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Our previous study proposed a Bayesian framework to enhance the approach by the renewal

process to forecast earthquakes’ timing and tested it in simulated seismicity-like time series.

As a first step toward applying the Bayesian approach to actual seismic activity, it is crucial to

use seismic catalogs for examination of the probability density functions in Bayes’ theorem,

which is in its simplest form in the Bayesian approach: the inter-event time distribution and

the conditional and inverse probability between inter-event times at two cut-off magnitudes.

In this study, I examined the properties of these probability density functions using time

series with weak inter-event correlations extracted from three seismic catalogs: stationary

time series with a nearly constant occurrence rate and aftershock sequences transformed by

the Omori ‒ Utsu law. I found a new scaling property related to the temporal hierarchy of

seismic activity. Using this property, I derived the above three probability density functions.

Regarding the inter-event time distribution, I discuss its approximate scaling universality from

the viewpoint of temporal fluctuations of transformed seismic time series by instantaneous

occurrence rate. The derived inverse probability enables probabilistic evaluation of the large

earthquakes’ timing in the simplest Bayesian approach. Finally, I discuss extending it to the

general Bayesian approach toward its practical use.

1. Introduction

Mitigating the potential for earthquake-related disasters is a crucial concern within soci-

ety. An effective countermeasure for this issue is forecasting future significant earthquakes

in a probabilistic sense. One such approach is to use the hazard function by regarding the

seismic time series at a high cut-off magnitude (i.e., the point process that includes only
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events greater than or equal to the set cut-off magnitude) as a renewal process.1, 2) While this

approach is helpful, it underutilizes abundant data on cut-off earthquakes.3, 4)

A recent study submitted a Bayesian method for incorporating such data into forecasting

through the conditional probability pmM(τm|τM) of inter-event time τm at the lower cut-off

magnitude m given that it is within the inter-event time of length τM at the upper cut-off

magnitude M(:= m + ∆m).3–6) The conditional probability serves as a link between the inter-

event time distributions at these two cut-off magnitudes, pm(τm) and pM(τM):6)

Nm pm(τm) = NM

∫ ∞

τm

τM

〈〈τm〉〉τM

pmM(τm|τM)pM(τM)dτM, (1)

where 〈〈τm〉〉τM :=
∫ ∞

0
τm pmM(τm|τM)dτm, and Nm (NM) is the total number of inter-event times

at the cut-off magnitude m (M).6) The integral equation (1) allows us to discuss the charac-

teristics of the inter-event time distribution from the viewpoint of the hierarchical nature of

the inter-event times quantified by the conditional probability.6) Bayes’ theorem is expressed

with this conditional probability as follows:3)

pMm(τM |τm) =
zmM(τm|τM)zM(τM)∫ ∞

τm
zmM(τm|τM)zM(τM) dτM

, (2)

where zm(τm) (zM(τM)) and zmM(τm|τM) are generalized probabilities:3)

zm(τm) :=
τm

〈τm〉
pm(τm), (3)

zmM(τm|τM) :=
τm

〈〈τm〉〉τM

pmM(τm|τM), (4)

with 〈τm〉 :=
∫ ∞

0
τm pm(τm)dτm, 〈τM〉 :=

∫ ∞
0
τM pM(τM)dτM, and the denominator of Eq. (2)

equals zm(τm).3) pMm(τM |τm) yields the inverse probability of the upper inter-event time given

the information on a lower inter-event time in it.3) Equation (2) is the simplest form of the

Bayesian updating that incorporates information on multiple inter-event times at the lower

cut-off magnitude.3) The theoretical study of Bayesian updating for the stationary marked

Poisson process derived the inverse probability analytically, and the numerical study for the

ETAS7, 8) time series tested its effectiveness for forecasting the subsequent large-size event

timing; the statistics showed that the forecasting relatively worked when the stationary ac-

tivity was dominant, while not when the non-stationarity by the Omori ‒ Utsu law9, 10) was

dominant.3) Further, subsequent theoretical work extended this Bayesian framework to a spa-

tiotemporal version.4)

In this way, previous studies on the Bayesian approach have shown a theoretical frame-

work and tested it using synthetic time series of seismicity. However, the inverse probability
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and its approximation function have not been derived for time series with inter-event corre-

lations; the Bayesian approach has yet to achieve probabilistic forecasting in actual seismic

time series, and thus, examining the Bayesian framework using seismic catalogs is necessary

for its practical forecasting. Therefore, this study aims to examine the properties of the con-

ditional and inverse probabilities in the Bayesian approach using seismic catalogs. As a first

step in catalog analysis, I simplify the analysis in two aspects.

First, I examine only Bayes’ theorem (Eq. (2)); it is interesting in relation to forecasting

whether the inverse probability shows seismicity-dependent unimodality even in this simplest

case of Bayesian updating, and it is essential to examine the conditional probability for con-

sidering general Bayesian updating. Second, I restrict the subject of analysis to the time series

with weak inter-event correlation; such time series can be easy to work on by perturbation

from the analytical results for the stationary marked Poisson process. As such, in this study, I

analyze two kinds of time series inspired by the preceding studies on the scaling universality

in the inter-event time distributions in seismic activity described below.

The scaling universality here refers to the results of catalog analyses11–13) that the inter-

event time distribution at the cut-off magnitude M in a spatial region S (temporarily repre-

sented as pS
M(τM) with superscript S ) collapses to around a universal (generalized) gamma

distribution ( f (y)) independent of M and S , except for short time intervals (y ≲ 10−2),13, 14)

after rescaled by the occurrence rate (RS
M):

pS
M(τM) = RS

M f
(
RS

MτM

)
, (5)

f (y) ≈ Cyγ−1e−y/B, (6)

where (γ, B,C) ≈ (0.67, 1.58, 0.5).13) This scaling universality was shown for two kinds of

regimes in seismic catalogs.13) The first is the stationary regime11–13) in which the cumulative

number of events increases nearly linearly over time.12, 13, 15, 16) In this case, the scaling factor

is the average occurrence rate over the stationary time series.13) The second is the aftershock

sequence13) for which the inter-event times were scaled by the instantaneous Omori ‒ Utsu

occurrence rate13, 16) (RS
M(t) ∝∼ t−p, where t is the time period passed since the mainshock

occurrence, and p is a parameter referred to as the p-value to characterize the attenuation rate

of aftershocks per day9, 10)). As the occurrence rate is almost constant in the stationary time

series, the scaling factors in these time ranges can be consolidated into the occurrence rate at

a given moment; thus, this scaling universality implies that the instantaneous occurrence rate

governs the temporal characteristic of seismic activity.13)

Subsequent studies of Corral’s catalog analysis critically examined this scaling univer-
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sality theoretically and numerically using the ETAS model14, 17–21) and elevated it to include

multiple time scales other than the occurrence rate.22–24) I point out that the treatment of the

time series differs in these subsequent studies from Corral’s original method; these studies

regarded the stationarity as the branching ratio25) is less than one, and the universality was

discussed regardless of whether the time series includes major aftershock activities (I refer

such time series as nonstationary ones) using the average occurrence rate for entire time series

as the scaling factor, leading to approximate- or non-universality. Such an approach overesti-

mates the number of short inter-event times in rescaling inter-event time distributions because

the short intervals in major aftershock sequences are not transformed by the Omori ‒ Utsu

law. Also, the scaling universality for aftershock sequences by the Omori ‒ Utsu rate26) has

not been considered much since Corral pointed it out.

In this study, on the way of examining Bayes’ theorem, I re-examine the scaling universal-

ity based on Corral’s original view; I consider the scaling of the inter-event time distribution

as a temporal unfolding transformation of time series using smooth functions of the event

rate27–29) (Sect. 2 describes details), interpreting the universality as the nature of the temporal

fluctuations in the unfolding-transformed time series. This viewpoint can avoid the above-

mentioned overestimation and enables us to examine the scaling universality following the

original view.

The transformed time series are suitable for analyzing the Bayesian approach in that the

inter-event correlations are weak and enable us to consider the scaling universality in light of

the hierarchical property of seismic time series while including aftershock sequences. This

way, the properties of all three probability distributions associated with Bayes’ theorem (Eq.

(2)) are analyzed, including their interrelationships.

Thus, this study examines seismic time series after unfolding transformation to explore

the characteristics of the probability densities (the conditional and inverse probabilities and

the inter-event time distribution) in Bayes’ theorem (Eq. (2)); along the way, I discuss the uni-

versality of the inter-event time distribution via the integral equation (1), based on the charac-

teristics of the temporal hierarchy of the seismic time series. Section 2 describes the temporal

transformation procedure of seismic time series, information on seismic catalogs and how to

set the analysis range, the method to extract time series from these catalogs, their temporal

transformation, scaling property of inter-event time distributions of after-transformed time

series, and methods for analyzing the conditional probability of these time series. Section 3

shows the results of catalog analysis relating to the conditional probability. Section 4, based

on the results in Sect. 3, derives the conditional probability, the scaling function of the inter-
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event time distribution, and the inverse probability in this order and compares them with the

results of catalog analysis. Finally, Sect. 5 summarizes and concludes the study and presents

some discussions.

2. Methods

2.1 Transformation of time series

This subsection describes the time series transformation applied in this study. Let tk and

τk(:= tk+1 − tk) be the k-th event’s occurrence time and the k-th inter-event time in a time

series, respectively. In the scaling of Eq. (5) for an aftershock sequence, time intervals are

transformed by instantaneous occurrence rate as follows:16)

τk 7→ R(tk+1)τk. (7)

However, this transformation has ambiguity in terms of the choice of time to take the occur-

rence rate (any time between tk and tk+1 can be the argument of R(·)16)). Instead, I apply the

following transformation that is a modification of Eq. (7):

τk 7→ R(tk+1)tk+1 − R(tk)tk. (8)

This is equivalent to converting the occurrence times:

tk 7→ R(tk)tk. (9)

In particular, for stationary time series (R(t) ≈ R (const.)) and aftershock sequences

(R(t) ' Kt−p), the transformation of Eq. (9) is:

tk 7→


Rtk (stationary),

Kt1−p
k (aftershock).

(10)

For these time series, the transformation in Eq. (10) is equivalent to transforming the time

to the following transformed time (the same transformation for aftershock sequences was

already considered in Ref. 27), except for the coefficient:

tk 7→ zk :=
∫ tk

tmin

R(s)ds, (11)

where tmin is its starting time (tmin = 0) for stationary time series and the lower bound of the

time range in which R(t) ' Kt−p holds for aftershock sequences. Actually, Eqs. (11) for the

stationary time series and the aftershock sequence (p , 1) are as follows:

tk 7→ zk =


Rtk (stationary),
Kt1−p

k
1−p −

Kt1−p
min

1−p (aftershock).
(12)
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The constant (Kt1−p
min /(1 − p)) in Eq. (12) does not affect the inter-event time statistics in {zk}.

After these transformations using temporal variation trends (R(t)), the time series are

aligned to stationary time series with an average occurrence rate of 1. Thus, the temporal

fluctuations in different time series become comparable with each other. The statistics of in-

tervals for {zk} suggest the nature of such fluctuations, and Eq. (5) can be regarded as implying

the universality of such fluctuations. This type of transformation has been used in the field

of quantum chaos and is known as the unfolding transformation.28, 29) In the following, the

transformation described above is referred to as the unfolding transformation or unfolding

procedure.

Thus, this study performs the following transformation for the stationary and aftershock

time series in seismic catalogs:

tk 7→ wk =


tk (stationary),

t1−p
k (aftershock, p < 1),

−t1−p
k (aftershock, p > 1).

(13)

The unfolding procedure is completed by further scaling the transformed time series with

the average occurrence rate over the entire time series (wk 7→ zk := wk/〈w〉), which can be

done by applying the rescaling of the inter-event time distribution for these transformed time

series. These time series ({wk}) are the objects of catalog analysis. Note that, hereafter, for the

inter-event times of the transformed time series, I use the same symbol of τ as was used for

the inter-event times before the transformation.

2.2 Catalog information and procedure of time series transformation

In the approach of this study, I used three seismic catalogs; one is the global Centroid

Moment Tensor (CMT) catalog,30–32) and the two are local catalogs in Southern California

(SCEDC)33, 34) and Japan (JMA).35, 36) For each earthquake catalog, I determined the space-

time windows to extract stationary and aftershock time series and the magnitude ranges for

analysis while considering the catalog completeness in the following way.

2.2.1 CMT catalog

I used the global CMT catalog covering large earthquakes worldwide.30–32) The moment

magnitude is unaffected by saturation at the large scale and thus is appropriate for this study,

where the magnitude values are significant to examine the dependence of statistics on cut-

off magnitude. The CMT catalog starts from 01/01/1976, though, as shown in Fig. 1(a),
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Fig. 1. (Color Online) (a) Annual number of earthquakes recorded in the global CMT catalog (blue × symbol

with dotted line for only events with magnitude ≥ 5 and red + symbol with bold line for ≥ 5.4) and (b) the

cumulative number of earthquakes (N(t)) recorded in the CMT catalog with magnitude ≥ 5.4 against the time

(t) from January 1, 1977, at 00:00:00.

the number of recorded events in 1976 is less than in other years, and I chose the term to

analyze 01/01/1977 ‒ 12/31/2022. No spatial restriction was imposed. Figure 2(a) shows

the probability density of magnitude (p(M), magnitude frequency hereafter) for the CMT

catalog in the above period. The completeness magnitude (Mc hereafter) calculated by the

MBASS method37) was 5.4. The figure also shows the b-value (b̂ hereafter) calculated for

each neighboring two points (at magnitude M and M + 0.1, where 0.1 is the increment

of magnitude in this study) of the cumulative distribution (P(M) :=
∫ ∞

M
p(M′)dM′), i.e.,

b̂ = −(log10 P(M + 0.1)/P(M))/0.1. Referring to these results (the range larger than or equal

to Mc, and where b̂ fluctuation is as small as possible, in particular, avoid the large magnitudes

where b̂ fluctuation becomes very large) and the apparent shape of the graph (log10 p(M) ver-

sus M being close to the straight line the Gutenberg ‒ Richter (GR) law (P(M) ∝ 10−bM)38)

indicates), I determined the magnitude range to set the cut-off magnitude in the following

analysis to be 5.4 ≤ M ≤ 7.5. The b-value calculated in this magnitude range using the maxi-

mum likelihood estimate39, 40) was about 0.990. The cumulative number of earthquakes (N(t),

where t is the time since 01/01/1977 at 00:00:00) in the above-determined space-time window

with magnitudes ≥ 5.4 is shown in Fig. 1(b); the whole time series can be judged to be almost

stationary by the nearly linear form of N(t), N(t) ∝∼ t, as in the preceding studies15, 16) (though,

precisely speaking, there appears to be gradual increasing trend even for M ≥ 5.4 as observed

in Fig. 1(a), which may due to the improvements in analysis method32)). The stationarity of

time series was judged similarly in other following catalogs.

2.2.2 Southern California catalog

The Southern California catalog33, 34) contains the earthquakes in the spatial range 112◦W

‒ 123◦W and 29◦N ‒ 38◦N and the time domain 01/01/1981 ‒ 03/31/2022. The process to

determine the space-time and magnitude ranges to analyze from this catalog was as follows.
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Fig. 2. (Color Online) (Red filled square) p(M), (Blue circle) P(M), and (Blue ×) b̂ for (a) CMT, (b) JS, (c)

JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. The vertical dotted line shows the completeness

magnitude (Mc) calculated by the MBASS method.37) The magnitude range to set the cut-off magnitude is

shaded by light blue, the dotted line shows the GR law with the b-values determined using the maximum

likelihood estimate.39, 40) The horizontal line indicates the b-value for comparison with b̂.

First, I divided the spatial area into smaller cells of 0.5◦ × 0.5◦. Then, I calculated Mc by

the MBASS method for each cell with at least 100 events to check its spatial distribution;

this process refers to the method used in Ref. 43. Figure 3(a) shows the distribution map of

Mc. This result suggests that the Mc at the periphery tends to take higher values (around 3 or

higher) than the central part, as preceding studies have already suggested.41–43) Figure 3(g)

shows N(t) for earthquakes with magnitude ≥ 3; based on this figure, I selected two stationary

time series (SCS1 and SCS2) and three mainshock-aftershock sequences (SCA1, SCA2, and

SCA3; the aftershocks of Landers, Hector Mine, and El Mayor-Cucapah earthquakes44)) (see
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Table I for details on time domains). The distributions of Mc were re-calculated for the earth-

quakes in each time window; Figures 3(b-f) show the Mc map for each time domain. From

Figs. 3(b-f), I determined by sight the quadrilateral area with the vertices at (120◦W, 34.5◦N),

(118.5◦W, 36.5◦N), (117◦W, 36.5◦N), and (114.5◦W, 31.5◦N), which is the spatial window ex-

cluding the periphery with high Mc as much as possible and including the three mainshock

epicenters; the earthquakes included in this area were the target of the analysis below.

After setting the space-time window by the above-mentioned process, I determined the

magnitude ranges to set the cut-off magnitude for the two stationary time series. Referring to

the Mc values by the MBASS method and b̂ values, I visually determined the magnitude range

the GR exponential decay holds (see Figs. 2(g, h) and Table I). The maximum likelihood

estimate yielded the b-values in these ranges as summarized in Table I. On the other hand,

for the three mainshock-aftershock sequences, I further narrowed down the time domain in

which R(t) ∝ t−p holds. Figure 5 shows the number of aftershocks with magnitude ≥ 2 per

day versus time (t) from each mainshock. As shown in the figure, R(t) ∝ t−p holds for each

aftershock sequence after sufficient time passed from the mainshock. Based on the figure,

I chose the time domain where R(t) ∝ t−p holds by sight and computed the p-values by

fitting within these regimes (see Table II for details). This procedure can exclude the time

domain immediately after the mainshock, where Mc tends to become large.45, 46) In this way,

the space-time windows for the aftershock regimes were set. For the events within these

space-time windows, I determined the magnitude ranges and the b-values in the same manner

as for the stationary time series; see Figs. 2(d-f) for the magnitude frequency and Table I for

the b-values.

2.2.3 JMA catalog

The JMA catalog35, 36) covers earthquakes throughout Japan, and in this study, I focused

on the spatial area around the Tohoku mainshock (M9) in 2011. First, I provisionally set

the spatial domain 140◦E ‒ 150◦E and 35◦N ‒ 42◦N and the time domain 01/01/2000 ‒
03/31/2022. Then, I examined the spatial distribution of Mc in the same way as the Southern

California catalog, before (from 01/01/2000 to immediately before the Tohoku mainshock

time, Fig. 4(a)) and after (from the Tohoku mainshock time to 03/31/2022, Fig. 4(c)) the

Tohoku mainshock. Figures 4(a) and (c) suggest that Mc are partially as high as 3 to 4. Al-

though the threshold magnitude 3 is somewhat low compared to these results, I examined

N(t) for earthquakes with magnitude ≥ 3 as shown in Figs. 4(d, e) and selected the stationary

time domains (JS) and the aftershock sequence of the Tohoku mainshock (JA) (see Table I

9/44



J. Phys. Soc. Jpn. FULL PAPERS

 29

 32

 35

 38

-124 -120 -116 -112

(a)

L
a
ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 29

 32

 35

 38

-124 -120 -116 -112

(b)

L
a
ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 29

 32

 35

 38

-124 -120 -116 -112

(c)

L
a
ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 29

 32

 35

 38

-124 -120 -116 -112

(d)

L
a

ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 29

 32

 35

 38

-124 -120 -116 -112

(e)

L
a

ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 29

 32

 35

 38

-124 -120 -116 -112

(f)

L
a

ti
tu

d
e

Longitude

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2000  4000  6000  8000  10000  12000  14000  16000

(g)

Landers(M7.3)

Hector Mine(M7.1)

El Mayor-Cucapah(M7.2)

SCA1
SCS1

SCA2
SCS2

SCA3

1
0

-3
 N

(t
)

t (days)

Fig. 3. (Color Online) Spatial distribution of Mc calculated by the MBASS method for the Southern California

catalog of the time domain (a) 01/01/1981 ‒ 03/31/2022, (b) SCA1, (c) SCA2, (d) SCA3, (e) SCS1, and (f)

SCS2. The black dots show the epicenters of the earthquake with magnitude ≥ 3. The red quadrilateral represents

the spatial domain to be analyzed. Red × symbols in (b-d) indicate the mainshock epicenter in each time domain.

(g) N(t) for earthquakes with magnitude ≥ 3, from January 1, 1981, at 00:00:00; the stationary domains (SCS1

and SCS2) are indicated by blue dotted lines and mainshock-aftershocks (SCA1, SCA2, and SCA3) are by bold

red curves.

for the respective time domains). Figure 4(b) shows the Mc distribution in JS calculated by

the MBASS method. Taking the results in Figs. 4(b, c) into account, I determined the spatial

domain to analyze to the inside of the rectangle 140◦E ‒ 146◦E and 35◦N ‒ 42◦N.

Figure 2(b) shows the magnitude frequency in the above-set space-time window of JS.

As in the case of Southern California, I determined the magnitude range by visual inspection

from the linear part of Fig. 2(b) such that larger than Mc calculated by the MBASS method.

On the other hand, for JA, I narrowed down the time domain to the regime obeying R(t) ∝ t−p;

From the occurrence rate graph in Fig. 5, I visually determined such time domain to be 10 < t.

After setting the space-time window for JA, I finally determined the magnitude range as other

time series based on Fig. 2(c). The magnitude ranges and the b-values for JS and JA are

summarized in Table I.

2.2.4 Time series transformation

Using the above-mentioned process, I obtained four stationary time series (CMT, JS,

SCS1, and SCS2) and aftershock sequences (JA, SCA1, SCA2, and SCA3). I applied the

transformation in Eq. (13) for these time series. Figure 6 shows the cumulative number of
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Fig. 4. (Color Online) Spatial distribution of Mc calculated by the MBASS method for the JMA catalog

around the epicenter of Tohoku mainshock (shown by red × symbol) in the time domain (a) 01/01/2000 ‒
immediately before the mainshock time, (b) JS, and (c) JA. The black dots show the epicenters of earthquakes

with magnitude (a, b) ≥ 3 and (c) ≥ 4 in 140◦E ‒ 150◦E and 35◦N ‒ 42◦N (note that the range shown is

slightly wider than this) for each time domain. Inside the red rectangle is the spatial domain to analyze. (d, e)

N(t) for earthquakes with magnitude ≥ 3 in the area 140◦E ‒ 150◦E, 35◦N ‒ 42◦N from January 1, 2000, at

00:00:00 (JST); the bold red curve indicates the aftershock sequence (JA) and the dotted blue lines stationary

regimes (JS).

aftershocks (N̂(w)) against the transformed time w(= ±t1−p). Note that the transformation is

different for each aftershock sequence depending on the p-value. After the transformation,

one can see that N̂(w) increases linearly for the transformed time w in the time ranges shown

in Table II. In the following, I analyze these transformed aftershock time series (JA, SCA1,

SCA2, SCA3) as well as the stationary time series (CMT, JS, SCS1, SCS2). Hereafter, these

unfolding-transformed time series are referred to by the names in Table I. I performed the

catalog analysis for these time series by setting the cut-off magnitude in increments of 0.1.

2.3 Scaling of inter-event time distributions

Figure 7 shows the inter-event time distribution after rescaled by the average (Rm =

1/〈τm〉) as in Eq. (5), for each unfolding-transformed time series. This figure is drawn us-

ing the following method, which is equivalent to changing the bin width according to the

inter-event time length.13) First, the inter-event times at cut-off magnitude m are transformed

as τm 7→ σm := log10 τm. Let Ñm(σm) denote the number of such transformed intervals of

length within [σm, σm + ∆σ) in the time series, where ∆σ is fixed to 0.1 in this study. Then

the probability density function of this transformed intervals (p̃m(σm)) is calculated as:

p̃m(σm) =
Ñm(σm)
Nm∆σ

.

11/44



J. Phys. Soc. Jpn. FULL PAPERS

Table I. Information on spatial domain, time domain, magnitude range set by the author, and the b-value

determined by the maximum likelihood estimate in the magnitude range, the total number of earthquakes in the

spatiotemporal domain with magnitude ≥ the lower limit of the magnitude range, of seismic catalogs used in this

study. For the mainshock-aftershock sequences (JA, SCA1, SCA2, SCA3), the number of events is bracketed

because the events to be analyzed are more limited (see Table II). The first part of JS includes events up to just

before the M7.1 earthquake on May 26, 2003, at 18:24:33.42 (JST). Also, the second part of JS includes events

up to April 30, 2008; the term is set to avoid activity that could be considered as foreshocks prior to the M7.0

event on May 8, 2008, at 1:45:18.77 (JST). SCA1 includes events up to just before the Northridge earthquake

(M6.7) on January 17, 1994, SCS1 just before the Hector Mine earthquake (M7.1), SCS2 just before the El

Mayor-Cucapah earthquake (M7.2), and SCA3 just before the foreshock (M6.4) of the 2019 Ridgecrest M7.1

earthquake.44)

Catalog Name Spatial domain Time domain Magnitude range b-value Number

global CMT CMT Whole world 1977/01/01 ‒ 2022/12/31 5.4 ≤ M ≤ 7.5 0.990 24648

JMA JS 140◦E ‒ 146◦E 2000/01/01 ‒ 2003/05/26 3 ≤ M ≤ 5 0.788 2737

35◦N ‒ 42◦N 2006/08/01 ‒ 2008/04/30 3 ≤ M ≤ 5 1377

JA 2011/03/11 ‒ 2022/03/31 4 ≤ M ≤ 5 0.984 (9162)

SCEDC SCA1 The quadrilateral with vertices: 1992/06/28 ‒ 1994/01/17 2 ≤ M ≤ 5 1.181 (17308)

SCS1 (120◦W, 34.5◦N), 1995/01/01 ‒ 1999/10/16 2 ≤ M ≤ 5 1.148 9665

SCA2 (118.5◦W, 36.5◦N), 1999/10/16 ‒ 2001/12/31 2 ≤ M ≤ 4.9 1.208 (9890)

SCS2 (117◦W, 36.5◦N), 2002/01/01 ‒ 2010/04/04 2 ≤ M ≤ 5 0.965 10589

SCA3 and (114.5◦W, 31.5◦N) 2010/04/04 ‒ 2019/07/04 2 ≤ M ≤ 5 0.930 (18852)

Table II. Time ranges of aftershock sequences to be analyzed. The p-value and the number of events within

the time range are also shown. p-values are calculated for events with magnitude ≥ minimum magnitude in

Table I.

Name R(t) ∝ t−p range p-value Number

JA t > 10 0.895 6706

SCA1 t > 10 1.061 12856

SCA2 102 > t > 100.5 1.005 3531

SCA3 t > 10 0.820 14978

pm(τm) is obtained by re-transforming p̃m(σm) by σm 7→ τm. By using the class mark (σm +

0.5∆σ) for dσm/dτm = 1/(10σm ln 10),

pm(τm) =
1

10σm+0.5∆σ ln 10
Ñm(σm)
Nm∆σ

. (14)
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Bold lines indicate the stationary regimes in the transformed aftershock sequences.

In this way, the inter-event time distribution is drawn by plotting Eq. (14) against 10σm+0.5∆σ.

Finally, the results shown in Fig. 7 are obtained through further rescaling by 〈τm〉.
One can see that the rescaled distributions are around the same curve that is expressed in

Eq. (6), except for very short intervals (τm/〈τm〉 ≲ 10−2). For such short intervals, the rescaled

distributions, in many cases, tend to take larger values than those used in Eq. (6); this may

be due in part to the limitation in terms of accuracy, and such limitation is often removed by

setting a minimum interval (around 10 seconds23) to 2 minutes13)). Also, preceding studies

provided theoretical explanations for this trend using the ETAS model.19–21)

These characteristics observed in Fig. 7 are consistent with the results of preceding cat-

alog analyses.11–13) Thus, the scaling property of the inter-event time distribution was also

confirmed for the unfolding-transformed time series.
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Fig. 7. (Color Online) Rescaled inter-event time distributions by the average interval 〈τm〉 for the unfolding-

transformed time series of (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. For

each time series, the results of several cut-offmagnitudes are shown. The dotted curve is the gamma distribution

in Eq. (6).

2.4 Method to examine the conditional probability

To examine the properties of the conditional probability, I use the rewriting of this func-

tion in Eq. (15) introduced in Ref. 3:

pmM(τm|τM) =
∑∞

i=1 i ρmM(τm|i, τM)ΨmM(i|τM)∑∞
i=1 i ΨmM(i|τM)

. (15)

Here, ΨmM(i|τM) denotes the probability mass function for the number of inter-event intervals

(i) at the lower cut-offmagnitude m that are included in the inter-event time interval of length

τM at the upper cut-off magnitude M.3) Also, ρmM(τm|i, τM) denotes the probability density of
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an inter-event time length at the lower cut-off magnitude m, conditioned on it being in the

inter-event time interval of length τM at the upper cut-offmagnitude M and including i pieces

of lower intervals; in particular, when i = 1, ρmM(τm|1, τM) is equivalent to the Dirac’s delta

function δ(τM − τm).3)

For the stationary marked Poisson process where the mark represents the magnitude value

that is randomly determined obeying the GR law, these components are as follows:3, 47, 48)

ΨmM(i|τM) =

(
A∆m

τM
〈τM〉

)i−1

(i − 1)!
e−A∆m

τM
〈τM 〉 , (16)

ρmM(τm|i, τM) =
(i − 1)
τM

(
1 − τm

τM

)i−2

θ(τM − τm), (i ≥ 2), (17)

where,

A∆m :=
〈τM〉
〈τm〉

− 1 = 10b∆m − 1, (18)

and θ(x) is the unit step function. The conditional probability for the stationary marked Pois-

son process can be derived by just substituting the above components in Eq. (15).3)

Correlations between events in seismic time series change these components from Eqs.

(16) and (17). The conditional probability in time series with weak inter-event correlations

can be studied by examining such changes. The subsequent section reports the findings from

analyzing the unfolding-transformed time series extracted in the preceding subsection using

this approach.

3. Results of catalog analysis

3.1 Results for the component ΨmM(i|τM)

3.1.1 Scaling property for the average of the conditional probability

First, I show the scaling property for the average of the conditional probability. By defi-

nition, the length of an inter-event time interval at the upper cut-off magnitude (τM) divided

by this average (〈〈τm〉〉τM ) is equal to the average number of intervals at the lower cut-off

magnitude included in that upper interval, i.e.,

τM

〈〈τm〉〉τM

=

∞∑
i=1

iΨmM(i|τM). (19)

This demonstrates that the scaling property associated with Eq. (19) as well as the average of

the conditional probability is linked only to the component ΨmM(i|τM).

Subtracting 1 from Eq. (19) yields the average number of magnitude ≥ m events included

in the inter-event time of length τM at the upper cut-off magnitude M. Figure 8 shows the
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results after scaling this average using the factor A∆m for magnitude and the average interval

〈τM〉 for time, across each time series. These results were obtained in the following way.
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Fig. 8. (Color Online) Results of rescaled [τM/〈〈τM〉〉τM − 1] for some pairs of specific cut-off magnitudes

(m,M) for (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. Equation (23) is

also indicated by a black (dotted) line for reference.

Define the transformed upper interval σM := log10 τM. For a set of cut-off magnitudes
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(m,M), let ÑM(σM) be the number of inter-event intervals at the upper cut-off magnitude,

whose length is within [σM, σM + ∆σ). Also, let Ñm(σM) be the total number of inter-event

intervals at the lower cut-off magnitude included in these intervals at the upper cut-off mag-

nitude. Then the result shown in Fig. 8 for a specific pair (m,M) is obtained by plotting the

following against 10σM+0.5∆σ/〈τM〉:
1

A∆m

(
Ñm(σM)
ÑM(σM)

− 1
)
. (20)

Figure 8 shows that the average numbers (τM/〈〈τm〉〉τM − 1) computed by the above way

collapse on a curve (ζ(y)) independent of the cut-off magnitudes (m,M), after rescaling by

〈τM〉 and A∆m, as follows:
τM

〈〈τm〉〉τM
− 1

A∆m
= ζ

(
τM

〈τM〉

)
. (21)

Hereafter, I use the variable y := τM/〈τM〉.
Seismic catalogs have a limitation in the number of events. Therefore, in particular for

the combination of (m,M) with large ∆m, the number of sample data to calculate Eq. (20)

becomes insufficient. This leads to increased fluctuations in the results and makes it difficult

to identify a trend. To obtain the scaling function (ζ(y)) utilizing as many sample data as

possible, I used all sample data obtained from the combinations of (m,M) with the same ∆m

together as the population, based on the above result in the following way.

Define the rescaled and transformed upper interval σ := log10 y. For all (m,M) with the

same ∆m (i.e., (m,M) = (m0,m0+∆m), (m1,m1+∆m), · · · , (mn,mn+∆m), where m j = mmin+

0.1 j (mmin is the minimum magnitude in Table I) and n is the upper limit of j for the given

magnitude range and ∆m), let N̂m j+∆m(σ) be the total number of rescaled and transformed

inter-event time intervals of length within [σ,σ+∆σ) at the cut-offmagnitude m j+∆m. Also,

let N̂m j(σ) be the total number of inter-event intervals at the cut-off magnitude m j included in

these time intervals at the cut-off magnitude m j + ∆m. Then the result for ∆m is obtained by

plotting the following against 10σ+0.5∆σ:

1
A∆m

 ∑n
j=0 N̂m j(σ)∑n

j=0 N̂m j+∆m(σ)
− 1

 . (22)

Such results for all possible ∆m set within the magnitude range in Table I are shown in Fig.

9 by gray + symbols. In particular, the results for several ∆m values are indicated by colored

symbols. These results are nearly the same as those for the specific pairs of (m,M) in Fig.8,

indicating that the scaling property in Eq. (21) holds. The results also suggest that the method

using the dependence on the magnitude difference as in Eq. (22) can effectively extract the
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scaling function from the limited number of seismic data, as long as the GR law holds.

The following linear functions are used as the fitting function of ζ(y):

ζ(y) ≈


αy + β (if y ≥ y0),

γy (if y < y0).
(23)

The parameter values (α, β, γ, y0) in Eq. (23) are different for each time series and can be

determined as follows. First, β was determined by fitting in the range y ∈ [10−2, 10−1]. Next,

as ζ(y) ∼ αy for large y, I determined α by fitting in log-scale log10 ζ(y) ∼ log10 α + log10 y,

in the range y ≥ 1. In the same way, γ was determined by fitting in log-scale log10 ζ(y) ∼
log10 γ + log10 y, in the range y ≤ 10−2. Lastly, y0 was determined as the intersection of the

above two lines. The resulting parameter values are summarized in Table III, and the fitting

curves with these parameter values are shown in Fig. 9 (and also in Fig. 8 for reference).

Table III. Parameter values (to six decimal places) in Eq. (23) for each time series.

Name α β γ y0

CMT 0.953828 0.069634 4.603897 0.019077

JS 0.979298 0.156119 28.882991 0.005595

JA 0.869569 0.340167 258.752423 0.001319

SCA1 0.822337 0.147506 17.838524 0.008669

SCA2 0.644104 0.075412 16.157159 0.004861

SCA3 1.106579 0.292309 172.511206 0.001705

SCS1 0.575125 0.279903 60.274019 0.004689

SCS2 0.681038 0.377327 81.000735 0.004698

3.1.2 Functional form of ΨmM(i|τM)

Figure 10 shows the component ΨmM(i|τM) for i ≤ 5 and ∆m = 0.5, 1.0, and 1.5 for the

case of CMT. The cases of other time series are shown in Figs. S1-(1) ‒ S1-(7).49) In the

figure, the variable τM is scaled by the average 〈τM〉. Only the small ∆m results are shown

because, when ∆m becomes large, the number of samples for calculating the distribution is

reduced, and it seemed insufficient to obtain clear outcomes. The results in Fig. 10 were

obtained in the following way.

Let ÑM(i|σM) be the number of transformed time intervals at the upper cut-off magnitude

(σM = log10 τM), whose length is within [σM, σM + ∆σ), and each of them includes i pieces

of inter-event intervals at the lower cut-off magnitude. ΨmM(i|τM) can be drawn by plotting

18/44



J. Phys. Soc. Jpn. FULL PAPERS

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(a)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.4
∆m=0.8
∆m=1.2
∆m=1.6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.4
∆m=0.8
∆m=1.2
∆m=1.6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(c)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.2
∆m=0.4
∆m=0.6
∆m=0.8

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(d)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.6
∆m=1.2
∆m=1.8
∆m=2.4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(e)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.6
∆m=1.2
∆m=1.8
∆m=2.4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(f)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.6
∆m=1.2
∆m=1.8
∆m=2.4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(g)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.6
∆m=1.2
∆m=1.8
∆m=2.4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(h)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

All ∆m
∆m=0.6
∆m=1.2
∆m=1.8
∆m=2.4

Fig. 9. (Color Online) Results of [τM/〈〈τM〉〉τM−1] calculated by Eq. (22) for the mixed populations of (m,M)

with the same ∆m. Results of all ∆m are shown by gray + symbols. The black solid line shows αy+ β for y ≥ y0

and the black dotted line γy for y < y0 with the parameter values in Table III.

the following against 10σM+0.5∆σ:

ÑM(i|σM)
ÑM(σM)

. (24)

The results shown in Figs. 10 and S1(1) ‒ S1(7)49) were obtained by further scaling the x-
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axis value by the average, that is, plotting Eq. (24) against 10σM+0.5∆σ/〈τM〉. In the figures,

the results for several pairs of (m,M) are shown. The figures suggest that the probabilities

ΨmM(i|τM) of the same∆m and i collapse on nearly the same function (Ψ̂∆m(i|y)) after rescaling

by 〈τM〉:

ΨmM(i|τM) = Ψ̂∆m (i|y) . (25)

Based on this scaling property, I calculated Ψ̂∆m (i|y) by taking into consideration all the

sample data with the same ∆m and y, likewise Sect. 3.1.1. Let N̂m j+∆m(i|σ) be the number of

rescaled and transformed time intervals (σ = log10 y) of length within [σ,σ+∆σ) at the upper

cut-off magnitude (m j + ∆m), each of which includes i pieces of inter-event intervals at the

lower cut-off magnitude m j. Ψ̂∆m (i|y) was also drawn in Figs. 10 and S1 ‒ S749) by plotting

the following against 10σ+0.5∆σ by + symbols:∑n
j=1 N̂m j+∆m(i|σ)∑n
j=1 N̂m j+∆m(σ)

. (26)

The results of Eq. (26) resemble those for particular combinations of (m,M) and thus support

the scaling property in Eq. (25).

The figures also indicate that ΨmM(i|τM)(=Ψ̂∆m(i|y)) can be described empirically by the

following negative binomial distribution with the scaling function ζ(y):

ΨmM(i|τM) =
Γ(i − 1 + B∆mζ(y))
(i − 1)!Γ(B∆mζ(y))

×
(

B∆m

A∆m + B∆m

)B∆mζ(y) ( A∆m

A∆m + B∆m

)i−1

, (27)

where,

B∆m =
A∆m

b∆m (b∆m + 2)
.

In the figures, Eq. (27) was drawn with the b-values listed in Table I and the parameter values

listed in Table III. One can see that Eq. (27) describes the numerical results of ΨmM(i|τM),

though it tends to deviate at the tail.

Note that Eq. (27) becomes the following Poisson distribution as ∆m→ 0:

ΨmM(i|τM) −−−−→
∆m→0

(A∆mζ (y))(i−1)

(i − 1)!
e−A∆mζ(y). (28)

In particular, when ζ(y) = y is identical to Eq. (16). However, such consistency does not hold

for ∆m ≩ 0, and there is room for improvement in this respect.

Thus, the weak inter-event correlations cause two modifications inΨmM(i|τM) compared to

the stationary Poisson process. First, the distribution form of ΨmM(i|τM) changes to a negative
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Fig. 10. (Color Online) ΨmM(i|τM) and Ψ̂∆m(i|y) with i ≤ 5 for CMT, plotted against y(:= τM/〈τM〉). The

cases of (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5 are shown. The results of ΨmM(i|τM) for several specific

pairs of cut-off magnitude (m,M) are shown by open-colored symbols. The gray + symbols show Ψ̂∆m(i|y) for

mixed populations of (m,M) with the same ∆m. (Dotted) curves show Eq. (27) with the parameter values listed

in Tables I and III.

binomial distribution for ∆m > 0. Second, the scaling function ζ(y) deviates from ζ(y) = y. In

particular, when ∆m → 0, ζ(y) represents a perturbation from the stationary Poisson process

caused by the weak correlations.
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3.2 Results for the component ρmM(τm|2, τM) and the assumption regarding ρmM(τm|i, τM)

with i ≥ 3

As for the component ρmM(τm|i, τM), I quantify its change from Eq. (17) by using

dh(i)
mM(τm, τM) defined as in Eq. (29).

ρmM(τm|i, τM) =
(i − 1)
τM

(
1 − τm

τM

)i−2

×
(
1 + dh(i)

mM (τm, τM)
)
θ(τM − τm). (29)

Note that, as pointed out in Sect. 3.1.1, the average of the conditional probability is deter-

mined only by the component ΨmM(i|τM). Therefore, the changes dh(i)
mM(τm|τM) affect the

higher order moments than 1 in the conditional probability.

In this study, I examined only the case of i = 2. By the normalization condition and the

symmetry of ρmM(τm|2, τM), dh(2)
mM(τm, τM) must satisfy the followings:∫ τM

0
dh(2)

mM(τm, τM)dτm = 0,

dh(2)
mM(τm, τM) = dh(2)

mM(τM − τm, τM).

I also examined the distribution function of ρmM(τm|2, τM):

PmM(τm|2, τM) :=
∫ τm

0
ρmM(s|2, τM)ds,

which is τm/τM for the stationary marked Poisson process.

Figure 11 shows the numerical results of ρmM(τm|2, τM) and PmM(τm|2, τM) for CMT. The

latter was scaled by τM values in the x-axis direction. The results for other time series are

shown in Figs. S2-(1) ‒ S2-(7).49) The results were obtained in the following way.

Define the transformed lower interval σm := log10 τm. Let ÑmM(σm;σM |i = 2) be the

number of the transformed inter-event time intervals at the lower cut-off magnitude, whose

length falls within [σm, σm +∆σ) and each of them is included in the transformed inter-event

time interval at the upper cut-off magnitude (σM = log10 τM) such that its length is within

[σM, σM + ∆σ) and it includes only two (i = 2) inter-event intervals at the lower cut-off

magnitude. Also, let Ñm(σM |i = 2) be the total number of inter-event intervals at the lower

cut-off magnitude, included in the inter-event intervals at the upper cut-off magnitude such

that its transformed length is within [σM, σM+∆σ) and includes two intervals at the lower cut-

off magnitude. Finally, I denote the density ρmM(τm|2, τM) after applying the above variable
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transformations by ρ̃mM(σm|2, σM), which is calculated as follows:

ρ̃mM(σm|2, σM) =
ÑmM(σm;σM |i = 2)

Ñm(σM |i = 2)∆s
. (30)

ρmM(τm|2, τM) is obtained by re-transforming this by σm 7→ τm and σM 7→ τM,

ρmM (τm|2, τM) =
1

10σm+0.5∆s ln 10
ÑmM(σm;σM |i = 2)

Ñm(σM |i = 2)∆s
. (31)

ρmM(τm|2, τM) in Figs 11 and S2(1) ‒ S2(7)49) were drawn by plotting Eq. (31) against

10σm+0.5∆s and 10σM+0.5∆s. Also, PmM(τm|2, τM) can be calculated by adding ρ̃mM (σm|2, σM)∆s

and was plotted against 10σm+∆s/10σM+0.5∆s and 10σM+0.5∆s.

As shown in these figures, the densities ρmM (τm|2, τM) are nearly the same regardless of

(m,M). In addition, ρmM (τm|2, τM) ≈ 1/τM, suggesting that dh(2)
mM(τm, τM) ≈ 0. However,

as shown in the lower panels of the figures, dh(2)
mM(τm, τM) tends to take a positive value for

small τm. This tendency seems to reflect the temporal clustering of moderate aftershocks in

stationary time series and secondary aftershocks in transformed aftershock sequences.

dh(2)(τm, τM) ≈ 0 implied by the figures reflects the weak inter-event correlations in the

time series; the situation seems to be the same for i ≥ 3, that is, dh(i)
mM(τm, τM) ≈ 0 for

i ≥ 3. Thus, in the following, I assume that inter-event correlations in these time series are

sufficiently weak so as not to affect the components ρmM(τm|i, τM) and there is no change in

ρmM(τm|i, τM) (i.e., dh(i)
mM(τm, τM) ≈ 0 for i ≥ 2) from the stationary marked Poisson process.

Note that this assumption should be re-considered when dealing with time series that include

prominent (secondary) aftershocks.

4. Derivation of the probability density functions related to inter-event times

The analysis in the previous section yielded the following results and suggestions for

unfolding-transformed seismic time series: the component ΨmM(i|τM) can be empirically de-

scribed by the negative binomial distribution (Eq. (27)) with the scaling function ζ(y) (which

can be fit by the linear functions in Eq. (23)) in the newly found scaling property (Eq. (21)),

and the other component ρmM(τm|i, τM) is almost unaffected by weak inter-event correlations

and assumed to be the same as in the stationary Poisson process. Based on them, this section

derives the functional forms of probability densities in Bayes’ theorem (Eq. (2)) and checks

whether the derived functions can describe the probability densities.

4.1 Conditional probability

First, I derive the conditional probability. The conditional probability rescaled by the

transformations τm 7→ x := τm/〈τM〉 and τM 7→ y ( p̂mM(x|y)) is derived as in Eq. (32) (see
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Fig. 11. (Color Online) Numerical results of (upper panels) ρmM(τm|2, τM) and (lower panels) PmM(τm|2, τM)

for several pairs of (m,M) with (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5, for CMT. The upper (lower)

panels show ρmM(τm|2, τM) (PmM(τm|2, τM)) in a cross-section parallel to the τM (τm/τM) axis. The colors in

the upper (lower) panels indicate τm (τM) values. The dotted black line in the upper (lower) panels indicates

ρmM(τm|2, τM) = 1/τM (PmM(τm|2, τM) = τm/τM), which corresponds to dh(2)
mM(τm, τM) = 0 in Eq. (29).

Appendix A). Hereafter, variable x is used with this definition.

p̂mM(x|y) = (A∆mζ(y) + 1)−1

δ(y − x)
(

A∆m

A∆m + B∆m

)B∆mζ(y)

+θ(y − x)
[
A∆mB∆m(y − x)ζ(y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)2

×A∆mB∆mζ(y)
(

B∆my
A∆mx + B∆my

)B∆mζ(y)
 . (32)

As Eq. (32) indicates, the rescaled conditional probability depends on ∆m.

To compare with Eq. (32), I numerically obtained the conditional probability similarly to

Sect. 3.2, though the condition of i = 2 is removed. Let ÑmM(σm;σM) be the number of the

transformed inter-event time intervals at the lower cut-off magnitude (σm = log10 τm), whose

length is within [σm, σm+∆σ) and each of them is included in the transformed inter-event time

interval at the upper cut-offmagnitude (σM = log10 τM) of length within [σM, σM +∆σ). This

represents the total number of pairs of σm and σM in the time series. Also, let p̃mM(σm|σM)

be the probability density of σm under the condition that it is included in the inter-event

time interval of transformed length σM at the upper cut-off magnitude. Thus, p̃mM(σm|σM) is
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calculated as follows:

p̃mM(σm|σM) =
ÑmM(σm;σM)
Ñm(σM)∆σ

,

and pmM(τm|τM) is:

pmM(τm|τM) =
1

10σm+0.5∆σ ln 10
ÑmM(σm;σM)
Ñm(σM)∆σ

. (33)

p̂mM(x|y) can be drawn by plotting the following against (x, y):

p̂mM(x|y) = 〈τM〉pmM(τm|τM). (34)

Figure 12 shows P̂mM(x|y) defined below:

P̂mM(x|y) :=
∫ ∞

x
p̂mM(x′|y)dx′,

numerically calculated for the time series of CMT. In the figure, P̂mM(x|y) is shown in cross-

section views for various y ranges. The figure suggests that the conditional probability for the

same ∆m collapse on the same function, that is,

p̂mM(x|y) = p̂∆m(x|y). (35)

This is consistent with the implication by Eq. (32). The same scaling property was also found

for other time series, as shown in Figs. S3-(1) ‒ S3-(7).49)

Based on the scaling property in Eq. (35), I calculated the conditional probability using

all the pairs of cut-off magnitudes with the same ∆m. Define the rescaled and transformed in-

terval ς := log10 x, and σ = log10 y. Let N̂m j,m j+∆m(ς;σ) be the total number of the inter-event

time intervals of rescaled and transformed length within [ς, ς + ∆σ) at the cut-off magnitude

m j, that is included in the inter-event time intervals of rescaled and transformed length within

[σ,σ + ∆σ) at the cut-off magnitude m j + ∆m. The conditional probability for ∆m (p∆m(x|y))

is calculated as follows:

p∆m(x|y) =
1

10ς+0.5∆σ ln 10

∑n
j=0 N̂m j,m j+∆m(ς;σ)∑n

j=0 N̂m j(σ)∆σ
. (36)

In Fig. 12, also P∆m(x|y) defined as follows is shown.

P∆m(x|y) :=
∫ ∞

x
p∆m(x′|y)dx′.

P∆m(x|y) is almost consistent with P̂mM(x|y), supporting the scaling property in Eq. (35) and

the superposition method in Eq. (36).

Figure 13 shows the results of Eq. (36) plotted against 10ς+0.5∆σ and Eq. (32) with the

parameter values listed in Table III at a given value of ∆m. The results for other ∆m values are

summarized in Figs. S4-(1) ‒ S4-(8).49) The figures show that the results of catalog analyses
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Fig. 12. (Color Online) P̂mM(x|y) for the time series of CMT. Results for certain pairs of cut-off magnitudes

(m,M) with (a) ∆m = 0.4, (b) ∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6, are drawn in cross-sections for the

ranges of y shown in the figure. Results for the pairs of (m,M) are represented by colored open symbols. Black

+ symbols show P∆m(x|y) where y = 10( j+0.5)∆σ, j ∈ Z. Among the j values for which P∆m(x|y) is obtained,

the values are denoted such that all results for the pairs of (m,M) displayed in the legend are included within

(10 j∆σ, 10( j+1)∆σ) by j = j0, j1, · · · , jK . The ranges of y shown in the figure are (10 j∆σ, 10( j+1)∆σ) for j values

nearest to the four points which are dividing [ j0, jK] into five equal parts.

are described by Eq. (32).

4.2 Inter-event time distribution

Second, I derived the scaling function ( f (y) in Eq. (5)) of the inter-event time distribution.

Under the assumption that dh(i)
mM(τm, τM) = 0 for i ≥ 2, the scaling functions f (y) and ζ(y) are
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Fig. 13. (Color Online) Equation (32) calculated with the parameter values from Table III (curves) and nu-

merical results of p∆m(x|y) by catalog analysis (symbols) for time series of (a) CMT, (b) JS, (c) JA, (d) SCA1,

(e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. The value of ∆m is shown in the figure. Results are drawn in

cross-sections for y = 10(3 j+0.5)∆σ, j ∈ Z. The color corresponds to the log10 y value, and its range is shown in

the color bar. Note that when the result of catalog analysis is not obtained for a j, only the corresponding Eq.

(32) is shown.

shown to be equivalent, and using Eq. (23) (see Appendix B),

f (y) =



 yβ0eαy0

eγy0−1
γ
+

yβ0eαy0

α1−β Γ (1 − β, αy0)

 y−βe−αy (for y ≥ y0), eγy0

eγy0−1
γ
+

yβ0eαy0

α1−β Γ (1 − β, αy0)

 e−γy (for y < y0).

(37)

Here Γ(·, ·) is the upper incomplete gamma function.

Figure 14 compares Eq. (37) with the rescaled inter-event time distributions for each time

series. Equation (37) was drawn using the parameter values in Table III.

Equation (37) appears to be relatively complicated. However, Fig. 14 also shows that the

overall shape, except for very short intervals, of the scaled distribution can be described by

the gamma distribution in Eq. (38) that is the extension of f (y) in Eq. (37) for y ≥ y0 to

y ∈ [0,∞) with re-normalization:

f (y) =
α1−β

Γ(1 − β)y−βe−αy. (38)

4.3 Inverse probability

Third, I derived the inverse probability by substituting the results in Sects. 4.1 and 4.2 into

Bayes’ theorem (Eq. (2)). The rescaled inverse probability ( p̂Mm(y|x)) was derived as follows

27/44



J. Phys. Soc. Jpn. FULL PAPERS

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(a)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(c)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(d)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(e)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(f)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(g)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(h)

p
(τ

m
)<

τ m
>

τm/<τm>

Theoretical (y ≥ y0)
Theoretical (y < y0)
Gamma distribution

Fig. 14. (Color Online) Equations (37) (orange curve for y < y0 and cyan curve for y ≥ y0) and (38) (black

dotted curve) as well as numerical results of the rescaled inter-event time distributions by catalog analysis (gray

symbols, each symbol represents a result at the same cut-off magnitude as in Fig. 7) for time series of (a) CMT,

(b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. Equations (37) and (38) are calculated

using the parameter values listed in Table III.

(see Appendix C):

p̂Mm(y|x) =

(
y
x

)−β
e−α(y−(A∆m+1)x)

(A∆m + 1)2−β

δ(y − x)
(

A∆m

A∆m + B∆m

)B∆mζ(y)

+θ(y − x)
[
A∆mB∆m(y − x)ζ(y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)2

×A∆mB∆mζ(y)
(

B∆my
A∆mx + B∆my

)B∆mζ(y)
 . (39)
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As with the conditional probability, p̂Mm(y(> x)|x) depends on ∆m.

As in Sect. 4.1, I numerically computed the inverse probability from catalog data as fol-

lows. Let p̃Mm(σM |σm) be the probability density of the transformed inter-event time interval

at the upper cut-off magnitude (σM = log10 τM) under the condition that inside of which the

transformed time interval of length σm(= log10 τm) is found. Thus, p̃Mm(σM |σm) is calculated

as follows:

p̃Mm(σM |σm) =
Ñm(σm;σM)
Ñm(σm)∆σ

,

and pMm(τM |τm) is:

pMm(τM |τm) =
1

10σM+0.5∆σ ln 10
Ñm(σm;σM)
Ñm(σm)∆σ

. (40)

Thus the scaling of Eq. (40) yields p̂Mm(y|x):

p̂Mm(y|x) = 〈τM〉pMm(τM |τm), (41)

and,

P̂Mm(y|x) :=
∫ ∞

y
p̂Mm(y′|x)dy′,

is shown for the case of CMT in Fig. 15 as sectional diagrams for several ranges of x. The

results for other time series are shown in Figs. S5-(1) ‒ S5-(7).49) The results suggest the

property:

p̂Mm(y|x) = p̂∆m(y|x), (42)

as implied by Eq. (39).

As the ∆m dependence was confirmed, I calculated p̂∆m(y|x) taking into consideration all

the pair of (m,M) with equal ∆m as follows:

p∆m(y|x) =
1

10σ+0.5∆σ ln 10

∑n
j=0 N̂m j,m j+∆m(ς;σ)∑n

j=0 N̂m j(ς)∆σ
. (43)

Figure 15 shows P∆m(y|x) :=
∫ ∞

y
p∆m(y′|x)dy′ and its consistency with P̂Mm(y|x) supports Eqs.

(42) and (43).

The results of Eq. (43) are shown in Fig. 16 against 10σ+0.5∆σ, along with Eq. (39) substi-

tuting the parameter values in Table III. Figure 16 shows only the results for a particular ∆m;

see Figs. S6-(1) ‒ S6-(8)49) for the results at other ∆m values. It can be seen that Eq. (39)

illustrates the result of catalog analysis for individual time series.
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Fig. 15. (Color Online) P̂Mm(y|x) for the time series of CMT. Results for some pairs of (m,M) with (a) ∆m =

0.4, (b) ∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6 are shown by colored symbols in cross-sections in the range

of x indicated in the figure. Also, P∆m(y|x) :=
∫ ∞

y p∆m(y′|x)dy′, where x = 10( j+0.5)∆σ, j ∈ Z is shown by black

+ symbols. The x ranges indicated in the figure are determined by utilizing the same method as outlined in the

caption of Fig. 12.

5. Discussion and Conclusions

This study examined the Bayesian forecasting framework of earthquakes’ timing using

three seismic catalogs toward its practical use. Following Corral’s method, I extracted sta-

tionary (almost constant occurrence rate) and aftershock (obeying Omori ‒ Utsu occurrence

rate) time series from three seismic catalogs and transformed them into weak inter-event cor-

relation ones. For these unfolding-transformed time series, I examined the simplest form of

the Bayesian approach, Bayes’ theorem, composed of three distribution functions: the condi-

tional probability to quantify temporal hierarchy in time series, the inverse probability directly

related to forecasting, and the inter-event time distribution for which scaling universality was

re-examined.
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Fig. 16. Equation (39) (curves) with the parameter values in Table III and numerical result of pMm(y|x) by

catalog analysis (symbols) for time series of (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g)

SCS1, and (h) SCS2. The values of ∆m are shown in the figure. The results are drawn in cross-section for

x = 10(5 j+0.5)∆σ, where j ∈ Z. The color corresponds to the value of log10 x and its range is shown in the color

bar. Note the same possible absence of symbols as in Fig. 13.

A new scaling property on the temporal hierarchy of seismic time series was found by an-

alyzing the average of the conditional probability; the linear functions can fit its scaling func-

tion (ζ(y)), though its fitting parameter values differ, reflecting seismic characteristics. The

two functional components of the conditional probability were analyzed; one can be empiri-

cally described by the negative binomial distribution with the above scaling function (ζ(y)),

and the other is almost unchanged from that of the marked stationary Poisson process, which

may be attributed to the weakness of inter-event correlation of the unfolding-transformed

time series.

Based on them, functional forms of the conditional probability and the scaling function

( f (y)) of the inter-event time distribution were derived. The theoretical derivation based on

the present catalog analysis suggested that the scaling functions for these probability distri-

butions (ζ(y) and f (y)) are essentially equivalent; the difference in the parameter values in the

fitting linear functions of ζ(y) appears as that in the scaling function f (y) of the inter-event

time distribution, indicating the negative view of universality. Finally, the inverse probabil-

ity was derived from Bayes’ theorem. These derived distribution functions could describe

the characteristics of the results of catalog analysis, such as the functional form and peak

emergence in the inverse probability.
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5.1 On the scaling universality in the inter-event time distribution in seismicity

The derived scaling function of the inter-event time distribution was described as an ex-

ponential distribution for small intervals (y < y0) and a gamma distribution for large intervals

(y ≥ y0). However, the overall scaling function could be described just by the re-normalized

latter gamma distribution. The parameter values to characterize distributions are similar but

different for each time series. These results are consistent with the conclusions of the preced-

ing studies in the following respects.

First, in the preceding studies,11–13) the (generalized) gamma distribution was used to

fit the results of catalog analysis, except for short intervals. Theoretical studies under some

assumptions on correlations between events derived the distribution near the generalized

gamma distribution.19–21, 50) Equation (38) provides another theoretical basis for the fitting

instead of such approaches with seismic model time series.

Second, theoretical studies using the ETAS model showed that the universality of the

scaling function f (y) is only approximate.19–21) Our result is also consistent with them; the

parameter values in Eq. (37) or (38) were similar but slightly different, reflecting the charac-

teristics of seismic activity aggregated as the difference in ζ(y).

However, the difference in f (y) for each time series was not as pronounced as in the

preceding numerical study.14) This is because I restricted the analysis only to the stationary

time series and transformed aftershock sequences, in accordance with the original Corral’s

method. The bimodality of the inter-event time distribution pointed out in that study14) seems

to be manifested in the switching of the distribution in Eq. (37), though it could not satisfacto-

rily describe the catalog analysis at short intervals (y < y0). A detailed study of dh(i)
mM(τm, τM),

set to 0 in this study, may clarify this point.

These results on the scaling universality in the inter-event time distribution from the view-

point of the unfolding transformation indicate the following: such temporally unfolded time

series are indistinguishable regardless of original seismic activity to the extent that their tem-

poral property can be described in the same gamma distribution with slightly different param-

eter values aggregating seismic character. This conclusion about the temporal nature of the

renewal process at a certain cut-off magnitude was derived in the present study from that of

the hierarchical relation at two different cut-off magnitudes, i.e., the new scaling property of

the conditional probability. Thus, this study extends the above conclusion to the level of the

hierarchical structure of seismic time series; unfolding transformed seismic time series are

indistinguishable even at the hierarchical level to the extent that the same functional form of
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the conditional probability can describe them.

5.2 On the method of unfolding transformation of seismic time series

The following problems still need to be solved with the method I used in this study.

Applying the unfolding procedure requires a smooth function representing the temporal vari-

ation trend of occurrence rate. In studies of quantum chaos, such functions are given theoreti-

cally.28) However, this study does not have such a theoretical basis, and the temporal variation

trends of occurrence rate are given empirically.

This remains the ambiguity in judging whether an aftershock sequence is moderate and

thus regarded as fluctuations in a stationary time series or a clear aftershock sequence. Pre-

ceding studies using stochastic models considered all aftershock sequences to be the former;

thus, there is no ambiguity in this respect. However, in our approach, a modest aftershock se-

quence can be regarded as a sequence such that its occurrence rate fluctuates around a smooth

temporal variation described by the Omori ‒ Utsu rate or just a fluctuation in a stationary

time series; a deviation from a constant occurrence rate. For example, this study considered

the secondary aftershocks in JA as the deviation in the unfolding-transformed time series,

though they could be considered as other aftershock activities. The fitting parameter values

of ζ(y) vary depending on which of the two is adopted, though at present, there is no clear

way to determine.

In this way, the unfolding procedure applied in this study leaves some ambiguity in de-

termining the smooth function to describe the trend of the occurrence rate; our conclusion on

the universality is tentative in this respect. For a more detailed discussion, it is necessary to

establish an objective method to determine the smooth function of the occurrence rate trend

adaptable to seismic activity, such as using the moving average.

5.3 Inter-event correlations reflected in the conditional probability

The kind of inter-event correlations reflected in the conditional probability requires fur-

ther examination. The temporal clustering represented by the Omori ‒ Utsu law seems the

primary one. However, preceding studies43, 51) suggested other inter-event correlations; the

conditional probability may reflect such correlations. Clarifying this point is important for

the theoretical understanding of the Bayesian approach and the properties of the inter-event

time distribution.
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5.4 Property of the inverse probability and its significance in forecasting earthquakes

This study derived the inverse probability using the GR law and the new scaling property

on the hierarchical structure of seismic time series. Although the derivation was based not

on analytically rigorous probabilistic calculations but on empirical fitting, assumption, and

approximation, this advances the point estimate of the large-earthquake timing in time series

with inter-event correlations in the previous study3) to probabilistic forecasting.

The derived inverse probability has a peak when ∆m is large. Such a feature enables us

to narrow the timing of future large earthquakes better than the inter-event time distribution,

the prior probability without such a peak. The inverse probability is shown to depend on

the fitting parameters of ζ(y) and the b-value reflecting differences in seismic characteristics

by time series. Such difference led to the negative conclusion on the scaling universality,

though, on the other hand, it suggests the possibility of effective forecasting using the inverse

probability. That is, the inverse probability can reflect the characteristics of seismic history

in the space-time domain, including minor-scale ones, and varies depending on the length

of the lower interval. Therefore, the inverse probability can provide better forecasting than

the existing inter-event time distribution by reflecting additional information on the seismic

history and the real-time occurrence of small events.

The preceding study showed that the forecasting is relatively ineffective when the non-

stationary Omori‒ Utsu relaxation process that causes inhibiting steady estimate is dominant

in activity.3) The unfolding procedure may improve forecasting in such a relaxation process.

This study suggested that the stationary time series are indistinguishable from the unfolding-

transformed aftershock sequences at the hierarchy level, and thus, I expect that the Bayesian

inference in the transformed aftershock sequence improves to the same extent as other sta-

tionary time domains. Therefore, it is conceivable to apply the unfolding transformation to

seismic time series before performing Bayesian inference. In such an approach, it is sufficient

to consider a less daunting Bayesian framework for time series with weak inter-event correla-

tions. However, in this approach, the already-mentioned problem of determining the smooth

function of the occurrence rate remains; in this respect, it seems important to use the moving

average in real time.

In this way, the Bayesian approach is expected to contribute to improving the accuracy

of probabilistic forecasting of the earthquake’s timing. However, toward its practical use, it is

significant to examine the Bayesian method in a way that relaxes the two conditions imposed

in this study. First, this study considered Bayes’ theorem that yields the inverse probability
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given only one length of a lower inter-event time as the condition; its extension to Bayesian

updating is essential to utilize more information on multiple intervals at the lower cut-off

magnitude. Second, this study derived the inverse probability under the condition that the

inter-event correlation is weak. I already discussed the Bayesian approach in combination

with the unfolding transformation, in which the theory for the time series with weak inter-

event correlation is enough. While this approach is advantageous in the theoretical analysis,

there remains difficulty in time series treatment. Another more straightforward approach is

extending the framework to a general seismic time series that includes notable aftershock

activities, which can avoid such difficulty, is theoretically intriguing, and may improve fore-

casting because such major aftershocks possibly yield correlations between events that can

more effectively work in the Bayesian approach. Thus, further examination of the inverse

probability in Bayesian updating using general seismic time series is significant for more

practical and effective probabilistic forecasting.

5.5 A method to use limited seismic activity data

The catalog analysis found that the conditional and inverse probabilities collapse on ∆m-

dependent functions after rescaling by the average inter-event times. I utilized this property

to use as much data as possible from the limited seismic data. This method seems helpful for

further research into analyzing seismic time series with limited data.

However, I point out that this approach only applies in the magnitude range the GR law

strictly holds. This can be seen, in particular, in the case of SCA3; as shown in Fig. 14(f),

the tail part of the theoretically derived scaling function ( f (y)) deviated from the result of

catalog analysis (a similar trend is also observed in Figs. 14(c) and (h)). The cause of this

deviation can be traced back to the poor fitting parameter estimation in Eq. (23) due to the

incomplete scaling collapse of ζ(y) (Fig. 9(f)), and the fundamental cause is considered to be

in the minor discrepancy in the magnitude frequency relative to the exact GR law (which can

be seen in the slight trend of b̂ in Fig. 2(f)). Thus, while the method in this study is effective in

compensating for the shortage of seismic data, it should be noted that the results are sensitive

to the accurate following of magnitude frequency to the GR law.
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Appendix A: Derivation of the conditional probability

I show the derivation of the conditional probability (Eq. (32)) by substituting Eqs. (27)

and (29) into Eq. (15). The denominator of Eq. (15) is, from the property of the negative

binomial distribution,
∞∑

i=1

iΨmM(i|τM) = A∆mζ (y) + 1. (A·1)

On the other hand, the numerator is,
∞∑

i=1

iρmM(τm|i, τM)ΨmM(i|τM)=δ(τM − τm)
(

A∆m

A∆m + B∆m

)B∆mζ(y)

+ θ(τM − τm)
∞∑

i=2

i(i − 1)
τM

(
1 − x

y

)i−2 (
1 + dh(i)

mM(τm, τM)
)

× Γ (i − 1 + B∆mζ (y))
(i − 1)!Γ (B∆mζ (y))

×
(

B∆m

A∆m + B∆m

)B∆mζ(y) ( A∆m

A∆m + B∆m

)i−1

. (A·2)

The summation without dh(i)
mM(τm, τM) of the right hand side (r.h.s.) of Eq. (A·2) is trans-

formed as follows:
∞∑

i=2

i(i − 1)
τM

(
1 − τm

τM

)i−2
Γ (i − 1 + B∆mζ (y))
(i − 1)!Γ (B∆mζ (y))

×
(

B∆m

A∆m + B∆m

)B∆mζ(y) ( A∆m

A∆m + B∆m

)i−1

=

(
B∆m

A∆m+B∆m

)B∆mζ(y) ( A∆m
A∆m+B∆m

)
τMΓ (B∆mζ (y))

×
 ∞∑

i=0

Γ(i + 1 + D)
i!

Ci+1 + 2
∞∑

i=0

Γ(i + D)
i!

Ci

 , (A·3)

where,

C :=
A∆m

A∆m + B∆m

(
1 − x

y

)
.

D := 1 + B∆mζ (y) .
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The first infinite series in the r.h.s. of Eq. (A·3),

S 1 = 2
∞∑

i=0

ai, where ai =
Γ(i + D)

i!
Ci, (A·4)

satisfies the ratio test as follows:

lim
i→∞

∣∣∣∣∣ai+1

ai

∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣ i + D
i + 1

∣∣∣∣∣ |C| = ∣∣∣∣∣ A∆m

A∆m + B∆m

∣∣∣∣∣ ∣∣∣∣∣1 − x
y

∣∣∣∣∣ < 1.

Therefore, the first infinite series converges as follows:

S 1 = 2Γ(D)
[
1 +

D
1!

C +
D(D + 1)

2!
C2 + · · ·

]
= 2Γ(D)(1 −C)−D. (A·5)

The second infinite series,

S 2 =

∞∑
i=0

bi, where bi =
Γ(i + 1 + D)

i!
Ci+1, (A·6)

also satisfies the ratio test as follows.

lim
i→∞

∣∣∣∣∣bi+1

bi

∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣ i + 1 + D
i + 1

∣∣∣∣∣ |C| = ∣∣∣∣∣ A∆m

A∆m + B∆m

∣∣∣∣∣ ∣∣∣∣∣1 − x
y

∣∣∣∣∣ < 1.

Equation (A·6) can be transformed in the following way:

S 2 = C
∞∑

i=0

(i + D)Γ(i + D)
i!

Ci

= C

 ∞∑
i=0

Γ(i + 1 + D)
i!

Ci+1 + D
∞∑

i=0

Γ(i + D)
i!

Ci


= CS 2 +CDΓ(D)(1 −C)−D

Therefore,

S 2 = CDΓ(D)(1 −C)−D−1. (A·7)

From Eqs. (A·5) and (A·7),

S 1 + S 2 = B∆mζ (y)Γ (B∆mζ (y))
[
(A∆m + B∆m)y
A∆mx + B∆my

]B∆mζ(y)+1

×
[
A∆mB∆m(y − x)ζ (y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)

.

Equation (A·3) is rewritten as follows:

A∆mB∆mζ(y)
〈τM〉

(
B∆my

A∆mx + B∆my

)B∆mζ(y)

× {A∆mB∆m(y − x)ζ (y) + A∆m(x + y) + 2B∆my}
(A∆mx + B∆my)2 .
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Therefore, the conditional probability when dh(i)
mM(τm, τM) ≡ 0 can be derived as follows:

pmM(τm|τM) = (A∆mζ (y) + 1)−1

δ(τM − τm)
(

A∆m

A∆m + B∆m

)B∆mζ(y)

+θ(τM − τm)
[
A∆mB∆m(y − x)ζ (y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)2

×A∆mB∆mζ(y)
〈τM〉

(
B∆my

A∆mx + B∆my

)B∆mζ(y)
 . (A·8)

Finally, Eq. (32) is obtained by performing the variable transformation τm 7→ x.

Appendix B: Derivation of the scaling function of the inter-event time distribution

Here, I show the derivation of the scaling function of the inter-event time distribution (Eq.

(37)). First, I derive the conditional probability for ∆m→ 0. From Eq. (28), the denominator

of Eq. (15) is
∞∑

i=1

i
(A∆mζ (y))(i−1)

(i − 1)!
e−A∆mζ(y) = A∆mζ (y) + 1. (B·1)

On the other hand, the numerator of Eq. (15) is, with dh(i)
mM(τm, τM) ≡ 0,

θ(τM − τm)
∞∑

i=2

i
(i − 1)
τM

(
1 − x

y

)i−2 (A∆mζ (y))(i−1)

(i − 1)!
e−A∆mζ(y)

+ δ(τM − τm)e−A∆mζ(y). (B·2)

The summation in Eq. (B·2) is rewritten as follows:
∞∑

i=0

(i + 2)
τM

(
1 − x

y

)i (A∆mζ (y))(i+1)

i!
e−A∆mζ(y)

=
1
τM

A∆mζ (y) e−A∆mζ(y) x
y

×
∞∑

i=0

(i + 2)

[
A∆mζ (y)

(
1 − x

y

)]i

i!
e−A∆mζ(y)

(
1− x

y

)

=
1
τM

A∆mζ (y) e−A∆mζ(y) x
y

[
A∆mζ (y)

(
1 − x

y

)
+ 2

]
.

Therefore, the conditional probability is

pmM(τm|τM) = (A∆mζ (y) + 1)−1
{
e−A∆mζ(y)δ(τM − τm)

+
1
τM

A∆mζ (y) e−A∆mζ(y) x
y

[
A∆mζ (y)

(
1 − x

y

)
+ 2

]
θ(τM − τm)

}
. (B·3)

Equation (1) is rewritten into the relationship between the scaling functions (Eq. (B·4))
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by Eqs. (5), (B·1) and (B·3) with Nm/NM = 〈τM〉/〈τm〉 = 10b∆m.

102b∆m f
(
10b∆mx

)
= e−A∆mζ(x) f (x)

+ A∆m

∫ ∞

x

ζ(y)
y

e−A∆mζ(y) x
y

[
A∆mζ(y)

(
1 − x

y

)
+ 2

]
f (y)dy. (B·4)

Each term in Eq. (B·4) is then followed by operating lim∆m→0 ∂∆m:

∂∆m102b∆m f
(
10b∆mx

)
−−−−→
∆m→0

b ln 10
(
2 f (x) + x f ′(x)

)
,

∂∆me−A∆mζ(x) f (x) −−−−→
∆m→0

−b ln 10ζ(x) f (x),

∂∆mA∆m

∫ ∞

x

ζ(y)
y

e−A∆mζ(y) x
y

[
A∆mζ(y)

(
1 − x

y

)
+ 2

]
f (y)dy

−−−−→
∆m→0

2b ln 10
∫ ∞

x

ζ(y)
y

f (y)dy.

Hence,

2 f (x) + x f ′(x) = −ζ(x) f (x) + 2
∫ ∞

x

ζ(y)
y

f (y)dy. (B·5)

Equation (B·5) indicates the essential equivalence between f (y) and ζ(y).

Equation (B·5) is simplified using G(x) as defined in Eq. (B·6), as follows:

2G(x) = −xG′(x),

where,

G(x) := f (x) −
∫ ∞

x

ζ(y)
y

f (y)dy, (B·6)

Therefore, with a constant κ:

G(x) =
κ

x2 ,

or,

f ′(x) +
ζ(x)

x
f (x) = −2κ

x3 .

Change the variable from x to y, and the solution is with a constant y0,

f (y) =
(
−

∫ y

y0

2κ
u3 e

∫ u
y0

ζ(v)
v dvdu + f (y0)

)
e−

∫ y
y0

ζ(v)
v dv
.

In particular, when κ = 0:

f (y) = f (y0) exp
(
−

∫ y

y0

ζ(u)
u

du
)
.
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Using Eq. (23) suggested by the catalog analysis as ζ(y),

f (y) =


f (y0)yβ0eαy0y−βe−αy (if y ≥ y0),

f (y0)eγy0e−γy (if y < y0),
(B·7)

where f (y0) is determined by the normalization condition as

f (y0) =

eγy0 − 1
γ

+
yβ0eαy0

α1−β Γ (1 − β, αy0)

−1

. (B·8)

Hence, by Eqs. (B·7) and (B·8), the scaling function of the inter-event time distribution is

derived as Eq. (37).

Appendix C: Derivation of the inverse probability

Here, I show the derivation of the inverse probability from Eq. (2) with Eqs. (38) and

(A·8).

From Eqs. (3) and (38), zm(τm) and zM(τM) are

zm(τm) =
α1−β

Γ(1 − β)
1
〈τm〉
{(A∆m + 1)x}1−β e−α(A∆m+1)x, (C·1)

zM(τM) =
α1−β

Γ(1 − β)
1
〈τM〉

y1−βe−αy. (C·2)

Also, from Eqs. (4) and (A·8), zmM(τm|τM) is

zmM(τm|τM) =
(

x
y

) δ(τM − τm)
(

A∆m

A∆m + B∆m

)B∆mζ(y)

+θ(τM − τm)
[
A∆mB∆m(y − x)ζ (y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)2

×A∆mB∆mζ(y)
〈τM〉

(
B∆my

A∆mx + B∆my

)B∆mζ(y)
 . (C·3)

The inverse probability for dh(i)
mM(τm, τM) ≡ 0 is derived by substituting Eqs. (C·1), (C·2),

and (C·3) into Eq. (2):

pMm(τM |τm) =

(
y
x

)−β
e−α(y−(A∆m+1)x)

(A∆m + 1)2−β

×
δ(τM − τm)

(
A∆m

A∆m + B∆m

)B∆mζ(y)

+θ(τM − τm)
[
A∆mB∆m(y − x)ζ(y) + A∆m(x + y) + 2B∆my

]
(A∆mx + B∆my)2

×A∆mB∆mζ(y)
〈τM〉

(
B∆my

A∆mx + B∆my

)B∆mζ(y)
 . (C·4)
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Finally, Eq. (39) is derived by performing the variable transformation τM 7→ y to Eq. (C·4).
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