT: We present a mathematical formalism for water mass analysis and circulation by formulating mass continuity, tracer
continuity, circulation streamfunction, and tracer angular momentum within water mass configuration space (q-space), which is defined
by an arbitrary number of continuous properties. Points in geometric position space (x-space) do not generally correspond in a 1-to-1
manner to points in q-space. We therefore formulate q-space as a differentiable manifold, which allows for differential and integral calculus
but lacks a metric, with the use of exterior algebra and exterior calculus enabling us to develop q-space mass and tracer budgets. The
Jacobian, which measures the ratio of volumes in x-space and q-space, is central to our theory. When x-space is not 1-to-1 with q-space,
we define a generalized Jacobian either by patching together x-space regions that are 1-to-1 with q-space, or by integrating a Dirac delta
to select all x-space points corresponding to a given q value. The latter method discretizes to a binning algorithm, thus providing a
practical framework for water mass analysis. Considering q-space defined by tracers, we show that diffusion is directly connected to local
tracer space circulation and angular momentum. We also show that diffusion, remarkably, cannot change globally integrated tracer angular
momentum (unless different tracers are diffused differently, as in double diffusion), thus leaving only boundary processes (e.g., air-sea or
land-sea fluxes), or interior sources to generate globally integrated tracer angular momentum.

1. Introduction

The review paper from Groeskamp et al. (2019) pro-
posed that ocean circulation as described using the kine-
matics of water mass configuration space (here abbreviated
as q-space) complements the traditional Eulerian and La-
grangian kinematics (both referred to asx-space). We here
further this proposition by establishing a mathematical for-
malism for describing circulation in water mass configu-
ration space. In so doing we expose coordinate-invariant
elements of the circulation and reveal novel insights avail-
able when choosing specific coordinates. Our goal is not
to solve any specific physical problem. Rather, it is to pro-
vide a mathematical foundation to support novel views of
the ocean circulation.

a. Water mass configuration space

Water mass analysis as introduced by Walin (1977,
1982), and extended by Speer and Tziperman (1992),
Nurser et al. (1999), Marshall et al. (1999), Iudicone et al.
(2008) (see Groeskamp et al. (2019) for more references),
is concerned with seawater motion within and across lay-
ers defined by a single tracer concentration or by buoy-
ancy. It therefore involves a 1-D q-space, or a mixed 2-D
q-space using one tracer and one geographical coordinate,
commonly latitude q and neutral density WN (Jackett and
McDougall 1997), but also temperature and latitude as in
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Holmes et al. (2019). Isopycnal ocean models are couched
in terms of a mixed 3-D q-space involving buoyancy, lat-
itude and longitude, while Winters and D’Asaro (1996)
used a mixed 3-D q-space involving an arbitrary scalar, G
and H to study the increased mixing associated with folded
and broken-up surfaces of constant scalar. Extension to
a 2-D q-space involving the two active tracers Conserva-
tive Temperature, Θ, and salinity, (, has illuminated our
view of the oceanic thermohaline circulation (Speer 1993;
Zika et al. 2012; Döös et al. 2012; Hieronymus et al. 2014;
Groeskamp et al. 2014), providing images of the ocean
circulation such as in Figure 1.

In practice, water mass analysis is concerned with the
hows and whys of seawater movement across coordinate
surfaces. If those surfaces are defined by tracers or buoy-
ancy, as is traditional, then cross-surface motion is caused
by irreversible processes such as mixing, radiant heating,
and turbulent boundary fluxes, in which case the associated
water mass analysis naturally disregards reversible pro-
cesses while it focuses on the irreversible. We here further
the formalism of water mass analysis with the aim to facili-
tate the study of ocean circulation within the configuration
spaces available from a growing variety of measured ocean
properties, such as material tracer concentrations (salinity,
carbon, chemical tracers, biogeochemical tracers), dynam-
ical tracers (potential vorticity), thermodynamic properties
(Conservative Temperature, pressure), and buoyancy (po-
tential density, neutral density).
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Fig. 1. Global ocean circulation (units of Sv = 109 kg s−1) as rep-
resented in the water mass configuration space of preformed salinity
and Conservative Temperature ((@1, @2) = ((,Θ)). The transport is
computed from results generated by the ACCESS-CM2 climate model
(Bi et al. 2020) run under pre-industrial radiative forcing, and using
model years 1440-1449 (years 490-499 of the piControl). Blue (neg-
ative) circulation is clockwise and red (positive) is counter-clockwise.
See Zika et al. (2012), Döös et al. (2012), Hieronymus et al. (2014), and
Groeskamp et al. (2014) for discussions of the physics of this circulation.

Our formulation is partly inspired by the formulation of
thermodynamics in Section 5.1 of Schutz (1980) and Sec-
tion 6.3 of Frankel (2012). Their approach conceives of
an equilibrium thermodynamic system as living at a point
within a thermodynamic configuration space. Configura-
tion space is generally a smooth and continuous manifold
onwhich the rules of differential and integral calculus hold,
and quasi-static processes lead to continuous movement or
trajectories on this manifold. Thermodynamic configura-
tion space is not endowed with a metric, but smoothness
and continuity ensure it satisfies the properties of a differ-
ential manifold (e.g., see chapter 1 of Frankel 2012). The
absence of a metric represents a key mathematical distinc-
tion from the Euclidean space of Newtonian mechanics,
with Euclidean space endowed with the Kronecker metric.
Without a metric, we cannot measure distance or angles,
and yet we can still derive differential and integral bud-
gets by using rudimentary features of exterior forms (also
known as differential forms; see Appendix B). In essence,
this paper replaces "thermodynamic configuration space"
with "water mass configuration space" and develops the
mathematical physics of this space.

We use the language of water mass analysis, being mo-
tivated by the many oceanographic applications of circu-
lation in water mass configuration spaces. However, the
ocean perspective can be readily extended to the study of
atmospheric circulations as viewed in the corresponding
"air mass configuration space." The studies from Pauluis
and Held (2002), Kjellsson et al. (2014), Laliberté et al.
(2015), and Döös et al. (2017) provide examples. Indeed,

the formulation given here is fully extendable to any con-
figuration space defined by continuous coordinates.

b. Limitations of water mass configuration space

As in thermodynamics, our formulation is not based on
assuming a 1-to-1 invertible relation between q-space and
x-space. Rather, our fundamental assumption is that the
chosen water mass coordinates define a water mass config-
uration space that is a smooth and orientable1 differential
manifold, thus enabling the use of calculus. Starting from
this minimalist position allows us to develop a general the-
ory that then offers avenues for specialization.
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Fig. 2. Illustrating with q = ((,Θ, ?) that the mapping fromx-space
to q-space is, generally, not 1-to-1. Here we show a curve of constant
((,Θ) , formed by the intersection of a constant ( surface and constantΘ
surface. This ((,Θ)-curve outcrops at two points on the ocean surface
where the atmospheric pressure is ?1a and ?2a . Somewhere along the
curve there are at least two points with pressure, ? = ?∗, that is less
than the maximum pressure along the curve, ?∗ < ?max, yet greater than
either atmospheric pressures, (?1a , ?2a ) < ?∗. Hence, there are at least
two points along the ((,Θ)-curve with the same value for q but distinct
values for x.

Howcommon is the lack of a global 1-to-1mapping from
x-space to q-space? The answer depends on specifics of
the water mass coordinates. For example, if q-space has
fewer than three dimensions then there is no continuous
function that can map x-space 1-to-1 to q-space. Even
with three water mass coordinates, the lack of 1-to-1 map-
ping is common. As an illustration, consider the case of
thermodynamic coordinates so that q = ((,Θ, ?), as de-
fined by Absolute Salinity, Conservative Temperature, and
pressure (Zika et al. 2013). Surfaces of constant Θ and
( generally intersect along a curve, with that curve typi-
cally outcropping at two distinct points at the sea surface
(see Figure 2). For waters deep enough that the pressure
is greater than the atmospheric pressure at either of the
outcrop points, but shallow enough that the pressure is less
than the maximum pressure on this ((,Θ)-curve, there are
at least two points in the ocean for each ((,Θ) pair with the
same value for ((,Θ, ?). So for this rather generic example,
the mapping from x-space to q-space is not globally 1-to-
1. As a further example, consider small scale turbulent
flows where surfaces of constant property are commonly

1A manifold is orientable if we can define handedness continuously
over the manifold; i.e., there is a consistent definition of clockwise and
counter-clockwise. For example, Euclidean space is orientable whereas
a Möbius strip is not.
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broken up into discontinuous blobs. For such flows, no
global 1-to-1 mapping can be expected.

We pay a price when working within a water mass con-
figuration space that is not afforded a global 1-to-1mapping
from x-space. Namely, q-space is not generally suited for
examining dynamical effects associated with the contact
stresses from pressure and friction. The reason is that con-
tact stresses occur between fluid elements that are adjacent
in x-space, and such locality is lost if the mapping from
q-space to x-space is not 1-to-1. Now there are physi-
cally interesting cases where water mass coordinates do
provide a 1-to-1 mapping from x-space, either globally or
locally. One example is Salmon (2013), who considered a
q-space comprised of three tracer-like coordinates that re-
tain a 1-to-1 mapping from x-space, and we also consider
tracer spaces in this paper (Section 7). Even so, we are
not focused on the study of fluid dynamics (i.e., Newton’s
second or third laws) in q-space. Rather, we pursue the
traditional approach in water mass analysis by examining
ocean circulation in q-space as revealed by mass and tracer
budgets.

c. Content of this paper

We start the main part of this paper in Section 2 by
presenting the basic elements of water mass configuration
space. We here encounter the central role played by the
mass density function, m, which provides a measure of
the seawater mass per unit q-space volume. In Section 3
we describe how to relate x-space and q-space whether
or not the mapping between these spaces is 1-to-1. The
method we propose allows for a unified treatment of dif-
ferential budgets derived in subsequent sections. We then
provide a q-space derivation of mass continuity in Section
4. Although seemingly quite trivial, the resulting conti-
nuity equation (55) is fully general and thus provides a
measure for mass balances in q-space for any number of
arbitrary coordinates. We also consider the special case
of steady and mass source free circulation, in which we
are afforded a q-space circulation streamfunction. In Sec-
tion 5, we introduce the q-space angular momentum and
derive local and global properties. We find that the q-
space angular momentum offers a more versatile means to
characterize q-space circulation than the streamfunction.

In Section 6 we extend the derivation of mass conti-
nuity to yield an equation for tracer continuity; i.e., the
tracer equation. This discussion is then used in Section 7
whereby we specialize to the study of water mass analysis
in tracer space. By allowing tracers to define water mass
configuration space, we can connect motion in tracer space
to mixing and other irreversible processes. Remarkably,
we show that globally integrated properties of the tracer
space angular momentum and steady circulation are unaf-
fected by diffusion. We close the main part of the paper in
Section 8 with summary and conclusions.

Appendix A provides a few examples for the Laplace
operator used for subgrid scale tracer diffusion. In tradi-
tional treatments this operator is derived using covariant
derivatives, which require a metric tensor. However, our
metric-free approach only makes use of partial derivatives.
Appendix B rounds out the paper with a tutorial on exterior
forms. Both themathematically experienced reader and the
mathematically trusting reader will find Appendix B un-
necessary for the main text. Even so, it is offered for the
mathematically curious reader who wishes to better under-
stand the mathematical concepts in the main text. Finally,
we note that this paper contains many mathematical sym-
bols, with Table 1 summarizing those that are frequently
used.

2. Elements of water mass configuration space

We refer to the geographical/depth (position) space as
x-space and write its corresponding coordinates as

x = (G1, G2, G3) = G0 . (1)

Labels 0 = 1,2,3 distinguish the coordinate components
rather than indicate a power. Within a continuum descrip-
tion of seawater, each infinitesimal element of seawater has
a unique value for the position coordinate, x.

We organize the continuous valued water mass proper-
ties into an array

q = (@1, @2, @3, . . . @# ) = @U, (2)

with # ≥ 1 the number of properties. The properties, @U,
define coordinates for a point within water mass configu-
ration space (q-space), with the number of properties, # ,
determining the dimension of q-space. The Greek super-
scripts signify a particular property rather than denoting a
power, and with Greek labels used for q-space coordinates
as distinguished from the Latin labels used for x-space
coordinates. Depending on specifics of the water mass co-
ordinates, each point inq-spacemay ormay not correspond
to a unique point in x-space.

a. Assumptions about q-space

Our mathematical formulation allows for an arbitrary
number of water mass coordinates, with examples for # =
1,2,3 offered in the following to touch base with common
applications. Furthermore, q-space can be built from any
continuous property, including coordinates from x-space.

1) q-space defines a differentiable manifold

We assume that the continuous coordinates of q-space
define a smooth and orientable differentiable manifold.
Doing so allows us to use differential and integral calculus
to study mass budgets and circulation in q-space. Under
these assumptions, water mass configuration space locally
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Table 1. Table summarizing the key symbols used in this paper.

symbol meaning
x, G0 geographical/depth coordinates
0, 1, 2 x-space coordinate labels
q, @U water mass coordinates with U ∈ [1, # ]
# number of dimensions for q-space
U, V, W q-space coordinate labels
¤x, ¤G0 velocity in x-space and its components
¤q, ¤@U velocity in q-space and its components
X ocean domain in x-space
q function measuring q at x ∈ X
¤q function measuring ¤q at x ∈ X
q (X) q-space image of the ocean domain
Q subset of q-space; codomain of q
m0 = m/mG0 x-space partial derivative
mU = m/m@U q-space partial derivative
d exterior derivative operator
∧ exterior (or wedge) product
d+ x-space volume element
dV q-space volume element
d seawater mass per volume in x-space
m seawater mass per volume in q-space
d" mass of an elementary ocean region
J Jacobian from q-space to x-space
G inverse Jacobian from x-space to q-space
T mass transport exterior form (mass per time)
M mass source (mass per time)
k, kU steady circulation streamfunctions
n UV = nUV permutation symbol for q-space with # = 2
n UVW = nUVW permutation symbol for q-space with # = 3
Πq̃ (q) Dimensionless boxcar (binning) function
Xq̃ (q) Dirac delta for q-space with dimensions V−1
XU
V
= XUV Kronecker symbol = unit tensor

� ∈ {1, . . . , #P } label for #P coordinate patches
C ,�U tracer concentrations
T� tracer transport exterior form
dF , d�0 x-space subgrid tracer flux
m� U q-space subgrid tracer flux
K symmetric diffusivity tensor
S combined tracer source
( Absolute Salinity
Θ Conservative Temperature
? pressure
q latitude
WN neutral density
D subgrid tracer operator: D = −m−1 mU (m� U)

appears like Euclidean space, with differentiation and in-
tegration carried from Euclidean space to q-space. Hence,
differential conservation laws in q-space have expressions
reminiscent of Cartesian coordinates, and integrals over
this manifold take their familiar form. However, there is
generally no metric structure in q-space. Consequently,
we cannot always access familiar tools from vector calcu-

lus and tensor analysis, such as distance, angles, outward
normal vectors, inner products, covariant derivatives, and
curvature.

2) Use of the exterior product for orientation

For budget analyses in x-space we generally rely on
outward normal vectors to orient surfaces, volumes, and
transport. However, the absence of a metric for q-space
affords it a rather minimalist mathematical structure thus
necessitating an alternative means for orientation. For that
purpose, we orient surfaces and surface elements within q-
space through the anti-symmetry property of the exterior
product, which we introduce in Section 2c and further
detail in Appendix B. Doing so allows us to determine
whether a transport adds or removes matter from a q-
space region, thus facilitating the development of budget
equations.

3) Emphasizing a property of partial derivatives

We only make use of partial derivatives throughout this
paper, with covariant derivatives not used since they require
a metric tensor. When performing partial derivatives, we
emphasize that all other coordinates are held fixed. For
example, the x-space partial derivative,

m0 =
m

mG0
(3)

is computed by holding all coordinates, G1 , fixed, where
1 ≠ 0. In this manner,

m0G
1 = X10 and m0G

0 = 3, (4)

with X10 the components to the Kronecker or identity ten-
sor, and the second equality made use of the summation
convention where repeated indices are summed over their
range. The same identities hold when performing deriva-
tives in q-space, so that

mU =
m

m@U
and mU@

V = X
V
U and mU@

U = #. (5)

These identities are central to many of the manipulations
in this paper.

b. Mass and mass density in q-space

We make use of the mass density function,m(q, C), that
measures the mass of seawater, d" , within an elemental
q-space volume, dV,

d" = mdV . (6)
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In Figure 3 we illustrate the case of # = 1 with @1 = Θ, so
that the ocean is binned according to Conservative Tem-
perature classes. At any time instance, the density func-
tion, m(Θ, C), allows us to compute the mass of seawater,
d" = mdΘ, that is contained within a Conservative Tem-
perature bin, [Θ−ΔΘ/2,Θ +ΔΘ/2), in the limit as the
bin size becomes infinitesimal, ΔΘ→ dΘ. In Figure 4
we extend the configuration space dimension to # = 2 by
displaying the mass density function for q = ((,Θ).
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Fig. 3. Left panel (A): mass density function, m(Θ) , for a one-
dimensional (# = 1) water mass configuration space defined by Con-
servative Temperature, @1 = Θ, as time averaged over years 2006-2017.
The density function has units of 1021 kg/◦C. Note the split in the
horizontal (mass density) axis, thus enabling a more refined view of the
density function in the less populated warm and cold waters. Right panel
(B): a meridional section at 170◦W for December 2017, thus providing
a sample of the spatial distribution of Θ. The split in the vertical axis
enables a more refined view of the upper ocean warm and cold waters.
We use observational based data for theWorld Ocean as estimated by the
objective analysis from the Enact Ensemble (V4.0; Good et al. (2013)).

c. Volume elements in q-space

The volume element, dV, measures the coordinate vol-
ume of an elementary region of q-space. For example,
with # = 1 we have the volume element given by

dV = d@1, (7)

such as the case with @1 = Θ discussed above whereby
dV = dΘ. When # > 1, we write the volume element as
an exterior #-form (#-form for brief)

dV ≡ d@1∧d@2∧ . . .d@# , (8)

with ∧ the exterior (or wedge) product. For example, with
# = 3 and q = ((,Θ, ?), then the volume 3-form in q-space
is written

dV = d(∧dΘ∧d?. (9)

Similarly, for # = 2 with q = ((,Θ), the volume 2-form is

dV = d(∧dΘ. (10)

Fig. 4. The log of a mass density function, m((,Θ) averaged over
years 2006-2017 for a two-dimensional (# = 2) water mass configura-
tion space defined by Absolute Salinity, (, and Conservative Temper-
ature, Θ, so that (@1, @2) = ((,Θ) . The density function has units of
kg/[◦C (g/kg) ]. We use observational based data for the World Ocean
as estimated by the objective analysis from the Enact Ensemble (V4.0;
Good et al. (2013)). See Zika et al. (2021) for more discussion of this
distribution and its changes arising from climate warming.

In Figure 5 we depict the Cartesian area element 2-form
dH∧dI.

The exterior product is anti-symmetric so that odd per-
mutations of differentials lead to a sign change whereas
even permutations retain the sign; e.g.,

dV = d(∧dΘ∧d? =−dΘ∧d(∧d? = d?∧d(∧dΘ. (11)

Hence, the exterior volume form, dV, is not sign-definite.

3. How to relate x-space and q-space

In this section we detail how to relate x-space and q-
space. We start in Section 3a by discussing the basic
functional properties of the function, q, that maps from x-
space to q-space. These functional properties split the type
of theory for water mass analysis that we can develop into
two cases. In Section 3c, we consider the first case, when
# = 3 and q is a bĳection between x-space and q-space.
In this case, we can make use of coordinate transformation
formulas from elementary calculus and tensor analysis. We
review these results and then, in Section 3d, generalize to
the second case, where q is not a bĳection.

a. Characterizing mappings betweenx-space and q-space

Let X be a subset of x-space that could represent the
entire ocean or a subset of the ocean. Note that X could
be time-dependent. Measuring water mass properties at
points in the ocean domain, x ∈ X, and times C determines
values for the function q(x, C). We assume throughout this
paper that q is a continuously differentiable function. For
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dy ^ dz

Fig. 5. Schematic of the area 2-form, dH∧dI. For Euclidean space
we can establish a geometric interpretation of a 1-form, dH, as an infinite
sequence of horizontal planes perpendicular to the H-axis. Likewise, the
1-form, dI, defines surfaces perpendicular to the I-axis. The exterior
product, dH ∧ dI, is the intersection of these surfaces that produces
an infinite lattice of infinitesimal oriented cells. By convention, we
associate counter-clockwise swirls in each of the infinitesimal cells of
area dH ∧ dI as a means to orient the area elements according to the
right hand rule. This image is adapted from Figure 4.1 of Misner et al.
(1973).

brevity, we often treat the time-dependence implicitly; that
is, for a fixed time C we simply write q(x) and treat q as
a function from domain X to codomain Q, where Q is
generally a subset of q-space. This shorthand applies for
the rest of this subsection, in which we restrict attention to
a fixed but arbitrary time, C.

In Case 1, let # = 3 and suppose that q is a bĳection
from X to Q. This case is equivalent to supposing that
q is both a 1-to-1 function (also called an injection) and
an onto function (also called a surjection). To be 1-to-1
means that q maps distinct points in X to distinct points in
Q. That is, if x1 ≠ x2 are two distinct points both in X,
then q(x1) ≠ q(x2) are two distinct points both in Q. To
be onto means that q reaches every point in Q; that is, for
every q ∈ Q there is some x ∈ X such that q(x) = q. Case
1 is depicted in the top panel of Figure 6. As a bĳection,
the function q has an inverse function, denoted q−1, that is a
bĳection that maps from Q to X. As such, no information
is lost when using q to map between X and Q.

In Case 2, q is not 1-to-1, and may or may not be onto,
as depicted in the bottom panel of Figure 6. For q to
not be 1-to-1 (also called many-to-1) implies that there
are distinct points in X that map to the same point in Q.
We introduced the many-to-1 mapping case in Section 1b.
Another example in which q is many-to-1 occurs if there
are finite regions of x-space with homogeneous values
for some or all of the properties, @U. Such many-to-1
mappings are not invertible bĳections so that information
is lost in the process of mapping. While q may or may not
bemany-to-1 for# ≥ 3, when# < 3 it is guaranteed thatq is

many-to-1 (having assumed q is continuous). For example,
with q = (WN, q) the zonal direction is integrated out so
there is no information about zonal position. Likewise,
mapping the ocean to either q = ((,Θ) or @ =Θ reduces the
dimensionality of q-space relative to the three dimensions
of x-space.

The most important distinction between the above two
Cases is whether q is 1-to-1 or not. If q is 1-to-1, we can
define the codomain Q to be the image of q, denoted q(X).
While q(X) will be time-dependent and may have non-
trivial geometric and topological properties, this choice
means q is onto, by definition, and this further implies that
q is a bĳection, placing us into Case 1 (assuming also that
# = 3). In Case 2, q being many-to-1 implies q is not a
bĳection. Having already lost this desireable property, we
care less about whether q is onto (surjective).

The upside is that we can define Q as a larger space than
just the set of q values found in the ocean, q(X). Most
simply, we may define Q as all of q-space, which is the
Cartesian product of the valid range for each water mass
property @U. For water mass coordinates that are specified
by a material tracer concentration, then the physical value
of the coordinate can range between zero and unity, even if
the maximum tracer concentration anywhere in the ocean
is a small fraction of unity. Similarly, the range for temper-
ature can be extended beyond the values for which seawater
is liquid (which depends on pressure and salinity andwould
thus be time-dependent), to any value above −273.15◦C.
For example, if q = ((,Θ) with ( measured in g kg−1 and
Θ in ◦C, then q-space is [0,1000] × [−273.15,∞). We
will see that this extension of q-space causes no problems,
as the functions used in our water mass theory are simply
zero outside q(X).

In practical calculations ofwatermass analysis, themap-
ping q from x-space to q-space is discretely realized via
a binning algorithm (e.g., Section 7.5 of Groeskamp et al.
(2019)), with the continuous formulation of this paper re-
covered by letting the bin size be infinitesimal.

b. Trajectories and velocity in x-space and q-space

We here consider motion in q-space and how it is re-
lated to motion in x-space. Notably, motion in x-space
may correspond to no motion in q-space, for example
when q = ((,Θ) and a fluid element inx-space experiences
only adiabatic and isohaline physical processes (e.g., linear
waves or laminar advection). Likewise, motion in q-space
could correspond to no motion in x-space, for example
when q = ((,Θ) and a region of the ocean is at rest but
experiences uniform radiative forcing or uniform diabatic
mixing.

The trajectory of a fluid particle in x-space, having ini-
tial position x0 at time C0, is described by a functionX (C)
that satisfiesX (C0) = x0 (e.g., Salmon 1998; van Sebille
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q(x1) = q(x2)

Fig. 6. Two cases for the mapping q from x-space to q-space. The
top panel shows Case 1. Here, q is 1-to-1: each point in the ocean
domain, x ∈ X, is mapped to a unique point q (x) . Also, q is onto: for
every point q in the codomain of q, Q, there is at least one point x ∈ X
that maps to q. Together, these properties imply q is a bĳection, with an
inverse function mapping from Q to X. The bottom panel shows Case
2. Here, q is not 1-to-1: two elements from x ∈ X are mapped to the
same point in q (X) . Also, q is not onto: the function’s image, q (X) , is
a strict subset of the function’s codomain, Q. Either of these properties
prevents q from having a well-defined inverse function from Q to X.
Correspondingly, q is not a bĳection and information is lost by using q
to map from x-space to q-space.

et al. 2018). To determineX requires knowing the veloc-
ity, ¤x = v(x, C), which in a continuum fluid is a continuous
space-time field. Then, X (C) is defined as the integral
curve of the velocity field, ¤x, through the point (x0, C0);
that is,X solves the ordinary differential equation

dX (C)
dC

= ¤x(X (C), C) with X (C0) = x0. (12)

Analogously, a trajectory in q-space, starting from po-
sition q0 at time C0, is described by a function Q(C) that
satisfies Q(C0) = q0. An example trajectory is depicted in
Figure 7. The practical calculation of the trajectory,Q(C),
requires knowing the q-space velocity, ¤q, as a field in (q-
space)-time, i.e. ¤q(q, C). Then,Q is defined as the integral
curve of the velocity field ¤q through the point (q0, C0); that
is,Q solves the ordinary differential equation

dQ(C)
dC

= ¤q(Q(C), C) with Q(C0) = q0. (13)

Hence, ¤q defines the velocity of a trajectory in q-space.
Consider Case 1, in which q is a bĳection that uniquely

maps fromX toQ at each time instance C. This case enables
an interpretation of the q-space trajectory, Q(C), through
the initial point q0 =Q(C0): it is simply the q values along
the trajectoryX (C) through the initial point (x0, C0), where
x0 is the unique point in X that has q(x0) = q0 at time C0.
Mathematically,

Q(C) = q(X (C), C) with q(X (C0), C0) = q0. (14)

Taking the time derivative of equation (14) yields

dQ(C)
dC

=

[
mq
mG0

����
(X (C) , C)

d-0 (C)
dC

+ mq
mC

����
(X (C) , C)

]
(15a)

= ¤q(X (C), C) (15b)
= ¤q(Q(C), C). (15c)

In equation (15b), we introduced the function ¤q(x, C) that
measures the q-space velocity, ¤q, at each point in the
ocean’s x-space and time domain. In equation (15c), at a
fixed time C, we used the inverse function of q to relate ¤q at
a given q point with ¤q at the unique x point corresponding
to q; mathematically,

¤q(q) = ¤q(q−1 (q)). (16)

Finally, evaluating equation (14) at C = C0 reveals Q(C0) =
q0, and hence equation (14) satisfies the definition (13).

The interpretation of a q-space trajectory as the q val-
ues along an x-space trajectory (equation (14)) does not
generalize to Case 2 when q is not a 1-to-1 function. The
reason this interpretation fails to generalize is that the fluid
particles that had q values of q0 at time C0 will have an
assortment of q values at C ≠ C0, and hence differ from the
set of fluid particles all having the same q value that we
collectively use to define ¤q (e.g. equations (34), (39), or
(45) ahead).

For either Case 1 or Case 2, ¤q corresponds to the
dia-surface transport discussed in Section 6.7 of Griffies
(2004), Figure 3 of Groeskamp et al. (2014), and Sec-
tion 2.1 of Groeskamp et al. (2019), thus measuring the
transformation of fluid across the respective water mass
coordinate surface.
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Q(t3)

Fig. 7. A sample trajectory, Q(C) , in an # = 2 dimensional water
mass configuration space. We depict positions along the trajectory at
four discrete times, with the initial positionQ(C0) = q0.

c. When q is a bĳection from x-space to q-space

In Case 1, when # = 3 and q is a bĳection (a 1-to-1 and
invertible function) from X to Q, a coordinate transforma-
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tion connects mathematical expressions written in x-space
and q-space. The inverse mapping x(q) = q−1 (q) gives

G0 = G0 (@1, @2, @3) for 0 = 1,2,3 (17)

where (G1, G2, G3) = (G, H, I) are x-space Cartesian coordi-
nates. It then follows that the volume element in x-space,
d+ , is related to that in q-space through a coordinate trans-
formation realized by the chain rule:

d+ = dG1∧dG2∧dG3 (18a)

=
mG1

m@U
d@U ∧ mG

2

m@V
d@V ∧ mG

3

m@W
d@W (18b)

= J d@1∧d@2∧d@3 (18c)
= J dV, (18d)

where repeated indices are summed over their range. Set-
ting d+ > 0 fixes the “standard order” convention for the
Cartesian coordinate 1-forms, dG0. We introduced the Ja-
cobian of the transformation, J , which is the determinant
of the transformation matrix from q-space to Cartesian co-
ordinates used for x-space. The Jacobian is written in the
form

J = det
(
mG0

m@U

)
=
mx

mq
, (19)

where we introduce the shorthand for the scalar triple prod-
uct (e.g., Section 1.2 of Salmon (1998))

mx

mq
=

[
mx

m@1
× mx
m@2

]
· mx
m@3

=

[
mG1

mq
× mG

2

mq

]
· mG

3

mq
, (20)

with × the vector cross product. By the inverse function
theorem, J ≠ 0 for all G ∈ X—under the present assump-
tion that q is bĳective from X to Q. Having assumed that
q is continuously differentiable, then J is continuous, so
J ≠ 0 further implies that J is single-signed. If J > 0
then the coordinate transformation is orientation preserv-
ing, whereas J < 0 swaps the orientation.

The Jacobian is central to how we connect physical ob-
jects represented in x-space to their representation in q-
space. Geometrically, the Jacobian measures the ratio of
the volume elements for the respective coordinates

J = d+/dV, (21)

and in so doing it converts between physical dimensions.
To illustrate this conversion, consider the mass of an ele-
mental fluid region written in the equivalent manners

d" = m |dV| = dd+, (22)

with d(x, C) the mass per unit volume in x-space. The
absolute value in equation (22) is needed because d" and
m are positive semi-definite but dV is not necessarily so.
We are thus led to the corresponding relation between the

mass per unit volume in x-space, d(x, C) and the mass
density in q-space, m:

m = d |J |, (23)

evaluated at an arbitrary q. In particular, d evaluated at q is
just d evaluated at the unique point x satisfying q(x) = q,
i.e. d(q) = d(q−1 (q)), akin to (16). Recall that for an
oceanicBoussinesq fluid, mass continuity becomes volume
continuity whereby d is replaced by a global constant, d0.
Even so, the mass density in q-space is generally not a
constant due to the non-constant Jacobian.

When q is a bĳection, then q-space inherits a full metric
structure from x-space, and retains the positive definite
determinant of the metric tensor. Hence, infinitesimal dis-
tances in x-space are given in terms of displacements in
q-space, by

(dB)2 = (dx ·dx) = d@U6UV d@V (24)

where
6UV =

mx

m@U
· mx
m@V

=
mG0

m@U
mG0

m@V
(25)

is the covariant expression of the metric tensor. It follows
that the Jacobian is related to the determinant of 6UV via

|J | =
√
det(6UV). (26)

d. When the mapping fromx-space to q-space is not 1-to-1

We now consider the more general case when q is not
a 1-to-1 function from X to Q. In this case, no global
x(q) = q−1 (q) exists, and so there is no distance metric
or metric tensor. However, it is still possible to define
a generalized Jacobian that links the volume elements in
q-space and x-space.

We develop the theory first by patching together results
from the previous subsection for regions within which q is
1-to-1, and then by summing or integrating over the entire
discrete or continuous domain while employing a boxcar
or Dirac delta to select only those points in x-space with a
given q value.

1) Patching regions that are not 1-to-1

To use the theory of Section 3c, we continue with the
special case of # = 3 for now. The (finite) ocean domain
X can be partitioned into a finite set of regions within each
of which q is 1-to-1. Now, considering a point q̃ ∈ Q, there
is at most one point x that maps to q̃ in each region. Thus,
there are a finite number of points in x-space, enumerated
x� for � = 1, . . . , #P, whereq(x� ) = q̃. Note that#P depends
on q̃. Moreover, assume G(x� ) ≠ 0 for each x� , where

G(x̃) = mq
mx

����
x=x̃

(27)



9

is the inverse Jacobian, i.e. the Jacobian for the mapping q
fromx-space to q-space. By the inverse function theorem,
there exists a small neighborhood, �(x� ) ⊂ X, with x� ∈
�(x� ) and for which the restriction of q to �(x� ), denoted
q� : �(x� ) → q(�(x� )), is invertible. The inverse of q�
satisfies q−1

�
(q̃) = x� and so can be used to evaluate the

density at q̃ for the �’th region,

d� (q̃) = d(q−1� (q̃)), (28)

and likewise the q-space velocity at q̃ for the �’th region,

¤q� (q̃) = ¤q
(
q−1� (q̃)

)
. (29)

Similarly, q−1
�

defines the Jacobian of the mapping from
q-space to x-space at each x� :

J� (q̃) =
mx�
mq

����
q=q̃

where x� (q) = q−1� (q). (30)

By the inverse function theorem, J� (q̃) = 1/G(x� ). Note
that the #P values of J� (q̃) need not all have the same sign.

Patching together information about the separate #P re-
gions, we define the generalized Jacobian at q̃ as the dis-
crete sum of the volume ratios for each region,

J gen (q̃) =
#P∑
�=1
|J� (q̃) |. (31)

Similarly, the generalized x-space mass density at q̃ is

dgen (q̃) = 1
J gen (q̃)

#P∑
�=1

d� (q̃) |J� (q̃) |, (32)

so that the generalized q-space mass density at q̃ is

mgen (q̃) = dgen (q̃) J gen (q̃) (33a)

=

#P∑
�=1

d� (q̃)
��J� (q̃)��. (33b)

Equation (33a) generalizes equation (23) that holds when
q is bĳective. Equation (33b) represents the generalized
q-space mass density as a discrete sum of the individual q-
space mass densities for each region, which is analogous to
the mass density for a multi-component fluid with #P com-
ponents each with mass density d� |J� | (e.g., Section 11.11
of Aris (1962)), only here with the components represented
by water from different x-space patches. In a similar man-
ner, the generalized q-space velocity is constructed as a
mass-weighted average of the q-space velocities from in-
dividual regions (each given by equation (16)),

¤qgen (q̃) = 1
mgen (q̃)

#P∑
�=1
¤q� (q̃) d� (q̃)

��J� (q̃)��. (34)

At special points where the inverse Jacobian, G, is zero,
J� (q̃) is infinite and hence so too are J gen (q̃) andmgen (q̃).
We shall say more about this situation soon, but for now
we just note that this situation does not indicate a failure
of the theory.

Next, we generalize these results to the case in which the
dimension # of q-space is arbitrary, first with a binning
procedure appropriate for discrete data and then for the
continuous limit.

2) Generalized transformationswith discrete data

Consider a discretized ocean domain, X, that is com-
posed of elementary regions of x-space (still denoted
x ∈ X), each with a specified positive volume, Δ+ (x).
Similarly, consider discretizing q-space into bins. Let the
bin centered at q̃ be the set B(q̃) ⊂ Q and have a finite
and positive q-space volume of ΔV(q̃). There may be an
arbitrary number of elementary x-space regions that map
to B(q̃). At any time instance, we define the generalized
Jacobian as the volume ratio of these regions,

J gen (q̃) = 1
ΔV(q̃)

∑
x∈X

Δ+ (x) Πq̃

(
q(x)

)
, (35)

where the sum extends over all points within the discretized
ocean, x ∈ X, and where we introduced the dimensionless
boxcar function (e.g., equation (46) of Groeskamp et al.
(2019))

Πq̃ (q) =
{
1 if q ∈ B(q̃)
0 otherwise.

(36)

Note that J gen (q̃) = 0 if q(x) ∉ B(q̃) for all x ∈ X, i.e.
if the bin centered at q̃ is not mapped to by any point in
x-space.

The generalized x-space mass density at q̃ is defined as
themass in all elementary regionsx forwhichq(x) ∈ B(q̃)
divided by the total x-space volume of the same regions,

dgen (q̃) =

∑
x∈X

d(x)Δ+ (x)Πq̃

(
q(x)

)
ΔV(q̃) J gen (q̃) . (37)

The definition (37) holds if there is at least one point, x ∈
X, such that q(x) ∈ B(q̃), whereas dgen (q̃) = 0 otherwise.
Analogously, the generalized q-space mass density at q̃
is the total mass in elementary regions x where q(x) = q̃
divided by the q-space volume of the bin centered at q̃,

mgen (q̃) = 1
ΔV(q̃)

∑
x∈X

d(x)Δ+ (x)Πq̃

(
q(x)

)
(38a)

= dgen (q̃) J gen (q̃). (38b)

Like J gen, note that mgen (q̃) = 0 if q(x) ∉ B(q̃) for all
x ∈ X. Finally, the generalized q-space velocity at q̃ is
the mass-weighted average of ¤q over regions x ∈ X where
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q(x) ∈ B(q̃),

¤qgen (q̃) =

∑
x∈X
¤q(x) d(x)Δ+ (x)Πq̃

(
q(x)

)
ΔV(q̃) mgen (q̃) . (39)

The definition (39) holds if there is at least one pointx ∈ X
with q(x) ∈ B(q̃), whereas ¤qgen (q̃) = 0 otherwise.

To illuminate the issue raised in Section 3d1 — that the
Jacobian J can be infinite at points where the inverse Ja-
cobian G is zero — consider an example where q = Θ and
imagine Θ = 20◦C in the entire ocean. The discretized,
generalized Jacobian, J gen, is zero for each bin except for
the one and only bin containing 20◦C, where the value of
J gen is the volume of the entire ocean (in m3) divided by
the volume of this q-space bin (ΔV = ΔΘ). As the size of
this bin is reduced (ΔΘ→ 0◦C), the value of J gen for the
single bin containing 20◦C increases towards infinity, but
in such a way that J genΔΘ remains finite — namely, the
volume of the entire ocean. A similar discussion applies
tomgen, replacing “volume of the entire ocean” by “mass of
the entire ocean”. On the other hand, the value of dgen in the
bin containing 20◦C remains finite as the q-space bin vol-
ume is reduced toward zero: it is the average mass density
of the entire ocean. Likewise, ¤qgen also remains finite for
the bin containing 20◦C: it is the mass-weighted average ¤q
of the entire ocean. While this discussion illuminates the
behavior of these functions as ΔV(q̃) → 0, any individ-
ual discretization will have ΔV(q̃) > 0, and so the above
functions, for the case of discrete data, are finite-valued.

3) Generalized transformations in the continuum

Continuing the case of arbitrary #-dimensional q-space,
we now consider the continuum limit, wherein the bin sizes
are infinitesimal. In this limit, we integrate over X rather
than sum over elementary regions, and the boxcar function
is traded for a Dirac delta according to the identity (e.g.
Appendix II of Cohen-Tannoudji et al. 1977)

Xq̃ (q) = lim
ΔV(q̃)→0

Πq̃ (q)
ΔV(q̃) . (40)

The Dirac delta, Xq̃ , carries dimensions of V−1 and is
marked to a specific point q̃ (rather than to the origin, as
the manifold Q lacks the notion of an origin). Multiplying
equation (40) by a smooth function, 5 (q), and integrating
over Q reveals that Xq̃ satisfies the sifting property,∫

Q
5 (q)Xq̃ (q) dV =

{
5 (q̃) if q̃ ∈ Q
0 if q̃ ∉ Q.

(41)

Choosing 5 (q) = 1 reveals how Xq̃ is normalized, integrat-
ing to 1 if q̃ ∈ Q, otherwise integrating to 0.

In the continuum limit, the generalized Jacobian from
equation (35) becomes

J gen (q̃) =
∫
X
Xq̃

(
q(x)

)
d+. (42)

Note that J gen (q̃) = 0 if q̃ ∉ q(X) — that is, if q̃ is not
mapped to by any point x ∈ X. Similarly, for all points
q̃ ∈ q(X), the generalized x-space mass density at q̃ from
equation (37), the generalized q-space mass density from
equation (38b), and the generalized q-space velocity from
equation (39), each become

dgen (q̃) = 1
J gen (q̃)

∫
X
d(x) Xq̃

(
q(x)

)
d+, (43)

mgen (q̃) =
∫
X
d(x) Xq̃

(
q(x)

)
d+ (44a)

= dgen (q̃) J gen (q̃), (44b)

¤qgen (q̃) = 1
mgen (q̃)

∫
X
¤q(x) d(x) Xq̃

(
q(x)

)
d+. (45)

If q̃ ∉ q(X), then dgen (q̃) = 0, mgen (q̃) = 0, and ¤qgen (q̃) = 0.
If q̃ = q(x) for some x at which G(x) = 0, then J gen (q̃)

is, loosely speaking, infinite. (This singular behavior arises
via the composition of the Dirac delta with q(x) in equa-
tion (42), which can be re-expressed as the Dirac delta
divided by |G|.) However, this singularity is controlled, in
that the integral of J gen over a region of q-space remains
finite. This situation is analogous to how the integral of
the Dirac delta Xq̃ is finite, despite Xq̃ being “infinite” at
q̃. Mathematically, J gen is, like Xq̃ , a distribution or a
generalized function rather than a function in the ordinary
sense (e.g., see Chapters 1 and 5 in Stakgold (2000a,b)).
Returning to the example of q =Θ and an ocean of uniform
Θ = 20◦C but now in the continuum case, what matters is
that

∫ 1
0
J gen (Θ) dΘ returns the volume of the entire ocean

if 20◦C ∈ [0, 1] and returns 0 otherwise.

4) Notation convention

In the following, we make use of the more succinct
notation from Section 3c, effectively dropping the “gen”
superscripts. Yet when q is not a bĳection, we assume the
formalism of the present subsection (either the discrete or
continuum case as appropriate) has been used to compute
the generalized Jacobian, generalized mass density, and
generalized q-space velocity. In so doing, the formula-
tion in the following sections is appropriate whether q is
bĳective or not.
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e. Boundaries in q-space

Boundaries in x-space are specified by the geometry of
the domain, X, containing the fluid; i.e., by the ocean bot-
tom and ocean surface. If, at each time C, the function q is
bĳective from X to Q (Case 1), then boundaries of X cor-
respond to boundaries of Q. However, in the absence of a
1-to-1mapping fromX toQ (Case 2), watermass space has
no direct information about the ocean geometry. Hence,
boundaries in q-space require distinct considerations from
those in x-space.

With our choice for Case 2 that Q is all of q-space
(Section 3a), the boundaries of X correspond to points
in the interior of Q. As such, x-space boundary fluxes
must appear as source terms in q-space. For example,
a mass flux (e.g., evaporation, precipitation) that crosses
the boundary of the ocean domain, mX, must be handled
as a source in q-space for that q-space point where the
mass enters. Likewise, for tracers used to define q-space
coordinates, the x-space boundary tracer flux must appear
as a corresponding q-space source.

4. Mass continuity

There have been two approaches to working with water
mass configuration space. In the treatments of Marshall
et al. (1999), Iudicone et al. (2008) and Groeskamp et al.
(2019), the integration and differentiation are performed in
x-space and the results transformed toq-space. In contrast,
in the treatment of Walin (1977) and, for example, Nurser
et al. (1999), volume elements, diabatic forcing, fluxes,
and other quantities are first projected onto q-space and
the budgets also performed in q-space. We here follow the
q-space approach, offering further rigor to the method and
extending it to q-space with arbitrary dimension, # .

a. Mass transport exterior form

We here make use of exterior forms (Appendix B) since
they do not rely on a metric structure. To derive the mass
budget for a region fixed in q-space, we introduce the mass
transport exterior form that measures the oriented mass
transport through an #-1 dimensional surface. The formal-
ism holds for an arbitrary number of q-space dimensions,
and we display results for # = 1,2,3.

Starting with # = 3 we introduce the mass transport
2-form

T = m ( ¤@1 d@2∧d@3 + ¤@2 d@3∧d@1 + ¤@3 d@1∧d@2), (46)

with T having dimensions of mass per time. Following
Section 2.9b of Frankel (2012), we mathematically inter-
pret T as the interior product (see also Appendix B3) of
the vectorm ¤q with the volume #-form dV. Thus equation
(46) follows from equations (B9) and (B10). Physically,
we interpret m ¤@1 d@2 ∧ d@3 as the mass transport (mass
per time) penetrating the infinitesimal surface element in

q-space defined by d@2∧d@3. We take the right hand con-
vention so that a positive ¤@1 leads to mass transport from
the negative side to the positive side of the infinitesimal
surface defined by d@2 and d@3. Analogous interpretations
hold for the other two terms. Also, recall the geometric
interpretation in Figure 5 for the area element 2-form for
the special case of Cartesian coordinates.

For # = 2, the interior product equation (B9) gives the
mass transport 1-form as

T = mnUV ¤@U d@V = m ( ¤@1 d@2− ¤@2 d@1), (47)

where we used n12 = −n21 = 1 and n11 = n22 = 0. For exam-
ple, with (@1, @2) = ((,Θ), the water mass transport 1-form
is given by

T = m ( ¤(dΘ− ¤Θd(). (48)

With # = 1wemake use of themass transport 0-form given
by

T = m ¤@. (49)

In this case, flow occurs along the single coordinate direc-
tion. For example, when binning the ocean according to
temperature, then T = m ¤Θ.

b. Deriving the mass continuity equation

We here develop the mass continuity equation, which is
the continuumbudget formass contained in an infinitesimal
elemental region fixed in q-space. That is, we want to
determine what affects the time derivative

mC (d") = mC (mdV) = (mCm) dV, (50)

where the time derivative is computed holding the q-
coordinates fixed so that mC (dV) = 0.

Just as when developing the Eulerian mass budget forx-
space, we presume that the mass of an elemental region of
q-space is affected by the accumulation ofmass transported
into the volume of q-space, along with any mass sources.
These considerations lead us to formulate the mass budget
for an elemental volume in q-space in the generic manner

(mCm) dV = −dT +M dV (51)

with the q-space mass source (mass per time) given by
M dV, and with dT the spatial exterior derivative of the
mass transport exterior form.

We derive a more conventional form of the mass con-
tinuity equation (51) by considering the case of # = 2, in
which the spatial exterior derivative of the transport 1-form
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is given by (see Appendix B4 for details)

dT = d
[
m ¤@1 d@2−m ¤@2 d@1

]
(52a)

= m@1 (m ¤@1) d@1∧d@2− m@2 (m ¤@2) d@2∧d@1 (52b)

= [m@1 (m ¤@1) + m@2 (m ¤@2)] d@1∧d@2 (52c)

= [m@1 (m ¤@1) + m@2 (m ¤@2)] dV . (52d)

In the above we noted that anti-symmetry of the exterior
product means that

d@1∧d@1 = d@2∧d@2 = 0. (53)

Furthermore, we used the property of the exterior deriva-
tive, whereby it is an anti-symmetrized derivative opera-
tor so that the exterior derivative of a ?-form produces a
(? + 1)-form. Using dT in the form of equation (52d) in
the mass continuity equation (51), and then cancelling the
common dV factor, leads to the q-space mass continuity
equation

mCm = −m@1 (m ¤@1) − m@2 (m ¤@2) +M . (54)

This result readily generalizes to arbitrary dimensions of
q-space

mCm = −mU (m ¤@U) +M = −∇q · (m ¤q) +M . (55)

The second equality introduced the operator,∇q , as a short-
hand for the water mass partial derivative operators. The
flux-form continuity equation (55) can be written in the
equivalent advective form by expanding the m/m@U deriva-
tives

(mC + ¤@U mU)m = −mmU ¤@U +M . (56)

The mass continuity equation (55) reveals that the q-
space mass density, m, changes in time within a fixed
q-space elemental region according to mass sources as
well as the q-space convergence of the mass flux. It is the
natural, seemingly trivial, generalization of the Cartesian
coordinate continuity equation. However, we emphasize
that the derivation made no use of x-space nor any met-
ric structure. Furthermore, the differential operators are
partial derivatives rather than covariant derivatives.

c. Example coordinates

We consider examples of the mass continuity equation
(55) to help garner some confidence in its use. First, we
trivially recover the Cartesian x-space continuity equation
by setting q = x, m = d, andM = 0 so that

mC d = −mG (d ¤G) − mH (d ¤H) − mI (d ¤I) = −∇ · (dv), (57)

with v = ¤x the velocity of a fluid particle in x-space.
Consider next the case of generalized vertical coordi-

nates as introduced by Starr (1945) and used in many

ocean models (e.g., Griffies et al. 2020). In this case,
q = (G, H,f), where f = f(G, H, I, C) is a vertical coordi-
nate such as the hydrostatic pressure, potential density, or
a variety of hybrid options. It is common to insist that
all generalized vertical coordinates satisfy the constraint
that the Jacobian of transformation between x-space and
generalized vertical coordinates,

J = mI

mf
, (58)

also known as the specific thickness, is strictly non-zero
and single-signed. This assumption ensures that there is
a 1-to-1 and invertible relation between f and I for any
(G, H, C). In this case the continuity equation is

mCm = −mG (m ¤G) − mH (m ¤H) − mf (m ¤f), (59)

with the mass density given by

m = d |J | = d
���� mImf ���� . (60)

For a Boussinesq ocean, d is set to a constant reference
value within the mass and tracer continuity equations, in
which case the continuity equation (59) becomes an equa-
tion for the specific thickness (e.g., equation (37) in Young
(2012))

mCJ = −mG (J ¤G) − mH (J ¤H) − mf (J ¤f). (61)

Now consider q = ((,Θ, ?), again assuming the function
q from Q to X is bĳective. The Jacobian determinant is
given by

J =
[
mx

m(
× mx
mΘ

]
· mx
m?
, (62)

so that the mass density, m = d |J |, is stretched and
squeezed according to the distribution of the seawater vol-
ume within ((,Θ, ?)-space. Accordingly, the continuity
equation is

mCm = −m( (m ¤() − mΘ (m ¤Θ) − m? (m ¤?) +M . (63)

Notably, this form of the continuity equation holds even if
the function q from X to Q is not bĳective, since we can
use the generalized mass density (44) and q-space linear
momentum (45).

For the two dimensional watermass configuration space,
q = ((,Θ),

mCm = −m( (m ¤() − mΘ (m ¤Θ) +M (64)

Here, the function q cannot be 1-to-1 from the 2D q-space
and 3D x-space, so we must always use the generalized
mass density (44) and q-space linear momentum (45). We
can integrate the mass continuity equation (64) over a finite
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region of q-space to develop finite volume budgets. Flow
from relatively fresh to salty, m ¤( > 0, arises from salt
inputs, while flows from relatively cold towarmer,m ¤Θ > 0,
are driven by heat input. The convergence of the mass
transports renders a time change to themass density,m, and
hence the mass contained in each cell. In this manner, the
mass budget of the volume inx-space enclosed by surfaces
of constant ( and Θ, that are generally quite complex, is
simplified into the mass budget of grid cells in q-space.

d. Steady circulation in q-space

In the absence of q-space mass sources (M = 0) and
for a steady state, the continuity equation (51) says that
the mass transport exterior form has zero spatial exterior
derivative

dT = 0, (65)

in which case we say that T is a spatially closed exterior
form. If water mass space is both simply connected (i.e.,
we can continuously shrink any simple closed curve into a
point while remaining in the domain) and orientable, then
T is both closed and exact. In this case, and with # > 1,
we can introduce a globally defined streamfunction, k, that
satisfies

T = dk, (66)

with d2k = 0 equivalent to the vanishing divergence of a
curl (see Appendix B4).

The steady and source free mass continuity equation
(55) leads to the q-space non-divergence condition for the
q-space mass flux

∇q · (m ¤q) = mU (m ¤@U) = 0. (67)

For # = 1, T = m ¤@1, which is a 0-form (i.e., a function)
that is constant, and thus a special case. For # = 2, the
streamfunction is a 0-form (i.e., a function) defined on the
# = 2 dimensional q-space domain, k(@1, @2). Its exterior
derivative is

dk = mUk d@U = T = m ( ¤@1 d@2− ¤@2 d@1), (68)

so that
m ¤@U = n UV mVk, (69)

with n UV the totally anti-symmetric permutation symbol
for # = 2, and with k having physical dimensions of mass
per time, M/T. For # = 3, where the mass transport 2-
form is given by equation (46), the streamfunction is a
1-form defined on the # = 3 dimensional q-space domain,
in which

T = d(kU d@U). (70)

Following the steps in Appendix B4d for taking the exterior
derivative of a 1-form leads to

m ¤@U = n UVW mVkW , (71)

with n UVW the totally anti-symmetric permutation symbol
for # = 3, and with the streamfunction components, kW ,
having physical dimensions of M/(T@W).

5. Water mass angular momentum

We here introduce the water mass angular momentum as
a measure of circulation in q-space for dimensions # > 1.
The use of angular momentum does not rely on the steady
and source-free assumption required for the streamfunction
of Section 4d. For a q-space of dimension # = 2 and # = 3,
we define the angular momenta

# = 2 : ! = nVW @
V ¤@WmdV (72a)

# = 3 : !U = nUVW @
V ¤@WmdV, (72b)

where nVW and nUVW are permutation symbols that are nu-
merically identical to those written with raised indices in
equations (69) and (71). Water mass angular momentum
for higher dimensional q-spaces can be defined by adding
an index to the permutation symbol. Conversely, water
mass angular momentum for # = 1 is not defined since
motion with # = 1 occurs only along the single coordinate
axis.

a. Examples and basic properties

For the case when q = x with # = 3 we recover the
angular momentum from Cartesian fluid mechanics

L = x×p, (73)

where p = ¤x dd+ is the linear momentum of a fluid el-
ement, and × is the vector cross product from Carte-
sian vector analysis. For thermodynamic coordinates
(@1, @2, @3) = ((,Θ, ?), with dV = d(∧dΘ∧d?, the water
mass angular momentum is

!1 = (Θ ¤?− ? ¤Θ)mdV (74a)
!2 = (? ¤(− ( ¤?)mdV (74b)
!3 = (( ¤Θ−Θ ¤()mdV . (74c)

Likewise, the # = 2 configuration space with (@1, @2) =
((,Θ) and dV = d(∧dΘ has

! = (( ¤Θ−Θ ¤()mdV . (75)

The q-space angular momentum satisfies the following
properties.

• For each elemental region of water mass space, the
q-space angular momentum is built from the mass of
the region multiplied by a couplet that measures the
local q-space rotation. In Figure 8 we illustrate the
(/Θ couplet for the # = 2 water mass space angular
momentum given by equation (75).
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• The physical dimensions of the water mass angular
momentum depend on the dimensions of the water
mass coordinates, with the different !U components
for the # = 3 case generally having distinct dimen-
sions.

• For # = 3 the angular momentum satisfies

@U !U = 0, (76)

which follows since

nUVW @
U @V ¤@W = q · (q× ¤q) = 0. (77)

It is straightforward to also show that

¤@U !U = 0 and @U ¤!U = 0. (78)

Each property also holds for the angular momentum
of a fluid element in x-space.

• The x-space angular momentum depends on the lo-
cation in space about which the angular momentum
is computed. This dependence reflects the subjec-
tivity of the choice for origin when defining angular
momentum. Correspondingly, a constant shift in the
definition of a water mass coordinate, such as for Ab-
solute Temperature shifted from Kelvin to Celsius,
shifts the value of the water mass angular momen-
tum. In Section 5b, we find that for steady flow, the
global integral of the water mass angular momentum
remains invariant to the choice of origin.
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Fig. 8. An example of the (/Θ couplet that forms the angular
momentum (equation (75)) for an elemental region of ((,Θ) water mass
configuration space. The couplet is represented by a horizontal arrow for
the −Θ ¤( contribution since ¤( measures the rate that fluid moves along
the (-axis. Likewise, we depict the contribution from ( ¤Θ as a vertical
arrow. For example, with ( > 0 and Θ > 0, processes that lead to a
material increase inΘ (i.e., ¤Θ > 0) with an associated decrease in ( (i.e.,
¤( < 0) lead to an increase in angular momentum, ! = (( ¤Θ−Θ ¤()mdV.

b. # = 2 with steady and source-free flow

Consider the case of a steady and source-free flow with
an # = 2 dimensional water mass configuration space. In

this case, equation (69) provides a streamfunction so that
the angular momentum is given by

! = nVW @
V ¤@WmdV (79a)

= nVW @
V nWZ mZk dV (79b)

= −(n1V n1Z + n2V n2Z )@V mZk dV (79c)
= −(@1 mk/m@1 + @2 mk/m@2) dV (79d)
= −q · ∇qk dV (79e)
= −∇q · (qk) dV+2k dV, (79f)

where for the final step we used ∇q · q = m@1/m@1 +
m@2/m@2 = 2. Recall fromSection 2e that the boundaries of
water mass configuration space are assumed to be outside
the range where seawater exists. Hence, if we integrate the
angular momentum (79f) over all of water mass space, then
the total derivative term drops out since the streamfunction
vanishes where there is no seawater. We are thus led to∫

! = 2
∫
k dV, (80)

so that in the absence of mass sources, the globally inte-
grated steady state water mass angular momentum equals
twice the integrated circulation streamfunction. To within
an arbitrary sign for the streamfunction, the result (80)
agrees with the angular momentum computed for a non-
divergent depth-integrated ocean using x-space coordi-
nates (Holloway and Rhines 1991).

Under a constant shift in the water mass coordinates,
q→ q + ξ with ξ a constant, the steady state water mass
angular momentum (79f) shifts by

!→ !−∇q · (ξk) dV, (81)

with the extra term vanishing when integrated globally.
Hence, the steady state globally integrated water mass an-
gular momentum remains invariant under a constant shift
in the origin of the water mass coordinates.

c. # = 3 with steady and source-free flow

We find an analogous result for the # = 3 case after a
few more manipulations. In this case we make use of the
water mass streamfunction, m ¤@W = nWZ [ mZk[ (equation
(71)), so that the steady and source-free water mass angular
momentum is

!U = nUVW @
V ¤@WmdV (82a)

= nWUV @
V nWZ [ mZk[ dV (82b)

= (XZU X[V − X
[
U X

Z

V
)@V mZk[ dV (82c)

= (@[ mUk[ − @Z mZkU) dV (82d)
= @V (mUkV − mVkU) dV, (82e)
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where the third equality made use of the identity between
the permutation symbol and Kronecker delta

nWUV n
WZ [ = X

Z
U X

[

V
− X[U XZV . (83)

Moving the derivatives off the streamfunction yields

!U = [mU (@V kV) − mV (@V kU) +2kU] dV, (84)

where we used equation (5). When integrating globally
over q-space the derivative terms drop out, thus yielding
the angular momentum∫

!U = 2
∫
kU dV . (85)

We thus find that for a steady and source-free flow, each
component of the integrated q-space angular momentum
is given by twice the integrated streamfunction.

d. q-space vs x-space angular momentum

As already noted, the q-space angular momentum for
# = 3 is directly analogous to the angular momentum in
x-space. However, the q-space angular momentum is not
a coordinate transformation of the x-space angular mo-
mentum. Rather, it is a distinct object that lives in water
mass configuration space and is defined whether or not
the function q from X to Q is bĳective. Even so, the q-
space angular momentum shares certain properties with
its x-space sibling, with further connections seen when
studying tracer angular momentum in Section 7f.

6. Tracer equation in q-space

To study tracer budgets in water mass configuration
space, we introduce the tracer transport 2-form for # = 3

T� = m ( ¤@1� +�1) d@2∧d@3

+ m ( ¤@2� +�2) d@3∧d@1

+ m ( ¤@3� +�3) d@1∧d@2, (86)

where m�U (q, C) are components of a subgrid scale flux
for tracer, �. If we set � to a constant and assume the
subgrid scale flux vanishes with constant�, then the tracer
transport in equation (86) reduces to the mass transport in
equation (46). We thus mathematically interpret the tracer
transport just as for the mass transport, only now with the
added subgrid contribution.

In regions of x-space where the mapping to q-space is
1-to-1 (with # = 3), we can relate the Cartesian subgrid
scale flux components to the q-space components accord-
ing to the chain-rule coordinate transformation from tensor
analysis

�U (q) = �̂U (x) = mq
U

mG0
�0 (x) = ∇@U ·F (x), (87)

where x = x(q) = q−1 (q), d �0 are the Cartesian compo-
nents of the subgrid flux, and �̂U denotes �U considered
as a function ofx (which is how it is evaluated in practice).

More generally, when the mapping from x-space to q-
space is not 1-to-1 (such as when # ≠ 3), the components
to the subgrid scale tracer flux in q-space are found by
following the sifting approach fromSection 3d. That is, the
generalized subgrid flux in q-space is the mass-weighted
average of the subgrid flux in x-space over regions x ∈ X
where q(x) = q,

(�U)gen (q) mgen (q) =
∫
X
d(x) �̂U (x) Xq

(
q(x)

)
d+. (88)

As noted at the end of Section 3d, in the subsequent devel-
opment we drop the "gen" notation for brevity.

Following the same manipulations as in Section 4b used
for the mass continuity equation leads to the tracer conti-
nuity equation in q-space

mC (m�) = −mU (m� ¤@U +m�U) +mSpure +M�input. (89)

We introduced a tracer source, Spure, with physical dimen-
sions of tracer per time, along with a source,M�input, aris-
ing from the tracer contained in themass source. Radiation
is an example tracer source, Spure, that is independent of the
mass source. Making use of the mass continuity equation
(55) yields the advective expression of the tracer equation

(mC + ¤@U mU)� = −m−1 mU (m�U) +S, (90)

where the combined tracer source is given by

mS = mSpure +M (�input−�). (91)

Notice that if the tracer concentration associated with the
input mass source equals to the ambient tracer concentra-
tion, then mS = mSpure. Also note that setting the tracer
concentration to a constant reduces the tracer equation (89)
to the corresponding flux form of mass continuity given by
equation (55).

The convergence of the subgrid scale flux found in equa-
tion (90) is given by

D ≡ −m−1 mU (m�U). (92)

When the subgrid scale flux is given in the downgradi-
ent diffusive form, as in Section 7b ahead, then D is a
generalized Laplacian operator applied to the tracer �. In
Appendix A we offer examples of this operator.
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7. Water mass configuration space as tracer space

We now study the case where water mass configuration
space is defined by # tracer coordinates,

q =C = (�1, . . . ,�# ) ⇐⇒ @U =�U U = 1, . . . , #, (93)

with the Jacobian and mass density

J = mx

mC
and m = d |J | (94)

and the mass continuity equation (55)

mCm = −mU (m ¤�U) +M . (95)

Recall that if the function q from X to Q is not bĳective,
as when # ≠ 3, then we can patch regions together by
following the methods from Section 3d. Thus, we make
use of the generalized Jacobian from equation (31) when
# = 3, or when # is arbitrary we use equation (35) in the
discrete case and equation (42) in the continuous case.

a. The tracer equation

With q =C, the tracer equation (90) becomes

m (mC + ¤�U mU)�V = −mU (m�UV) +mSV , (96)

wherem�UV is the U-th component of the subgrid flux for
tracer�V , and SV is the source for tracer�V . Since tracers
now act as coordinates, the tracer equation (96) simplifies
to

m ¤�V = −mU (m�UV) +mSV , (97)

which follows since the partial time derivative, mC , is
computed holding each of the tracer coordinates fixed
(mC�U = 0), and since mU�V = XVU (see equation (5)).

If q is bĳective, then �UV (q) is given similarly to
�U (q) in (87) but with dF replaced by dF V , the sub-
grid flux for tracer �V; otherwise we use the generalized
form (�UV)gen (q) which is similarly modified from the ex-
pression for (�U)gen (q) in equation (88).

b. Subgrid tracer flux

Wesuppose a flux-gradient relation for the subgrid tracer
flux by introducing a kinematic diffusion tensor, K, which
is a symmetric and positive definite second order tensor.
We also assume the same diffusion tensor is used for all
tracers. The latter assumption is valid if all mixing is ulti-
mately achieved by small scale isotropic turbulence (e.g.,
Davis 1994; Gregg et al. 2018), whereby the turbulent dif-
fusivity is equal for all tracers (see in particular Sections
2.5, 8.5, and Figure 14 from Gregg et al. (2018)). How-
ever, if the turbulence is very weak or absent, in which
case molecular diffusion is a relatively large contributor to

tracer mixing, then different tracers can have different dif-
fusivities. For example, the molecular thermal diffusivity
in water is roughly 100 times larger than the salt diffusivity
(Gill 1982), which then leads to double-diffusive convec-
tion in quiescent ocean regions (Schmitt 1994).

An anti-symmetric component to the mixing tensor is
often included in numerical ocean models (Griffies 1998,
2004; Groeskamp et al. 2019). This skew-diffusion is
aimed at rendering stirring processes not captured by a
model’s resolved flow (see Section 2.3 of Groeskamp et al.
(2019)). We here focus onmixing parameterized by a sym-
metric diffusion tensor since it directly leads to transport
across tracer surfaces (and thus to water mass transforma-
tion), whereas the anti-symmetric skew diffusion tensor is
equivalent to an advection.

Representing the subgrid flux for tracer �V in terms of
its x-space coordinates yields

�0V = −K01 m1�V , (98)

where K01 is the x-space representation of the diffusion
tensor that has dimensions !2 )−1.

If q is bĳective, the diffusion tensor can be represented
in tracer coordinates through the coordinate transformation

KUV (q) = K̂UV
(
x(q)

)
= m0�

UK01 m1�
V = ∇�U ·K · ∇�V . (99)

Similarly to equation (87), we introduce K̂UV to denote
KUV considered as a function of x; again K̂UV exists
whether or not q is bĳective. The tracer coordinate repre-
sentation of the subgrid flux then satisfies

m�VU = −mKUV = m�UV (100)

by applying equations (98) and (99) to the coordinate trans-
formation equation (87), and using the symmetry of K01
and hence KUV for the last equality. We thus see that
the tracer space representation of the subgrid flux tensor
is minus the tracer space representation of the diffusion
tensor. Note again that this identity (and the symmetry
of KUV) requires that the same diffusion tensor applies to
each tracer.

If q is not bĳective, we substitute equation (98) into the
expression (88) for (�UV)gen (q) to give

(�UV)gen (q)mgen (q)

=

∫
X
d(x) m0�U �0V Xq

(
q(x)

)
d+ (101a)

= −
∫
X
d(x) m0�UK01 m1�V Xq

(
q(x)

)
d+ (101b)

= −
∫
X
d(x) K̂UV (x) Xq

(
q(x)

)
d+. (101c)
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We define the generalized diffusion tensor, (KUV)gen, as a
mass-weighted mean of K̂UV (x) over regionsx ∈ X where
q(x) = q:

(KUV)gen (q)mgen (q)

=

∫
X
d(x) K̂UV (x) Xq

(
q(x)

)
d+. (102)

Comparing equations (101c) and (102) shows that (�UV)gen
and (KUV)gen still obey equation (100) and are symmetric,
as long as all tracers are diffused by the same, symmetric,
K. Therefore, in the following we again drop the “gen”
notation.

The corresponding representation of the diffusion oper-
ator, equation (92), acting on tracer �V is given by

−m−1 mU (m�UV) = m−1 mU (mKUV). (103)

Note that these relations were also used by Mackay et al.
(2018, 2020) in an oceanographic inverse study.

c. Variances and covariances for q = ((,Θ) without
sources

Consider the tracer equation (97) for the # = 2 tracer
space with q = ((,Θ), and suppose there are no tracer
sources (whether interior or boundary). The two tracer
equations are

m ¤( = −m( (m�(() − mΘ (m�Θ(), (104a)

m ¤Θ = −m( (m�(Θ) − mΘ (m�ΘΘ). (104b)

For the salinity equation, its two flux components,m�U( ,
include �(( , arising from the subgrid flux of ( in the (
direction, and �Θ( , arising from the subgrid flux of ( in the
Θ direction. The Θ equation has similar flux components.

We expose some properties of the subgrid flux compo-
nents by studying how they affect the evolution of tracer
variance (squared tracer) and tracer covariance (product of
two different tracers) (see Ruan and Ferrari (2021) for an
analogous discussion). Start by considering the evolution
equation for one-half the squared salinity, which is readily
derived from the salinity equation (104a),

m( ¤( = −mU (m( �U() +m�(( , (105)

where ( ¤( = 12D((
2)/DC is half the mass-weighted material

evolution of the squared salinity, and we used mU�V = XVU
from equation (5). The first term on the RHS of (105) is
a flux-convergence term that represents the redistribution
of variance. Its global integral vanishes as both the mass
density and the subgrid flux vanish outside the regions of
q-space where seawater exists. The second term is given

by (101a) and (101b) as

m�(( =

∫
X
d(x) ∇( · F ( Xq

(
q(x)

)
d+ (106a)

= −
∫
X
d(x) ∇( · K · ∇( Xq

(
q(x)

)
d+ ≤ 0,

(106b)

where the inequality follows for downgradient fluxes in
which K is a symmetric and positive definite diffusion
tensor. Hence, in the presence of diffusion, the integral of
m�(( dV over a finite region of q-space provides a sign-
definite sink to the evolution of the squared salinity, and
hence a sink to salinity variance.

Equation (106b) is reminiscent of the formula (7a) in
Winters and D’Asaro (1996) for the flux of a scalar \ across
an isosurface of \ per unit horizontal area:

q3 (\) = −^
dI∗

d\
〈(∇\)2〉\ , (107)

where I∗ is the mean height of the \ surface, and in
our notation q3 = �

\ \ , ^ is the (isotropic) diffusivity
(i.e. K01 = ^X01), and 〈(∇\)2〉\ represents the thickness-
weighted average of (∇\)2 on the \ surface. In our formal-
ism, dI∗/d\, the volume per unit area per unit \, represents
the generalized Jacobian d+/dV for the transformation
from the # = 3 configuration space G, H, \ back to x-space.
Both equations (106b) and (107) emphasize how the flux
across a scalar surface is increased by folding and break-up
of the surface.

Following similar methods, we readily obtain an evolu-
tion equation for the product of (Θ from equations (104a)
and (104b), whereby

mΘ ¤( = −mU (mΘ�U() +m�Θ( (108a)

m( ¤Θ = −mU (m( �UΘ) +m�(Θ. (108b)

The sum Θ ¤( + ( ¤Θ measures changes to the ((,Θ)-
covariance when integrated over the ocean domain. Since
( andΘ are assumed to be diffused by the same symmetric
tensor, with

F ( · ∇Θ = −∇Θ ·K · ∇( = F Θ · ∇(, (109)

it follows that the ( component of the subgrid-scale flux of
Θ is equal to the Θ component of the subgrid-scale flux of
(:

m�(Θ =

∫
X
d(x) ∇( ·F Θ Xq

(
q(x)

)
d+ (110a)

=

∫
X
d(x) ∇Θ ·F ( Xq

(
q(x)

)
d+ (110b)

= m�Θ( . (110c)
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Hence, a salinity flux crossing temperature surfaces causes
an evolution of ((,Θ)-covariance, as does a temperature
flux crossing salinity surfaces. Since these two fluxes,F Θ(

and F (Θ, are not sign-definite, the globally integrated (Θ
(and hence the ((,Θ)-covariance) can increase or decrease
in time, in contrast to the globally integrated squared tracer
(and hence tracer variance) which decreases in time.

To summarise, if we measure variance loss in a tracer
mixing experiment, diffusive fluxes of salinity are directed
down the salinity gradient and diffusive fluxes of tem-
perature are directed down the temperature gradient. In
contrast, measured variance gain corresponds to fluxes up
the gradient. Measured covariance sources and sinks (sign
unclear) reflect diffusive fluxes of salinity that project onto
the temperature gradient and fluxes of temperature that
project onto the salinity gradient.

d. Mass continuity

Making use of the tracer equation in the form (97) allows
us to write the mass continuity equation (95) as

mCm = −mU
[
mV (mKUV) +mSU

]
+M . (111)

This equation locally connects the evolution ofmass within
tracer space to the mixing of tracers that acts to move mass
across the tracer contours, plus any contributions from
tracer and mass sources.

e. Tracer coordinate streamfunction

Now consider a steady tracer space circulation with zero
mass source (M = 0), in which case the mass continuity
(111) reduces to the non-divergence condition

0 = −mU [mV (mKUV) +mSU] = mU (m ¤�U), (112)

having used equations (97) and (100) for the second equal-
ity. Connecting to the # = 3 streamfunction in equation
(71) leads to

m ¤�U = n UVW mVkW = mV (mKUV) +mSU, (113)

which can be written more succinctly using vector notation

m ¤C = ∇C ×ψ = ∇C · (m K̂) +mS. (114)

The hat on the diffusion tensor signals that it is represented
using tracer coordinates as per equation (99). Equations
(113) and (114) reveal that the streamfunction for steady
circulation in tracer space is locally related to the diffusion
tensor and to the q-space tracer sources. This connec-
tion follows since tracer mixing, as parameterized by a
symmetric diffusion tensor, generates local circulation in
tracer space. Also, recall that q-space tracer sources reflect
the usual x-space sources (e.g., biogeochemical sources)
as well as x-space boundary fluxes. In the absence of any

q-space tracer sources (including zero x-space boundary
fluxes), then diffusion leads to a steady state with homoge-
nized tracers and thus to a trivial (zero) q-space circulation
where ¤C = 0.

f. Tracer angular momentum

When using tracer coordinates, we refer to the q-
space angular momentum as the tracer angular momentum,
which takes the form

!U = nUVW�
V ¤�WmdV (115a)

= nUVW�
V
[
−mZ (m�Z W) +mSW

]
dV (115b)

= nUVW
[
−mZ (m�Z W�V) +mSW�V

]
dV . (115c)

For the final step we made use of the identity

nUVW mZ�
V �Z W = nUVW X

V

Z
�Z W = nUVW �

VW = 0, (116)

which follows fromanti-symmetry of nUVW alongwith sym-
metry of �VW (see equation (100)). The identity (116) is a
critical step that allows us to write each component of the
tracer angular momentum in equation (115c) as a tracer
space convergence plus a source. Hence, integrating over
all of tracer space removes contributions from interior dif-
fusive mixing processes, leaving just tracer sources∫

!U = nUVW

∫
SW�VmdV . (117)

Recall that tracer sources in q-space correspond to both the
x-space sources plus x-space boundary fluxes. It follows
that the global integral for each of the three components to
the tracer angular momentum is identically zero when the
q-space source for the complementary tracers vanish∫

!U = 0 if SW = 0 for all W ≠ U. (118)

g. Tracer angular momentum in x-space

We can realize the above result for the tracer angular
momentum by integrating over x-space rather than tracer
space, where Cartesian coordinates leads to

!U = nUVW�
V [−∇ · (dF W) + dSW] d+ (119a)

= nUVW
[
−∇ · (�V dF W) + d�VSW

]
d+, (119b)

where we used the identity

nUVW ∇�V ·F W = −nUVW ∇�V ·K · ∇�W = 0. (120)

We again see that the global integral of the tracer angular
momentum reduces to contributions from x-space sources
plus x-space boundary fluxes.
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h. Why diffusion plays no role in global integrated tracer
angular momentum

It is remarkable that diffusive mixing cannot engender
any globally integrated tracer angular momentum. This
null result holds so long as the diffusion tensor is symmet-
ric and the same diffusion tensor is used for each pair of
tracers building the angular momentum. Diffusion tensor
symmetry ensures that the contribution from diffusion to
angular momentum couplets (Figure 8) precisely balance
when integrated over the domain. Mathematically, this
balance manifests since the local contribution from the
diffusive flux appears inside of a total derivative operator.

There is precedent for this result from studying the x-
space angularmomentum. For aNewtonian fluid, the stress
tensor is symmetric, which means that stresses do not al-
ter the angular momentum within the fluid interior (see,
for example, Section 17.3.3 of Griffies (2004) or Section
2.3.1 of Olbers et al. (2012)). Likewise, we here find that a
single symmetric diffusion tensor used for all tracers can-
not alter the globally integrated tracer angular momentum.
If, furthermore, there are no x-space boundary contribu-
tions or x-space sources, then the integrated tracer angular
momentum is zero. Conversely, if we diagnose that the
integrated tracer angular momentum is nonzero, then we
conclude that either (i) boundary effects or (ii) sources are
at play, or that (iii) different tracers have different diffu-
sion tensors. In particular, if two of the tracers are Θ and
( and if there are no boundary contributions or sources,
then a nonzero integrated tracer angular momentum is a
signature of double diffusive processes, in which the dif-
fusivities (either molecular or turbulent) of Θ and ( are
distinct.

i. Tracer angular momentum in an exchange model

Consider a discrete exchangemodel formixing that com-
plements our previous examination of continuous diffu-
sion. In Figure 9 we depict an isolated region with fixed
mass "1 and uniform ((1,Θ1), surrounded by fluid with
fixed mass "0 and uniform ((0,Θ0). A mass transport,
& > 0 (dimensions mass per time), carries fluid through
the region, and mass does not converge anywhere. We
model the exchange of fluid properties between the small
region and large region via upwind exchange, as commonly
used for transport in box models such as Stommel (1961).

The above assumptions lead to the ((,Θ) evolution equa-
tions

"0 ¤(0 = −& ((0− (1), "0 ¤Θ0 = −& (Θ0−Θ1) (121a)
"1 ¤(1 =& ((0− (1), "1 ¤Θ1 =& (Θ0−Θ1), (121b)

which manifest the conservation of salt and enthalpy for
the fixed mass system. The corresponding thermohaline
angular momentum component, ! = (( ¤Θ−Θ ¤()mdV, for

Q QS0, Θ0, M0 S1, Θ1, M1

x
y

z

Fig. 9. An isolated region of seawater exposed to mass and tracer
transport with the surrounding fluid. Here we consider the case of
q = ((,Θ,�) and focus on the tracer angularmomentum component ! =
(( ¤Θ−Θ ¤()mdV, with � an arbitrary passive tracer. The dark region
has uniform ((1,Θ1) and fixed mass, "1, whereas the surrounding
fluid has uniform ((0,Θ0) and fixed mass, "0. Fluid moves relative to
the dark region with a mass transport, & > 0. Mass does not converge
anywhere in the fluid, including the dark region.

each region is given by

!0 = [(0 ¤Θ0− ¤(0Θ0]"0 (122a)
!1 = [(1 ¤Θ1− ¤(1Θ1]"1. (122b)

Using the upwind time tendencies (121a)–(121b) renders
a vanishing net thermohaline angular momentum,

!0 + !1 = 0. (123)

We thus find a precise cancellation of the thermohaline
angular momentum generated by the upwind transport
through the two regions. This example offers yet another
manifestation of how mixing, whether diffusive mixing or
exchangemixing, leads to a zero net tracer angularmomen-
tum so long as the mixing acts the same for each tracer.

j. Connection to probability angular momentum

Weiss et al. (2019) made use of a probability angular
momentum to characterize non-equilibrium steady states
found on the configuration space defined by climate in-
dices. In formulating their angular momentum, they made
use of a Fokker-Planck equation for the probability den-
sity function, and considered both drift and diffusion in
this equation. Our approach focuses on the tracer equa-
tion rather than the Fokker-Planck equation, though the
two are related (e.g., see Section 2.5.2 of van Sebille et al.
(2018)). Furthermore, we considered both time-dependent
and steady flows. Developing insights into the connection
between the two angular momenta is worthy of further
research.

8. Summary and conclusions

In this paper we developed amathematical formalism for
water mass configuration space (q-space) as defined by an
arbitrary number of continuous properties. Since q-space
generally has no metric, we made use of some rudimentary
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features of exterior forms (see Appendix B) in the deriva-
tion of q-space mass continuity, tracer continuity, steady
state streamfunction, and angular momentum. By pursu-
ing the formulation within water mass configuration space,
we were able to develop general properties of circulation in
q-space. Although the mapping from x-space to q-space
is not generally a 1-to-1 coordinate transformation, we de-
tailed a method that renders the same budget equations
regardless of the relation between the two spaces. This
approach allowed us to expose the underlying mathemat-
ical structure of the budget equations and to seamlessly
make connections to special cases when the mapping from
x-space to q-space is 1-to-1.

We offered a case study of water mass configuration
space defined by tracers. Working in this space reveals a
local connection between tracer mixing and circulation in
tracer space. That connection is highly constrained when
the mixing is parameterized by a single symmetric diffu-
sion tensor, in which case we find that the global integral
of the tracer angular momentum is unaffected by diffusive
mixing, with this property holding for both steady and time
evolving flows. We thus find that although diffusivemixing
(along with boundary transport and sources) plays a key
role in local water mass transformation (i.e., fluid motion
across tracer surfaces), and the local behaviour of tracer
angular momentum, only boundary transport and interior
sources can alter the globally integrated tracer angular mo-
mentum. Consequently, any net tracer angular momentum
signals the role of tracer sources or boundary processes, or
that mixing of different tracers occurs via different diffu-
sion tensors (e.g., double diffusive processes).

We have revealed fundamental constraints on ocean cir-
culation in a water mass configuration space and hope to
have laid mathematical foundations for further advances.
We propose that these constraints will be of practical use in
observational and numerical model-based descriptions of
the ocean’s mean circulation (e.g. Groeskamp et al. 2017),
its variability (e.g. Evans et al. 2014, 2018) and its response
to global warming (e.g. Zika et al. 2021; Sohail et al. 2022)
and potentially to other sub-fields of fluid mechanics (e.g.
Laliberté et al. 2015). We are motivated to pursue such
lines of research and hope this study motivates others as
well.
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APPENDIX A

Example tracer subgrid operators

Our derivation of the subgrid scale tracer operator (92),
which made use of exterior calculus, is distinct from those
that commonly appear in traditional tensor analysis litera-
ture, such as Section 7.56 of Aris (1962) or section 21.5 of
Griffies (2004), since here we do not make use of a metric
structure nor the corresponding covariant divergence oper-
ator. We here exhibit the subgrid operator using the sample
q-coordinates taken from Section 4c in which we assume
the mapping q from X to Q is bĳective. We make use
of the transformation (88) between the subgrid scale flux
components written inx-space and q-space. For Cartesian
coordinates with q = x and m = d we have

dD = −∇ · (dF ), (A1)

with ∇ = (mG , mH , mI). For spherical coordinates, @U =
(_, q,A), in which case m = dA2 cosq and

�_ = ∇_ ·F = (A cosq)−1 λ̂ ·F (A2a)

�q = ∇q ·F = A−1 φ̂ ·F (A2b)
�A = ∇A ·F = r̂ ·F , (A2c)

with the spherical unit vectorswritten in terms of theCarte-
sian unit vectors

λ̂ = −x̂sin_+ ŷ cos_ (A3a)

φ̂ = −x̂cos_ sinq− ŷ sin_ sinq+ ẑ cosq (A3b)
r̂ = x̂ cos_ cosq+ ŷ sin_ cosq+ ẑ sinq. (A3c)

The subgrid operator is thus given by

(dA2 cosq) D = −A m_ (d λ̂ ·F )
− A mq (d cosq φ̂ ·F ) − cosqmA (A2 r̂ ·F ), (A4)

Finally, for generalized vertical coordinates, @U = (G, H,f),
in which case m = d (mI/mf) so that

d (mI/mf) D = −mU [d (mI/mf) �U], (A5)
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with the generalized vertical coordinate representation of
the flux given in terms of the Cartesian representation

�G = x̂ ·F �H = ŷ ·F �f = ∇f ·F . (A6)

APPENDIX B

Exterior forms, exterior algebra, and exterior calculus

In this appendix we provide a tutorial on exterior forms,
which are also known as differential forms. Exterior forms
are anti-symmetrized tensors that offer a rich, and physi-
cally useful, mathematical structure. They are central to
the exterior algebra (also known as the Grassmann alge-
bra) and the corresponding exterior calculus. We are con-
cerned just with exterior forms in space, which conforms
to a conventional study of classical mechanics where time
is universal and thus has the same value regardless the cho-
sen spatial coordinates, even if the spatial coordinates are
time dependent. For simplicity, we use Cartesian coordi-
nates. However, all results in this appendix hold regardless
the coordinate choice, which is one of the key powers of
exterior forms.

There is a rich literature in physics making use of ex-
terior forms, with Flanders (1989) an early reference that
features applications to thermodynamics, fluid mechanics,
and Hamiltonian dynamics. Other treatments can be found
in the general relativity text by Misner et al. (1973), the
mathematical physics texts by Schutz (1980) and Frankel
(2012), and the mathematics text by Fortney (2018). War-
nick et al. (1997) and Warnick and Russer (2014) provide
pedagogical treatments of electrodynamics using exterior
forms, with their treatment of great use for our purposes.
We also note that Cotter and Thuburn (2014) make use of
exterior forms to derive novel numerical methods for the
rotating shallow water equations.

Our discussion is terse and relatively superficial since
we only require a small portion of the technology for this
paper. Even so, we hope this appendix offers a useful
entrée to the subject for the mathematically curious reader.

B1. Introducing exterior forms

An exterior ?-form is a covariant ?-tensor that is anti-
symmetric on all of its arguments. Sometimes we drop
the "exterior" for brevity, thus referring just to ?-forms.
Although this definition maymean little to many readers, it
turns out that exterior forms are actually quite familiar since
they naturally appear inside of integrals. For example, a
path integral along a curve,

∫
C (�dG+�dH+� dI), in three

dimensional space has an integrand defining an exterior
1-form

A ≡ �dG +�dH +� dI, (B1)

where the smooth functions �, �,� are called the coeffi-
cients of A and dG,dH,dI are differential increments of a

Cartesian coordinate basis for three-dimensional Euclidean
space. We say that equation (B1) provides a Cartesian co-
ordinate expression for the exterior 1-form A. Likewise,
a surface integral,

∫
S [%dHdI+& dIdG +'dG dH], leads to

an exterior 2-form

B ≡ %dH∧dI+& dI∧dG +'dG∧dH, (B2)

where∧ is the exterior (or wedge) product described below,
with the exterior product carrying the anti-symmetry prop-
erty of the 2-form. The volume integral,

∫
V � dG dHdI,

leads to an exterior 3-form

ℭ ≡ � dG∧dH∧dI. (B3)

Spaces with higher dimensions, # > 3, allow for higher
order exterior forms. Note that the wedge product is asso-
ciative, so that (B3) is unambiguous.

B2. The exterior product and orientation

Building anti-symmetry into the definition of ?-forms
renders information about orientation of geometric objects
such as surfaces and volumes. Orientation is introduced
into ?-forms (with ? > 1) through use of the exterior prod-
uct, which is also known as the wedge product or Grass-
mann product. The exterior product of two 1-forms, i and
Z , produces a 2-form by defining the exterior product as
the anti-symmetrized tensor (or outer) product

i∧ Z = i⊗ Z − Z ⊗ i, (B4)

so that
i∧ Z = −Z ∧i =⇒ i∧i = 0. (B5)

Note that we used anti-symmetry of the exterior product
to put differentials of the 2-form (B2) into right-handed
cyclic order.

When placed inside of an integral, the area and volume
element forms are defined by their familiar expressions
from multi-variate calculus, yet with a sign (the orienta-
tion) carried by the exterior product according to a chosen
“standard ordering”. We choose 1,2,3 (i.e. G, H, I) to be
the standard ordering. Hence, the oriented volume integral
of an arbitrary function, Φ, is written∫

ΦdG∧dH∧dI =
∫
ΦdG dHdI =

∫
Φd+, (B6)

whereas an odd permutation incurs a minus sign so that

−
∫
ΦdH∧dG∧dI =

∫
ΦdG∧dH∧dI =

∫
Φd+. (B7)

In ordinary vector analysis we make use of a surface
normal vector, such as ẑ, to orient a surface in either the
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positive or negative ẑ directions. Anti-symmetry of the ex-
terior product provides the exterior 2-form, dG ∧ dH, with
the ability to both measure the area of the surface element
and to orient the surface in space so that a normal vec-
tor is unnecessary. Thinking about the right hand rule,
the exterior product incorporates the wrapping of the first
and second fingers, and in so doing captures the orien-
tation sense (clockwise or counter-clockwise). However,
the exterior product jettisons the thumb since orientation
only requires information within the surface and does not
require information about directions outside the surface.
We can thus conceive of the exterior product as enabling a
thumb-less right hand rule.

The 3-form, dG∧dH∧dI, is the oriented volume element
for Euclidean three-space. A 3-form is the highest order
exterior form available in three-dimensional space. The
reason is that ?-forms with ? > # all vanish due to anti-
symmetry. It follows that all ?-forms with ? = # are
directly proportional to the volume form.

B3. The interior product

A (covariant) 1-form U = U8dG0 is dual to a (contravari-
ant) vector v = E0m/mG0, with the contraction

U(v) = U0E0 = B, (B8)

where B is a scalar (0-form). This contraction can be
generalised to the interior product, 8vU, which takes a ?-
form U to a (?−1)-form by contracting the vector, v, with
the first index of U. If the ?-form is the exterior product
of a @-form V and a (?− @)-form W the interior product is
given by

8v (V∧W) = [8vV] ∧W + (−1)@V∧ [8vW] . (B9)

Where the ?-form is built up as sequence of 1-forms, its
interior product can be expanded by (possibly repeated)
application of (B9). For instance

8v (�dG∧dH∧dI) = [8v�dG] dH∧dI− �dG∧ [8v (dH∧dI)]
= � (EGdH∧dI+ EHdI∧dG + EIdG∧dH).

(B10)

B4. The exterior derivative

The algebra of exterior forms is known as exterior alge-
bra, whose properties largely follow from anti-symmetry
of the exterior product. Likewise, the calculus of exterior
forms is known as exterior calculus, whose properties are
tied to the exterior derivative operator.

a. Exterior derivatives

The differential increment operator, d, is a fundamental
part of Riemann integrals since it provides the infinitesimal
increment needed to perform the integral. In the study of

exterior forms, d is the exterior derivative, which is an anti-
symmetrized differential operator that acts on a ?-form and
produces a (? +1)-form. Although the exterior derivative
can be extended to both space and time coordinates, we are
only concerned with the exterior derivative acting on the
spatial coordinates, in which case

d =
[
dG mG +dH mH +dI mI

]
∧ . (B11)

When d is applied to a 0-form (a function), the exterior
product reduces to standard scalar multiplication, so the
exterior derivative takes the simpler form d = dG0m0. To
apply d to a ?-form (for ? ≥ 1), the coefficients of the
?-form combine with the partial derivatives, whereas the
differentials of the ?-form combine (via the exterior prod-
uct) with the differentials dG, dH, and dI. Considering
equation (B11), the exterior derivative d is like a 1-form,
but with partial derivatives for its coefficients.

The squared exterior derivative operator vanishes

dd = d2 = 0, (B12)

which is a key property we make use of in the following,
and we illustrate it in Section B4g.

b. Anti-symmetry of the exterior derivative

Consider the exterior product of an arbitrary ?-form,
i, and A-form, Z . The exterior derivative of this exterior
product is

d(i∧ Z) = di∧ Z + (−1) ?i∧dZ, (B13)

thus reflecting the anti-symmetry properties of the exterior
derivative when acting across the exterior product. No-
tably, the exterior derivative picks up the (−1) ? factor as
it crosses the ?-form, i, to then act on Z .

c. Exterior derivative of a 0-form

The exterior derivative of a 0-form (a function) produces
a 1-form

d� = (dG0 m0) � = dG mG�+dH mH�+dI mI�. (B14)

d. Exterior derivative of a 1-form

The exterior derivative of a 1-form yields a 2-form. For
example with A from equation (B1) we have

dA = d(�dG) +d(�dH) +d(� dI) (B15a)
= d�∧dG +d�∧dH +d� ∧dI (B15b)

where we dropped the d2 terms due to the property (B12).
The final expression can be expanded by performing the
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exterior derivative on the functions �, �,�, thus yielding

dA = (mH� − mI�) dH∧dI
+ (mI�− mG�) dI∧dG
+ (mG�− mH�) dG∧dH. (B16)

This result reveals the connection to the vector curl opera-
tion from 3D Cartesian vector analysis.

e. Exterior derivative of a 2-form

The exterior derivative of a 2-form is given by a 3-form.
For example, with B from equation (B2) we have

dB = d(%dH∧dI) +d(& dI∧dG) +d('dG∧dH) (B17a)
= (mG%+ mH& + mI') dG∧dH∧dI, (B17b)

which reveals the connection to the vector divergence op-
erator from 3D Cartesian vector analysis.

f. Exterior derivative of a 3-form

The exterior derivative of a 3-form vanishes in three-
dimensional space, which we see by

dℭ = d(� d+) (B18a)
= (mG� dG + mH� dH + mI� dI) ∧d+ (B18b)
= 0, (B18c)

where we wrote the volume 3-form as

d+ = dG∧dH∧dI, (B19)

made use of the associativity property of the exterior prod-
uct, and used anti-symmetry so that

dG∧dG = dH∧dH = dI∧dI = 0. (B20)

g. Illustrating d2 = 0

As illustrated here, the operator relation d2 = 0 (B12)
follows from the commutative property of mixed partial
derivatives. Before starting, note that d2G = d2H = d2I = 0,
which we used in the examples above. These identities
result from assuming constant differential increments for
each coordinate. That is, as a function, 5 (G) = G has a
constant derivative and thus it has a zero second derivative.

Showing that d2� = 0

The 1-form, d�, from equation (B14) has an exterior
derivative given by

d2� = d(mG�dG + mH�dH + mI�dI). (B21)

Expanding the exterior derivative leads to

d2� = (mHG�− mGH�) dG∧dH
+ (mIH�− mHI�) dH∧dI
+ (mGI�− mIG�) dI∧dG
= 0, (B22)

which follows fromequivalence of themixed partial deriva-
tives.

Showing that d2A = 0

A few lines of algebra reveals that the 2-form, dA, from
equation (B16), has a vanishing exterior derivative given
by

d2A = 0, (B23)

which again follows from equality of mixed partial deriva-
tives.

h. Poincaré’s Lemma

Consider an arbitrary ?-form, i. We say the i is closed
if it has zero exterior derivative, di = 0, whereas it is exact
if it can be written as the exterior derivative of a (?-1)-
form, i = dl. Since d2 = 0, an exact exterior form is also
closed:

i = dl =⇒ di = d2l = 0. (B24)

Poincaré’s Lemma is a statement about the converse: all
closed forms on simply connected manifolds are exact

di = 0 =⇒ i = dl (B25)

for some l. We made use of this theorem when introduc-
ing the water mass configuration space streamfunction in
Section 4d.

Equation (B24) generalizes a familiar result from three-
dimensional vector analysis, namely that if a vector field
v is conservative (it is the gradient of some scalar field 5 ,
so that v = ∇ 5 ), then it is irrotational (it has zero curl, i.e.
∇×v = ∇×∇ 5 = 0). Similarly, equation (B25) generalizes
the fact that ∇×v = 0 implies v = ∇ 5 for some scalar field
5 , provided the domain is simply connected.

B5. Stokes-Cartan theorem

The exterior calculus of exterior forms provides an el-
egant unification of the variety of integral theorems from
vector calculus. We refer to the unified integral theorem
as the Stokes-Cartan theorem, which is written∫

X
dl =

∫
mX
l. (B26)
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This relation holds for an exterior form, l, of arbitrary
order and thus for arbitrary dimensional spaces. Further-
more, the manifold X must be orientable and possess a
smooth (or at least a piecewise smooth) boundary. For
example, if the space is three-dimensional, thenX is a vol-
ume and mX is the surface bounding the volume. If we
are instead integrating over a two-dimensional space, then
X is a 2-surface whereas mX is the one-dimensional curve
bounding the surface. If we are integrating over a curve,
then mX are the endpoints to the curve, in which case the
Stokes-Cartan theorem reduces to the fundamental theo-
rem of calculus. Finally, if X has no boundary, such as the
surface of a sphere, then the right hand side of the Stokes-
Cartan theorem (B26) vanishes, and so too must the left
hand side.

a. The divergence theorem

To connect equation (B26) to the divergence theorem,
let X be a closed volume in 3-space and let l = B, the 2-
form given by equation (B2), in which case dl is given by
equation (B17b). The Stokes-Cartan theorem (B26) thus
specializes to∫

X
(mG%+ mH& + mI') dG∧dH∧dI

=

∮
mX
[%dH∧dI+& dI∧dG +'dG∧dH] . (B27)

This equation is an expression of the divergence theorem,
whereby the volume integral of the divergence of a vector
field equals to the vector field integrated over the oriented
area of the surface bounding the volume. We emphasize
the absence of a surface normal vector, as the exterior
products are sufficient to orient the surface integrals.

b. Vector calculus expression of Stokes’ theorem

Now set l equal to the 1-form, l = �dG+�dH+� dI as
given by equation (B1), so that dl is given by the 2-form
in equation (B16). We also compute the integral over a
2-surface, A, with a one-dimensional boundary mA. The
Stokes-Cartan theorem (B26) is here written∫

A
[(mH� − mI�) dH∧dI+ (mI�− mG�) dI∧dG

+ (mG�− mH�) dG∧dH]

=

∳
mA
(�dG +�dH +� dI), (B28)

which is the expression of Stokes’ theorem commonly
found in vector calculus treatments, where we assumed
the right hand rule to orient the closed path integral. On
the horizontal plane, with dI = 0, equation (B28) reduces
to Green’s Theorem.
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