Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

loading page

Enhancing Seismic Noise Suppression Using the Noise2Noise Framework
  • Mitsuyuki Ozawa
Mitsuyuki Ozawa
Mitsuyuki Ozawa JGI, Inc

Corresponding Author:[email protected]

Author Profile

Abstract

Although supervised deep learning (DL) offers a potent solution for removing noise from seismic records, challenges are encountered owing to the scarcity of noise-free labels. The innovative Noise2Noise method eliminates the need for clean training targets and extends the applicability of deep learning to seismic data denoising. In this study, we introduce the Noise2Noise Enhancement (N2NE) framework, which improves upon the conventional noise reduction methods used in seismic processing. The applicability of this framework was quantitatively examined using actual field noise under two scenarios: with and without repeated shots. In scenarios with repeated shots, the N2NE framework enhances the conventional stacking method. In addition, the substack strategy, which employs smaller substacks for preliminary noise suppression before DL training, boosts noise suppression. In scenarios without repeated shots, the N2NE framework refines conventional denoising methods (F-X deconvolution) by utilizing information from the common-shot and receiver domains. The N2NE framework lays a foundation for future research on N2N-based seismic denoising methods and contributes to improving the quality of seismic records and the efficiency of data acquisition.
19 Feb 2024Submitted to ESS Open Archive
05 Mar 2024Published in ESS Open Archive