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Key Points:

e We developed an end use water demand model that simulates detailed
household water use and potential savings using Monte Carlo techniques.

e The model is generally applicable and can be modified to simulate the
detailed water end uses for different cities.

e Results can assist water utilities in identifying opportunities for incentive
programs and to encourage water conservation.

Abstract

We present a model of indoor residential water use that estimates water demand
and conservation potential by end use for a target community by simulating
indoor water end use events at a household level. The model uses end use
event data from a set of representative residential households to simulate a
larger community and advances existing end use models by: 1) accounting for
an expanded set of indoor water end uses; 2) considering the variability in
flowrates, durations, and volumes for end use events over different days of the
week; and 3) providing a generalized approach for simulating indoor water usage
and potential conservation at the city level. The model simulates residential
water use behavior in individual households by randomly sampling water end use
events for different end use types for each day of the week and then aggregating
the sampled water end use events per day to estimate the daily water use per
household. We used the model to evaluate a set of technological and behavioral
conservation actions to quantify the conservation potential in each simulated
household as well as aggregated to the city level. We evaluated the performance
of the model in predicting the observed average daily water use of households
in Logan City, Utah, USA and compared against other common water demand
models to demonstrate the model’s reliability. The results of this paper are
reproducible using openly available code and data, representing an accessible
platform for advancing water demand modeling using detailed water end use
data.

1 Introduction

With rapid growth of urban populations and limited resources, improving the
short and long term planning and management of urban water supply has cre-
ated a persistent need to develop and adopt alternative management schemes
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(Gaudin, 2006). In the last decade, several water demand forecasting and sim-
ulation strategies have been proposed to promote water conservation and wa-
ter demand management (Koutiva and Makropoulos, 2019). Residential water
demand modeling aims to simulate the water demand behavior of households
and how it is influenced by management strategies and external factors (e.g.,
environmental, social, etc.). Since the 1960s, many residential water demand
modeling-oriented studies have been published, where monthly water use data
have been frequently used for management programs. For example, in 2008,
Aurora, Water tracked and analyzed residential monthly water use records for
the city of Aurora, Colorado, USA for a period of one year and investigated
the impacts of different demand management programs enacted for different
months (e.g., price, water restrictions, and rebate programs) (Kenney et al.,
2008). Despite their dissimilar contexts and techniques, residential water de-
mand modeling studies have mostly shared the same procedure in simulating
water demand that first determines a set of independent variables to be used in
the model for predicting water use (e.g., number of residents, age of the prop-
erty, etc.) and second determines an estimation method or model formulation
(Worthington and Hoffman, 2008).

The major determinants of water use included in most existing demand mod-
eling studies have been the number of residents in a household, the existence
of swimming pools, precipitation rates, price of water, and the outdoor lot
size (Wentz et al., 2013; Kenney et al., 2008; Haley et al., 2007; Arbués et
al., 2003; Dalhuisen et al., 2003; Gaudin, 2006; Mayer et al., 1999; Espey et
al., 1997). Regression models have been the prime estimation method adopted
in several studies to simulate and predict residential water use, including or-
dinary least squares regression (Agthe and Billings, 1980; Carver and Boland,
1980; Schefter and David, 1985), two-stage least squares (Chicoine et al., 1986;
Renwick et al., 2019; Stevens et al., 1992), three-stage least squares (Chicoine
et al., 1986), instrumental variable approach (Higgs and Worthington, 2001;
Martinez-Espifieira, 2002; Renwick et al., 2019), maximum likelihood approach
(Hajispyrou et al., 2002), generalized least squares approach (Gaudin et al.,
2006; Hoglund, 1999), and generalized method of moments approach (Garcia
and Reynaud, 2004; Nauges and Thomas, 2003).

With respect to spatial scale, residential water demand models have been devel-
oped at district levels (Mamade et al., 2014), household levels (Kontokosta and
Jain, 2015), and water end use levels (Cahill et al., 2013). At district levels, wa-
ter demand models have used a spatial scale consisting of a group of residential
households in one or more cities. Such a spatial scale is typically relevant for
infrastructure planning and long term water demand forecasting (di Mauro et
al., 2020). At the household level, water demand models have been primarily
used to estimate peak water demand and timing with output estimates for a
single household (di Mauro et al., 2020). At the end use scale, water demand
models have been used to better understand residential water use behavior, the
consumption rate of each water end use inside household units, and to develop
targeted water end use conservation actions. Given the variability of models at



different spatial and temporal scales, the required input data and model output
also varies. The temporal scale of district-level water demand modeling varies
from hourly to monthly and annual intervals (di Mauro et al., 2020), whereas
the temporal scale of household and end use models can vary from minutes to
one day. The majority of household scale models use data inputs collected with
a time resolution of 15 minutes to one day. End use scale models use data
inputs gathered at seconds to one minute resolutions.

Achieving an appropriate balance between water supply capacity expansion and
water conservation requires more mechanistic and detailed modeling approaches
that allow water managers to control for demographic, behavioral, and social
variation in water use across households (Jorgensen et al., 2009). This can be
vital for utilities where water is scarce and developing more water supply is ex-
pensive or even impossible. In addition, given new standards and technologies
in water end uses and demographic and behavioral heterogeneities of water con-
sumers, growth in water demand is unlikely to be homogenous. Thus, detailed
water modeling and targeted conservation actions may be necessary planning
tools for water supplying agencies. Over the last two decades, models have
started to include behavioral factors (e.g., shower duration) (Matos et al., 2013;
Romano and Kapelan, 2014; Talebpour et al., 2014) and geospatial factors (e.g.,
climate) (Maeda et al., 2011; Praskievicz and Chang, 2009; Kuski et al., 2020).
The emergence of smart metering technology and the high temporal and spatial
resolutions of recent water end use monitoring studies has enhanced the devel-
opment of residential water use models that account for economic, behavioral,
and geospatial factors (Cominola et al., 2015; Makki et al., 2015). Some of these
more advanced models integrate end use data to simulate the water demands
of individual water end uses such as faucets, showers, toilets, etc. and then ag-
gregate end uses to estimate consumption at the household level (Cominola et
al., 2018). Coupling such an event level water demand model with demographic
surveys about households and their residents including number of residents, age
distribution, age of household, and characteristics of water-using fixtures can
lead to more realistic simulations of water demand patterns that compare well
to those that have been observed.

For example, Blokker et al., (2009) developed a water demand model to predict
water use from end use measurements. Statistical data from a survey conducted
across 46 households in the city of Amsterdam, Netherlands, including census
data and the average age in each household, were incorporated into the model
along with water use data obtained from different end uses. The frequency of
water use for each event type was simulated using a Poisson distribution, water
use volume for each individual event of different end use types was assumed to
be constant, and the flowrate of water use for each event was simulated as a
lognormal distribution. Williamson et al., (2002) modified the model developed
by Blokker et al., (2009) to develop an enhanced water end use model. Modi-
fications included changing fixed volumes of water use for different end uses to
probability distributions, which allowed them to account for the water use vari-
ability present in each end use type. However, Williamson et al., (2002) used



water end use data collected from only 20 residential households in South East
Queensland, Australia and generated probability distribution curves for sam-
pling using end use data and statistical data from a survey conducted across
those households. End use probability curves were used to sample water con-
sumption, while statistical probability curves were used to sample demographic
variation of residents, including the number of residents of a simulated house-
hold and technical performance of its water end uses.

Table 1 lists characteristics of several approaches for modeling residential end
uses, including: indoor end uses incorporated, whether the model can simulate
conservation potential, software used, whether the model uses an open source
software license, whether the model accounts for daily variation in water use,
and whether the model is generalizable to other communities. Despite the recent
improvements in residential water use modeling established by these models,
some important variables have been left out or not adequately integrated into
the models. This includes not accounting for all different types of water end
uses, assuming constant flow rate and/or constant water use volume for all end
uses of the same type, and not having a realistic probability for occurrence of
water use events over different days of the week. In 2011, a team of researchers
conducted a review study of the existing residential urban water end use models
and concluded that the ability of existing models to simulate water end use
demands especially at a city scale is limited (House-Peters and Chang, 2011).

In this paper, we present an end use water demand model that addresses these
gaps in prior modeling efforts reported in Table 1 and that is aimed at improving
understanding of residential water use behavior and promoting water manage-
ment and conservation strategies for water utilities. The model described in
this paper simulates a more complete set of indoor water end uses than other
models and uses realistic probability of occurrence for all events and their asso-
ciated features (frequency, volume, duration, and flowrate) instead of assuming
average values for these features. The model accounts for heterogeneity of water
use behavior amongst different residential households by using an event dataset
drawn from a representative set of households. The model is also open source
for further testing and reuse.

Table 1. Approaches used for different end use modeling studies

Study This paper

Incorporated end uses Faucet, toilet, shower, clothes washer, dishwasher, t
Water conservation prediction Yes

Software used Python

Open source software license Yes

Daily variation per end use type Yes

Representative set of households used in the simulation Yes

Handling unclassified events Yes

Variable water use per end use type Yes



Study This paper

Model propagation at city scale Yes

The simulation process results in estimates of water use for a group of households
that reflect realistic variability in water end use technologies and residents with
diverse water use behavior. We utilized this detailed technical and behavioral
information to investigate a set of water conservation actions and quantified
their associated water saving potential. Technological practices included those
designed to reduce water irrespective of the residents’ behavior (e.g., retrofitting
an inefficient showerhead). Behavioral practices focused on changing residents’
habits irrespective of the technology being used (e.g., fewer showers). Water use
savings associated with these actions was calculated as the difference in water
use before and after conservation actions were implemented. This study was
focused on answering the following research questions: a) How can improving
the representation of water end uses at a detailed level within a water demand
model improve our ability to predict residential water use and the effects of
conservation actions? b) What is the water saving potential for individual homes
as well as aggregated to a city level associated with different technological and
behavioral conservation actions designed to reduce current indoor water use?

The case study presented demonstrates how detailed water end use records from
an existing study can be used to simulate the water use behavior of residential
households for which there is no detailed water end use data available. In the
case study application, we used the simulation results to analyze the variability
of water use in terms of timing and distribution of end uses, efficiency of end
uses, and water conservation potential of residential households in the city of
Logan, Utah, USA. We demonstrate how the model is generally applicable and
can be modified to simulate the detailed water end uses of other cities. Applying
the model requires availability of monthly water use records for the simulated
households and the existence of a sample of households from a detailed water
end use dataset such that the water use behavior of the sample households is
representative of the water use behavior of the simulated households.

2 Materials and Methods
2.1 Water End Uses

We identified seven indoor water end uses to be incorporated in the water end
use demand model, including faucet, toilet, shower, bathtub, clothes washer,
dishwasher, and unclassified (events not associated to any end use type, e.g.,
leaks). In the U.S., these are the main water end uses expected in single-family
residential households. To evaluate the efficiency of these end uses, we used
specifications from the current federal standard defined by the U.S. Energy Pol-
icy Act of 1992 (DOE, 1992), the Environmental Protection Agency’s (EPA)
Energy Star Program (EPA, 2021a), and the U.S. EPA WaterSense efficient
fixtures (EPA, 2021b). The Energy Policy Act of 1992, which became a law in



1994, mandates a maximum water use volume or flowrate for different end use
fixtures manufactured and installed in the U.S. after 1994 and was designed to
encourage manufacturing of high performing, water efficient fixtures. Based on
these specifications, we divided faucet, toilet, and shower events into three cat-
egories: inefficient events, typical events, and efficient events. Inefficient events
are those that have water use volumes or flowrates higher than the maximum
water use volume or flowrate mandated by the U.S. Energy Policy Act of 1992.
Typical events are those that have water use volumes or flowrates less than
the maximum mandated standard by the U.S. Energy Policy Act of 1992 and
higher than the EPA WaterSense program specifications. Efficient events are
those that have water use volumes or flowrates less than or equal to the EPA
WaterSense program specifications. For clothes washer and dishwasher events,
we used the specifications defined by the EPA EnergyStar Program to classify
events as efficient, typical, or inefficient (Table 2). We assessed the efficiency of
bathtub filling events using the size of a bathtub. Standard bathtubs can hold
up to 300 liters (L) of water. Smaller bathtubs can hold up to 150 L of water.
However, since bathtub filling events do not use the full capacity of the bathtub,
we assumed that a bathtub filling event will use approximately two thirds of its
capacity. Based on that, we identified efficient bathtub filling events as those
that use less than or equal to 100 L of water, typical events as those that use
between 100 and 200 L of water, and inefficient events as those that use more
than 200 L of water. Table 2 summarizes the technical performance of each end
use type according to the Federal Standard and EPA specifications.

Table 2. Technical performance by end use type.

End use type Inefficient event Typical event Efficient event

Toilet Volume > 6.1 LPF? 4.8 LPF < Volume < 6.1 LPF Volume < 4.8 LPF
Faucet 8.3 > LPMP 5.7 LPM < Flowrate < 8.3 LPM Flowrate < 5.7 LPM
Shower Flowrate > 9.5 LPM 7.6 LPM < Flowrate < 9.5 LPM Flowrate < 7.6 LPM
Clothes washer Volume > 110 L/load 70 L/load < Volume < 110 L/load Volume < 70 L/load
Dishwasher Volume > 13 L/cycle 6 L/cycle < Volume < 13 L/cycle Volume < 6 L/cycle
Bathtub Volume > 200 L/filling 100 L/filling < Volume < 200 L/filling Volume < 100 L/filling
2L per flush

PL per minute
2.2 End Use-Level Water Demand Model Formulation

An end use water demand model can be formulated based on the premise that
total water use for a household is the sum of all of the end uses of water. Given
that, the total water use volume for an individual simulated household for a
given day can be calculated as:
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where V7 p, is the total water use volume for a household (L) on day of the week
D, B, is a coefficient indicating the absence (0) or presence (1) of an end use
i, V; p is the volume of water used by end use type i during day of the week
D (L), and n is the number of end uses within the simulated household. The
volume of water consumed during the day by unclassified events that cannot be
prescribed to a particular end use (e.g., leaks) (L), is modeled as a separate end
use.

Water end use technical performance, number of residents in a household, water
use behaviors, variation in occupancy of the household on different days of the
week, and demographic factors that vary across households and individual water
use events within a household all affect the total volume of water used by each
end use during a day (V; p). In order to account for this variability, the volume
of each individual end use event is simulated in the model. To do so, the model
accounts for: 1) the number of individual water use events from each end use
type that occurs during a day of the week D, or frequency (f; p), and 2) the
volume of each end use event j of type i (v; ;) (Eqn. 2):

n fi,D
VT,D = (21 B, 21 vi,j)
1= Jj=

This enables the model to estimate the total daily water use for each of the
different end uses while accounting for variation in volumes of each individ-
ual water use event across each of the different end uses. Instead of assuming
average volume and frequency estimates for events of each end use type, the
model simulates the frequency of event occurrence for each household and day
along with the volume of each individual end use event using a Monte Carlo
sampling approach. We chose a Monte Carlo sampling approach rather than
assuming average volume and frequency because we have observed that volume
and frequency are not consistent across homes or days of the week (Rosenberg et
al., 2007), and we were interested in the conservation potential associated with
different event types, which depends on variability in event volumes. Another
approach that could be used consists of choosing individual homes with detailed
end use data and using the events for those homes without manipulation. How-
ever, given the relatively small number of homes with detailed end use data,
this would result in reusing the same events over and over which may not be
representative of the distribution of events from the much larger set of homes
to be simulated. A Monte Carlo simulation approach provides a wider variety



of water use events to sample from and results in a smoother, more realistic dis-
tribution of events for simulated homes, providing an opportunity to simulate a
wider variety of water use behaviors reflective of a broader group of residential
water users.

Event frequency values for each day (Monday - Sunday) and a volume for each
simulated event are drawn from cumulative distribution functions (CDFs) for
frequency and volume derived from detailed event data for a subset of the house-
holds from a detailed water use monitoring study. By doing so, the model is
able to simulate variability in water use across different households and across
the different end use types.

To satisfy the input requirements of the model, detailed, disaggregated water
end use event data obtained from smart metering studies are needed. Detailed
water end use event data consist of individual water use events for a household
and additional information about each event, including the date, start time,
volume, duration, and flowrate. To simulate residential homes within a city
using the model formulation above, a representative number of households with
their detailed water end use data can be scaled up to the level of all residential
homes within a city. However, most cities lack detailed water end use datasets.
Existing end use studies have necessarily focused on a small group of households
within a municipality boundary, and there have been few large scale studies to
date (Boyle et al., 2013). Furthermore, existing studies may include bias associ-
ated with their spatial distribution, with most of them having been conducted
in Queensland, Australia and scattered cities across the U.S. (e.g., Jorgensen
et al., 2009; Makki et al., 2015; Willis et al., 2013). These limitations have
restricted existing end use demand models to places where detailed end uses of
water studies were conducted.

For cities where no detailed water end use datasets are available, an alterna-
tive is to draw a sample of households with their detailed water end use data
from one of the existing end use studies such that the water use behavior of the
drawn sample is representative of the water use behavior of the households to
be modeled (see Section 2.5 for how we did this for our case study). Similarity
in water use can be quantified using data that are widely available for different
cities (e.g., monthly billing data). The monthly water use data for households
to be simulated can be used to calculate the overall water use probability distri-
bution for those households, where the distribution shows the probabilities of
occurrence of different monthly water use volumes for all households within the
city. Then, monthly water use volumes for households with detailed water end
use data are used to draw a representative sample of households from existing
end use studies.

The input to the model is a comma-separated values (CSV) file that contains
the water end use event data for the representative sample of households and the
number of households to be simulated. The output of the model is a CSV file
that contains the simulated water end use events for the number of residential
households in the input (e.g., all single family residential homes in a modeled



city). In the following sections, we first describe the Monte Carlo sampling pro-
cedure used in executing the model. We then describe in more detail how the
model inputs were developed for our case study application in Logan, including
how the representative sample of households with detailed water end use data
was selected and how CDFs input to the Monte Carlo sampling procedure were
constructed. Following that, we describe how we validated the “existing condi-
tions” model simulation results and then implemented the ability to simulate
water conservation strategies.

2.3 Model Execuion Procedure

The model initiates the sampling procedure from CDFs for event frequency so
that water use behavioral factors for a simulated household are related. For
example, a simulated household with a high toilet flush frequency on one day is
expected to have high flush frequency across all days. We used the cumulative
distribution function that characterizes frequency of water use to rank house-
holds as having low (< 33rd percentile), medium (33rd - 66th percentile), or high
(>66th percentile) frequency of water use, depending on their percentile ranking
of number of events per day. We then devised a Monte Carlo sampling proce-
dure to ensure that the frequency of end use events of the same type within the
same simulated household for different days of the week were drawn randomly,
but from the same group of frequencies. For example, if the frequency of the
first end use type is sampled from the low frequency group (< 33rd percentile),
the frequency values for all simulated days for that end use type for the same
household are sampled from the low frequency group. The model assumes that
once a high, medium, or low frequency has been set for an end use type for a
simulated household, that end use type for the simulated household remains in
that category to preserve the same frequency behavior for end uses of the same
type throughout different days of the week.

In order to account for the variation of technical performance of end uses across
different households, we constrained the sampling process for events of the same
type to choose only events within the same level of technical performance (i.e.,
inefficient, typical, or efficient). For example, if the first event of one type
is sampled from efficient events, all subsequent events of the same type are
randomly sampled from the group of efficient events. This was implemented in
our sampling procedure by sub-setting flowrates and/or volumes from different
end use types into different groups based on their technical performance. We
then devised a Monte Carlo sampling procedure to ensure that the simulated
events of the same type share the same technical performance, but still capture
observed variability across water use events. By doing this, we ensured a realistic
water use behavior for each simulated household.

Using these Monte Carlo methods, we sampled from the distributions of event
frequencies and event volumes/flowrates for each day of the week to generate a
simulated set of events that when summed provide a water use estimate for each
simulated household over a one-week period. For sampling purposes, we used
the CDF for each input (event frequency and event volume/flowrate for different



days of the week). The CDF’s x-axis encloses the range of possible values of
an input, while its y-axis holds the non-exceedance probability values, which
vary from 0 to 1. After generating CDFs for frequency and individual water use
event volumes/flowrates for each day of the week using the event data input to
the model, Equation 2 was evaluated as follows for each individual simulated
residence:

o Select day of the week (D) for the simulated household.
o For each end use type i:

— Determine the frequency of end use event type i (e.g., shower) for the
simulated household for the selected day of the week by randomly
sampling from the CDF of frequency values for that day — generate
a random number between 0 and 1 representing a non-exceedance
probability and select the corresponding frequency from the x-axis
(Figure 1). In the example below for the shower end use, the randomly
generated non-exceedance probability value of 0.4 indicates that the
simulated household is drawn from the medium water use frequency
group. For other days of the week, narrow the randomly selected
non-exceedance probability value for the same end use type to be
within the range of medium water use frequency group (0.33-0.66).
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Figure 1. Sampling process from the CDF of shower frequency.

o If the selected frequency is zero, the simulated household does not have
end use i. Set the value of B; to 0 and the end use volume v, ; to zero.
If B, = 1, proceed to the next step. The shape of the generated CDF
curve of frequencies is influenced by the frequency values in the original
data. For example, if 50% of all households in the representative sample
do not have bathtub filling events, the CDF curve of frequencies will have
a steeper slope segment at the beginning of the curve (Figure 2) indicating
that many of the frequency values used to generate the distribution have
a value of zero. This implies that the likelihood of a sampled household
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having a B; value that equals to zero (no bathtub filling events) is high
assuming that the sampling is random and unbiased.
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Figure 2. Example CDF for bathtub filling events.

Based on end use type, generate three CDFs of water volumes or flowrates,
one for efficient events, one for typical events, and one for inefficient events.
For faucet and shower end uses, flow rates are used to reflect their technical
performance, while user behavior is captured in the duration for each event.
For other end use types, including toilet, bathtub, clothes washer, and
dishwasher end uses, only volume is considered since it is more relevant
than the flow rate in terms of technical performance. An example of the
CDFs used for shower event sampling is shown in Figure 3 with both
shower event flowrate and duration CDFs used for sampling.

— For each event j in the set of end use events of type ¢ defined by
frequency f; p:

— For the first event of toilet, bathtub, clothes washer, and dishwasher
(j = 1), randomly pick a CDF curve of volumes from the inefficient,
typical, and efficient distributions generated in the previous step for
events of type ¢. Determine an end use volume, v; , by randomly pick-
ing a volume from the selected CDF of volumes — generate a random
number between 0 and 1 representing a non-exceedance probability
and select the corresponding volume from the x-axis.

— For the first event of faucet and shower end uses (j = 1), Determine
an end use flowrate, FR; |, by randomly picking a flowrate from the
selected CDF of flowrates — generate a random number between 0
and 1 representing a non-exceedance probability and select the cor-
responding flowrate from the x-axis. Determine an end use duration
D, ; by randomly picking a duration from the CDF of durations
— generate a random number between 0 and 1 representing a non-
exceedance probability and select the corresponding duration from
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the x-axis. Calculate the water use volume of the first event of faucet
and shower end uses by multiplying its flowrate by its duration. In
the example below, the first shower event was picked from the CDF
for efficient showerheads, and its duration was randomly picked from
the CDF of shower durations (Figure 4).
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For succeeding events (j > 1) of types toilet, bathtub, clothes washer,
and dishwasher, determine an end use volume by randomly sampling from
the CDF for event volume after narrowing the sampling range to a set of
event volumes that matches the technical performance of the first selected
event — generate a random number between 0 and 1 representing a non-
exceedance probability and select the corresponding volume from the x-
axis. For succeeding events (j > 1) of types faucet and shower, determine
an end use flowrate by randomly sampling from the flowrate CDFs after
narrowing the sampling range to a set of event flowrate values that match
the technical performance of the first selected event. By doing this, we
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ensure a consistent technical performance of water use events of the same
type in the same household for different days of the week. Determine an
end use duration by randomly sampling from the CDF of shower durations.
Calculate the water use volume of each event by multiplying the flow rate
of each event by its duration. In this example, succeeding shower events
are sampled from the typical event CDF (Figure 4, Panel a) while their
duration can be any value within the CDF curve of durations (Figure 4,
Panel b).

e Add the volume of the current event j to a total volume tally for event
type i for the current day D.

o For water use events that are not prescribed to a particular end use type,
generate a single CDF of event volumes. Determine an event volume, v, ;,
by randomly picking a volume from the generated CDF of volumes — gen-
erate a random number between 0 and 1 representing a non-exceedance
probability and select the corresponding volume from the x-axis. For suc-
ceeding events (j > 1) determine an end use volume by randomly sampling
from the CDF of volumes. By not constraining the sampling procedure
of water use events that are not prescribed to a particular end use type
(e.g., leaks), we ensure realistic behavior of these events given that they
have been observed to vary drastically from one day to another within the
same home.

o Add the total volume tally for events of type ¢ to the total daily volume
tally for the current day D.

e Repeat the steps described above for each day of the week for each sim-
ulated residence until the number of residences in the input has been
simulated.

2.4 Simulating Water Conservation Stratigies

The total volume of water savings (L) is calculated in the model as the dif-
ference between water use before and after conservation actions are applied
(e.g., installing a low-flow showerhead for a certain household will reduce over-
all water use by reducing water used by showers). The savings associated with
conservation actions depend on the initial state of a household. For example, a
household that already has efficient shower heads will not realize water savings
by installing low-flow showerheads. The expected amount of water saved by
making end uses more efficient can be calculated as:

n fi,p
/
VS,DJ‘ = B, <v7j7j - Uz’,j)
i=1  j=1

where Vg p, ; (L) is the water savings from retrofitting end use i and /or changing
water use behavior for the household on day of the week D, B, is a coefficient
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indicating the absence (0) or presence (1) of an end use 4, v, ; is the volume
of water used by end use type ¢ for an individual event j during day of the
week D (L) before retrofitting, n is the number of end uses within the simulated
household, and v; ; 1s the volume of water used by end use type ¢ for an individual
event j during day of the week D (L) after retrofitting.

This expression enables the model to investigate technological and behavioral
conservation actions at the household level. While households that already
have efficient fixtures will not save water for conservation actions that involve
retrofitting fixtures, conservation actions that involve behavioral change of water
use can still be considered for those households. The amount of water savings
is assumed by the model to be a simple superposition of the effectiveness of
each independent action. For example, if a household chooses to reduce shower
lengths and reduce clothes washer use frequencies, the total effectiveness of
those actions together is modeled as the sum of the effectiveness of each of
those actions when implemented independently. The total water savings from
adopting multiple conservation actions is then estimated as the sum of water
savings associated with each implemented action, which can be denoted as:

n

VS,D, T = Z VS,D,i

i=1

where Vg 7 is the total water savings (L) for day of the week D, and Vg p ;
is as described above.

2.5 Case Study Application

The water end use model we developed can be applied to simulate any set of
residential households where the following conditions are met: 1) monthly or
more frequent water use data for the residential households to be simulated
is available, and 2) there is a set of households with detailed water end use
event data that are representative of the households to be simulated. As a
demonstration case, we picked the city of Logan, Utah, USA as a medium
sized municipality to demonstrate the capability of the model to simulate the
indoor residential water use of all households in a city. Logan City is the hub
of a growing metropolitan area in northern Utah’s Cache Valley (Figure 5) and
relies entirely on springs and groundwater wells to supply municipal water needs.
Logan’s drinking water is drawn from groundwater in DeWitt Spring located in
Logan Canyon to the east of the city. Although the spring generally provides a
sufficient amount of water to supply the City, it is supplemented by four culinary
wells that assist the supply, primarily in the summer. More than 70% of the
total supplied fresh water is consumed by the residential sector in Logan City.
The majority of residential buildings in Logan are classified as single-family
household (SFH), with 7,500 SFH connections reported in the city’s monthly
water records. SFH connections account for 90% of residential users in Logan.
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The Logan City water utility provided us with monthly water use records col-
lected from 2012 to 2018 for all SFH connections within the city. The provided
billing dataset contains the total monthly water use volume in gallons per house-
hold along with other secondary attributes, including the billed days, square
footage of the home, property number, account number, and bill date (Attallah
et al., 2022). To select a representative sample of households with water end
use event data for input to the model, we used data from the 2016 Residential
End Uses of Water Study (REUWS) collected by AquaCraft, Inc. (DeOreo et
al., 2016). The 2016 REUWS dataset provides information about individual
water use events derived from high temporal resolution smart metering data.
AquaCraft monitored 762 single-family households across 11 cities in the U.S.
and Canada between 2000 and 2016 for a period of two weeks. They used their
TraceWizard software (DeOreo et al., 1996) to disaggregate the high resolution
flow trace from each household’s water meter to identify and classify individual
water use events. The resulting dataset contains individual water use events
along with several event attributes, including the date, start time, volume, and
peak flow rate. In addition to the detailed end use dataset, the 2016 REUWS
recorded daily water use for each participating household. Table 3 summarizes
the geographical coverage and other parameters collected in the 2016 REUWS.

w 3
.| ¢ Single Family Home

[Z_A Logan City Boundary
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I Arizona New Mexico

Figure 5. Distribution of single-family households in Logan.

To draw a sample of 2016 REUWS households that is representative of the Logan
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households, we used average daily water use as the metric for comparison. The
monthly water use data provided by Logan City and the 2016 REUWS daily
water use dataset were collected at different temporal aggregations (monthly
versus daily), and over different time periods (2010-2016 for REUWS versus
2012-2018 for Logan). To enable comparison across the datasets, we arranged
both into a similar temporal aggregation. We used the years of 2014-2018 for
Logan as the most recent five years of data. We downscaled the monthly billing
data for all households in Logan to average daily water use by dividing the
monthly water use volumes of each year by the number of billed days for each
month. To ensure we were only accounting for indoor water use, we excluded
summer months from the dataset where outdoor water use is anticipated and
considered winter months only (January to March and November to December).
We estimated four values of average daily water use for each household in the
Logan dataset for each year, one value for each winter month, then averaged
them together to get one estimate of daily water use for each household. For
the 2016 REUWS dataset, we estimated average daily water use volumes for all
households across all days by excluding irrigation events where they existed for
all years available.

Table 3. Data collected in the 2016 Residential End Uses of Water study.

Data Description

Geographic Coverage Clayton County, GA; Denver, CO; Fort Collins, CO; Peel, Ontario; San Antonio, TX;
Temporal Coverage AquaCraft recorded water flow through each individual customer’s water meter every
Demographics Number of residents, rent versus own, highest level of education in the household, anr
End uses Toilet, bathtub, faucet, shower, clothes washer, dishwasher, evaporative/swamp cooles

Fixture information Presence of low-flush, ultra-low-flush, dual-flush toilets, number of showerheads in shc

After calculating the average daily water use for each household in the Logan
dataset, we used a weighted random sampling approach to identify a set of
households from the 2016 REUWS dataset that would generate a probability
distribution of average daily water use representative of the one generated from
Logan households. Weighted random sampling utilizes PDF curves to randomly
sample data points from a distribution (in this case the 2016 REUWS house-
holds) based on weights assigned to each data point in the sampling dataset
based on the PDF of another dataset (in this case the Logan households). The
sampling weights effectively set the likelihood with which households in the
2016 REUWS dataset will be selected so that the sampling procedure generates
a set of households having a distribution of average daily water use that repre-
sents the distribution of average daily water use for Logan households as closely
as reasonably possible. The following steps summarize the weighted random
sampling procedure:

o Identify the range of values of average daily water use volume for house-
holds in both Logan and the 2016 REUWS datasets. Remove households
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from the 2016 REUWS dataset with daily water use volumes beyond the
range of water use volumes of Logan dataset.

Generate a PDF curve of average daily water use volumes for households
in the Logan dataset (Figure 6). The x-axis of the PDF represents the
range of average daily water use volumes for Logan households. The y-axis
represents the probability density, or the likelihood of the corresponding
value on the x-axis occurring. Since a PDF is a graphical representation
of a numerical distribution where the outcomes are continuous, for each
household in the 2016 REUWS dataset with average daily water use within
the range of average daily water use values from the Logan dataset, there
is a probability density value on the Logan dataset’s PDF curve.
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Figure 6. Weight assigning to each 2016 REUWS dataset house-
hold. The average daily water use volume for each 2016 REUWS
household is intersected with the PDF curve for the Logan dataset
to obtain a probability density value for each 2016 REUWS house-
hold. These probability density values are used as the weights for
2016 REUWS households in the sampling procedure.

Calculate the probability density value for the average daily water use
volume for each 2016 REUWS household using the PDF curve of the
Logan dataset (Figure 6). The calculated probability density value for
a 2016 REUWS household is called the sampling weight. The sampling
weight sets the importance of each household in the 2016 REUWS dataset
such that the likelihood of a household being selected is equal to the
probability density of that point from the Logan PDF.

Normalize the sampling weight of each 2016 REUWS household by divid-
ing weights by the summation of weights for all 2016 REUWS households.
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The summation of normalized weights from all 2016 REUWS households
should equal to 1.

Use the random.choice function from the NumPy Python package to ran-
domly select a subset of 2016 REUWS households using the normalized
weights for the 2016 REUWS households as input to the function. We
also set the replace parameter of the function to be true to sample with
replacement. We chose to sample with replacement given the small num-
ber of 2016 REUWS households (less than 400 households) compared to
7,500 households in the Logan dataset.

The sampling function requires predefining the number of 2016 REUWS
households to be selected. To identify the optimal number of 2016
REUWS households to select, we used a statistical test of equality metric
to evaluate different sample sizes. Many statistical tests can be used to
test the equality of continuous, one-dimensional probability distributions.
The most common ones include the Chi-square test (Looney, 2008), the
Anderson-Darling test (Nelson, 1998), and the Kolmogorov-Smirnov (KS)
test (Massey et al., 1951). A one-sample KS test can be used to compare
a sample (i.e., daily water use volumes drawn from the 2016 REUWS
dataset) with a reference probability distribution (i.e., daily water use
volumes obtained from Logan dataset) to determine whether they are the
same. An attractive feature of the KS test is that it does not depend
on the underlying CDF being tested. The KS test uses the p-value
significance level to examine whether two distributions are equivalent.
The KS test returns a D statistic and a p-value corresponding to the D
statistic. The D statistic is the absolute max distance between the CDFs
of the two samples. The closer this number is to 0, the more likely it is
that the two distributions are equivalent. The p-value returned by the
KS test has the same interpretation as other p-values. If the p-value is
lower than some significance level (e.g., =0.05), then the null hypothesis
is rejected, signifying the modeled and observed results are not from the
same distribution. If the p-value is greater than the =0.05 significance
level, then both datasets were drawn the same distribution. The KS test
was implemented using the SciPy 1.7.2 Python Package.

For the KS test configuration, we used an initial sample size of 50 2016
REUWS households, and then increased the sample size by one household
on each iteration, and stopped when the population size of 7,500 house-
holds was reached. We estimated the D statistic and a p-value for each
sample size and selected the sample size that produced the least D static
value with a p-value greater than the =0.05 significance level.

Utilizing the procedure described above, a total of 92 households that generated
a probability distribution of average daily water use representative of Logan
households was drawn from the 2016 REUWS dataset. The selected households
resulted in minimum D static value, indicating that the daily water use volumes
of the drawn households most closely represent the overall daily water use vol-
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umes of households in Logan dataset. The selected sample of 92 households
included 69 unique households and 23 replicated households. We used the de-
tailed end use event data for all 92 households in this set to simulate the detailed
water end use events for Logan residents. The PDF of average daily indoor wa-
ter use of Logan households during winter months of the years of 2014-2018
versus the sample of households drawn from the 2016 REUWS dataset is shown
in Figure 7.

2016 REUWS dataset
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Figure 7. PDF for average daily indoor water use of Logan’s households versus
the sample of households from the 2016 REUWS.

2.6 Model Validation and Comparison

The simulation process resulted in estimates of daily water use volumes for 7,500
residential households located in Logan City for a period of one week. To confirm
that the water use volumes from the simulation model accurately represent
the water use behavior of residents in Logan City, we compared the simulated
water use volumes to observed water use volumes retrieved from the monthly
billing dataset. Given that simulated water use volumes were generated using
Monte Carlo simulation, comparing them directly with observed data is not
possible. Instead, we compared the distribution and characteristics of simulation
results to the distribution and characteristics of the observed data to ensure that
they match. Since the simulated water use volumes and the observed water
use volumes from the monthly billing dataset have different temporal scales
(simulated daily water use volume for one week period versus observed monthly
water use volume), we first arranged both datasets into a common temporal
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aggregation. For the monthly water use records, we calculated average daily
water use volumes for each household by dividing the total monthly water use
volume for that household by the number of billed days using winter months data
for the years between 2014 and 2018, then we averaged across winter months to
get one value of average daily water use volume for each household in the dataset.
For the model results, we calculated the average daily water use volume for
each household by summing the daily water use volume for the whole one week
simulation period and dividing the total by seven days. To evaluate whether the
actual average daily water use volumes and the simulated average daily water
use volumes were drawn from the same distribution we used the KS test.

To evaluate how improving the representation of water uses at a detailed level
within a water demand model can improve our ability to predict the water uses
— our first research question — we evaluated the performance of the developed
model in predicting the actual average daily water uses of households in Logan
City dataset against other urban water demand simulation models. In our re-
view of existing urban water demand models, we found that code is not openly
available. In most cases, access was restricted or can only be obtained by con-
tacting the authors. We could not replicate other end use models because source
code was not available and their formulations/equations were not well enough
described in the papers that we could re-implement them. Moreover, other end
use modeling studies were restricted to communities where water end use data
are available, which inhibits their ability to predict the detailed water use of
other residential communities.

In response to these issues, we compiled a list of theoretical and empirical
methodologies reported in urban water demand simulation papers published
over the past two decades. We searched on different web search engines and
scientific databases including Google Scholar, Zotero, and Mendeley for the fol-
lowing combination of words: “urban water demand model”, “water demand
simulation”, and “residential water demand model”. We then compiled a list
with the methods and related publications retrieved with the above search, we
reviewed and classified the list according to model replicability, equation avail-
ability, and directions to replicate the method presented in the paper. From
this list, we selected a subset of models that meet the following criteria: 1) can
simulate current water use conditions, 2) commonly used and recognized (e.g.,
regression), 3) we have input data for (e.g., landscaped area, census count), 4)
well enough described in the paper that we could replicate them, and 5) the
specific model selected is representative of a class of models reported in the
literature. We then implemented those models to simulate current residential
water use in Logan by generating 7,500 daily water use volumes that represent
the number of residential water connections of Logan City.

Based on the aforementioned criteria, we replicated three different water de-
mand models including an Ordinary Least Squares (OLS) model (Polebitski and
Palmer, 2010), Piecewise Regression model (Chang et al., 2014), and Multiple
Regression model (Arbués et al., 2010). Independent variables implemented to
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predict indoor water use in these models included socio-demographic variables
(e.g., number of residents) and meteorological variables (e.g., precipitation). De-
mographic variables used as inputs in each model were retrieved from the Cache
County GIS Parcel data website (https://www.cachecounty.org/gis/). These
variables and the interaction between them were implemented differently in each
model; however, where possible, we used the same variables to simulate current
residential water use in Logan City as did the authors of the prior modeling
studies — e.g., like Polebitski and Palmer, (2010), we used the building area
(ft2), number of residents, income, property age, and household value to predict
indoor water use using an OLS model.

To evaluate the reliability of each model in predicting current water use, we com-
pared the cumulative distribution of average daily water use volumes estimated
from the Logan dataset versus the cumulative distributions of average daily
water use volumes obtained from different water demand simulation models in-
cluding the model developed in this paper. Quantitatively, we utilized the KS
statistical test on the CDFs output from the different models tested against the
CDF of actual water use data from Logan dataset. We estimated the D statistic
and a p-value for each model and presumed that the model that produced the
smallest D static value with a p-value greater than the =0.05 significance level
is the best performing model.

2.7 Water Conservation Actions

To quantify the water saving potential associated with different technological
and behavioral conservation actions — our second research question — we ex-
amined the efficiency of water end uses of different types across all simulated
households to identify households and end use types with water conservation
potential. We then quantified the water saving potential associated with a set
of potential technological and behavioral conservation actions (Table 4) for wa-
ter use in the model. Technological actions include actions associated with the
technical performance and water use efficiency of different end use types inside
a household (e.g., retrofitting an inefficient showerhead). Behavioral actions in-
clude actions associated with the water use behavior of a household’s residents
(e.g., reduce shower length).

Based on the end use type, we used either the volume or flowrate of the simu-
lated water use events to investigate the technical performance of the existing
end uses and compared them with typical and efficient end uses. Volume was
used to reflect the technical performance of toilet, bathtub, clothes washer, and
dishwasher end uses. Retrofitting actions on these end uses were applied on
events with volumes exceeding efficient volumes, and the expected water use af-
ter retrofitting was calculated as the volume of events from retrofitted fixtures.
For faucet and shower end uses, flowrate was used to reflect their technical
performance. Retrofitting actions on these end uses were applied on events
with flowrates exceeding efficient flowrates, and the expected water use after
retrofitting was calculated as the flowrate of retrofitted fixtures multiplied by
the duration of their corresponding events. For all retrofitting actions, we as-
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sumed that a retrofit would change an end use’s technical performance, but not
user behavior.

Table 4. Proposed water conservation actions and their associated characteris-
tics in terms of water use*.

Technological conservation actions Characteristic flows/volumes Behavioral conservation a
Retrofit showerheads 7.6 LPM Fix leaks

Retrofit faucets 5.7 LPM Reduce faucet use duratio
Retrofit toilets with low flush toilets (LFT) 6.1 LPF Reduce shower duration

Retrofit toilets with highly efficient toilets (HET) 4.8 LPF
Retrofit top load washers with front load washers ~ 100 L/load

Reduce clothes washer use

* Values reported in this table were retrieved from the EPA WaterSense and
EnergyStar Websites (EPA, 2021a, EPA, 2021b).

Besides retrofitting actions, we used the duration, volume, and the number of
simulated events per household per day to account for behavioral change in
water use for those end uses that are associated with the behavior of residents
(e.g., reduce shower duration). Four different actions were examined (Table 4).
For the fixing leaks action, we assumed that 50% of total unclassified events are
leaks and thus residents of a household can reduce unclassified water use inside
their home by 50% by fixing leaks. Thus, the amount of water saved by fixing
leaks was calculated as the volume of unclassified events divided by two. For the
reducing shower length action, we first identified long shower events as events
that last longer than the 80th percentile of all shower events in a simulated
household and assumed that residents of that household can reduce their long
shower events down to the 80th percentile of all shower durations. The amount
of water saved by reducing shower duration per household was calculated for
simulated shower events that exceeded the 80th percentile shower length as the
difference in shower duration before and after the duration reduction of each
event multiplied by the flowrate of the event. The same procedure was used for
the reducing faucet duration action. To reduce clothes washer event frequency,
we assumed that residents can reduce their current frequency of laundry events
by 10%, although other frequencies could easily be simulated.

3 Results and Discussion

The end use water demand model simulated 367,500 water use events for 7,500
households in the City of Logan over the period of one week. The average exe-
cution time for the water demand model, which simulates one week of water use
for both existing conditions and the water conservation scenarios for all house-
holds was approximately six hours on a 2017 MacBook Pro laptop computer
with a 3.1 GHz quad-core Intel i7 processor and 16 GB of RAM.

3.1 Model Comparision and Applicability
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All of the models we tested resulted in a cumulative distribution curve relatively
similar to the Logan data (Figure 8), but the end use model we developed most
closely matched the distribution of the Logan City data. Moreover, it provides
detailed end use results that could assist water suppliers in identifying opportu-
nities for incentive programs to encourage water conservation and monitoring
effectiveness of those programs where the other models do not. The disparity
between our model and other models in simulating current water use indicates
that using water end use events to predict total daily water use volumes instead
of using regression approaches will likely generate more realistic results.
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Figure 8. Cumulative distributions for observed average daily water use volume
and simulated average daily water use volume of different simulation methods
for all residential connections in Logan.

Using the KS test, the resulting p-value of the end use model was 0.84, which
is higher than the 0.05 significance level. The D statistic value for our model
was 0.049, which is less than the D statistic value of the other models we tested
(Table 5). Thus, both the observed average daily water use volume records
calculated from monthly billing data for winter months during 2014-2018 and
the simulated average daily water use volumes obtained from the end use model
have very similar distributions. P-values for the other models we tested were
not significant, indicating that their resulting distributions are different than
that of the monthly billing data.
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Table 5. Estimated D statistic and a p-value for each model.

Model D statistic = P-value
End use model 0.049 0.84

OLS model 0.204 21 X 10"
Multiple regression model 0.180 2.1 X 10"
Piecewise linear regression model 0.160 21X 10"

To assess the applicability of the end use model in predicting current conditions
given that it was based on data from 2014 — 2018, we explored the variability
in indoor water use of households in the Logan dataset for those years (Figure
9). The white dots in the figure represent the medians of the distributions, the
thick grey bar in the center represents the interquartile range, the thin grey line
represents the whole distribution, except for outlier data points, wider sections
of the violin represent a higher approximate frequency of data points in that
section, and thinner sections represent a lower approximate frequency of data
points in that section. As illustrated in Figure 9, the overall distribution of
indoor water use for Logan City households was fairly stable between 2014 and
2018.
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Figure 9. Distributions of average daily indoor water use for Logan City house-
holds between 2014-2018.

With respect to water end uses simulated by the model, toilet flushing accounted
for the largest volume of indoor water use, followed by showers, faucets, clothes
washers, and bathtubs, which matches the relative contribution of indoor wa-
ter use type reported by the 2016 REUWS (Table 6). While each simulated
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household had a unique behavioral pattern, bulk behavior across all simulated
households, matched that of the 2016 REUWS with the biggest difference be-
tween the two studies being 3%.

Table 6. Relative contribution of indoor water use type.

End use type Simulation results 2016 REUWS Difference

Bathtub 4% 4% 0%
Clothes washer 15% 18% 3%
Faucet 22% 22% 0%
Dishwasher 0.5% 2% 1.5%
Shower 26% 23% 3%
Toilet 31% 28% 3%
Unclassified 1% 3% 2%

3.2. End Use Efficiency and Water Conservation Potential

The maximum amount of water savings is expected when all retrofitting actions
are implemented at the same time. However, toilets have two retrofit options
that are mutually exclusive. To maximize water savings, we assumed that typi-
cal and inefficient toilets are retrofitted to highly efficient toilets since they save
more water than low flush toilets (Table 4). Based on that, the expected pro-
portion of water saved if all technological conservation actions are implemented
together at the same time ranged from 0% to 50% for individual households and
totaled approximately 23% of total water use across all households.

Generally, technological conservation actions are effective and more likely to
persist since they involve changing fixtures. Adoption of behavioral conserva-
tion actions may vary from one household to another and even in the same
household from one day to another since they are associated with phycological,
social, and behavioral changes of household’s residents (Addo et al., 2018). In
the matter of durability of technological actions compared to behavioral actions,
technological actions can perform up to 20 years (EPA, 2021a), while behavioral
actions have been shown to be effective for six months at most (Schultz et al.,
2019). Retrofitting toilets to 4.8 LPF toilets had the most water saving poten-
tial (assuming behavioral water use does not change) at a total water savings
of approximately 10.5 million LPD for Logan City. On the behavioral side, re-
ducing shower lengths can save over 1.9 million LPD for Logan City. Figure
10 summarizes the household-level water savings rates for both technological
and behavioral conservation actions. The box plots in both figures show the
distribution of daily water savings across all 7,500 Logan households, with each
box showing a different implemented water conservation action.
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Figure 10. Ranges of potential water savings for technological and behavioral
conservation actions. Some outliers were removed to enhance the readability of
the figure.

4 Conclusions

We developed an end use water demand model that simulates detailed house-
hold water use using Monte Carlo techniques. The model advances existing end
use modeling studies that used similar techniques by accounting for differences
in event frequency among different days of the week, simulating variabilities in
event volume or flowrate and duration for different end use types for different
days of the week while constraining the technical performance of different end
uses, incorporating all expected indoor water use events in the simulation pro-
cess, providing estimates of baseline use and maximum conservation potential
at the individual home and city levels, and developing a generic model that can
be scaled to any number of single family residential homes.

The model uses event data from a sample of households in the 2016 REUWS
dataset as input to simulate water use behavior of Logan residents. The in-
put dataset consists of detailed end use event data for a sample of households
that are representative of the households to be simulated. The model is gener-
ally applicable and can be modified to simulate the detailed water end uses of
other cities with the following constraints: 1) the city to be simulated must have
available water use records (e.g., monthly or more frequent billing data records),
and 2) there must be a sample of households in the 2016 REUWS (or another
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dataset) such that the water use of the sample households is representative of
the water use of the households to be simulated (e.g., similar daily water use
distribution). Since the 2016 REUWS dataset collected data across 11 differ-
ent cities in the U.S. and considered monthly data in selecting households with
different water use behaviors, we anticipate that the likelihood of extracting a
sample of households from the 2016 REUWS dataset with an overall water use
representative to other cities is high, although selection of households for simu-
lation would be enhanced by the availability of more households with detailed
end use data.

In our case study application, we demonstrated how existing water use event
data can be used to predict the detailed water use of other residential commu-
nities, with the only required data from the city to be simulated being their
monthly water use billing records. Since we used data from 2014-2018 only, we
acknowledge that the water demand model quantifies the detailed water use
and evaluates potential conservation in the context of the years of 2014-2018.
However, Figure 9 shows that indoor water use was stable for Logan over this
period, and we anticipate similar water use behavior from many other commu-
nities across the U.S. Thus, the model should reflect current conditions and
conservation potential, but may need to be adjusted in the future to reflect
changes in indoor water use behavior.

The retrofitting and behavioral conservation actions for selected end uses showed
high potential for water conservation across the 7,500 residential households we
simulated. The expected upper band of total water savings at the household
level is 2,700 L /household-day and the expected total water savings at the city
level is more than 20 million L/day, representing approximately 23% of all water
currently used indoors by residential users in Logan City.

The type of detailed water end use simulation produced by the model, including
practical water conservation actions and the ability to simulate their savings
at the city level, could assist water utilities in identifying opportunities for in-
centive programs that will have the greatest impact and to encourage water
conservation. Effectiveness of these efforts could be monitored using new meth-
ods for collection of high resolution water use data or through more conventional
comparison of pre- and post-retrofit monthly data, although effectiveness of mul-
tiple, simultaneous programs would be difficult to separate using only monthly
data. Furthermore, this type of modeling can be used for forecasting demand
and determining how water use patterns may change over time in response to
population growth, demographic shifts, behavioral change, and improvements
in technology. It may also be useful in better characterizing how and when wa-
ter is being used inside of households and in the design of improvements to the
residential water distribution infrastructure. Supplying this type of information
to water users can also be a tool for impacting water use behavior and managing
demand.
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