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1. Data15

To investigate the performance of CMIP6 models and to estimate the uncertainties in ∆R/∆T,16

we collected monthly temperature, precipitation and land surface runoff from the 21 CMIP6 models17

(https://esgf-node.llnl.gov/projects/cmip6/, Table S1) both for the historical period (1979 – 2014) and18

for the future (2015 – 2100) under the emission scenarios of SSP126, SSP245, SSP370 and SSP58519

(O'Neill et al., 2016). We collected temperature and precipitation observations from the HadCRUT520

data set (http://www.cru.uea.ac.uk/), and observation-based Global Composite Runoff Fields and21

observed runoff in the 120 large rivers from the Global Runoff Data Centre22

(https://www.bafg.de/GRDC/EN/Home/homepage_node.html, Fekete et al., 2002). We collected23

monthly temperature, precipitation and land surface runoff values of 17 CMIP5 models (Table S2)24

for the historical period and the future period under the emission scenarios of RCP2.6, RCP4.5,25

RCP6.0, and RCP8.5 (https://esgf-node.llnl.gov/search/cmip5/, Taylor et al., 2012). We regridded all26

the CMIP5 and CMIP6 outputs to a common 0.25° × 0.25° latitude-longitude spatial resolution by27

using nearest neighbor interpolation method for calculating the CMIP6 multi-model mean values.28

Poor simulation of other hydrological variables (precipitation, snow melt, soil water content and29

evaporation) can cause large uncertainties of ∆R/∆T in each CMIP6 models. Therefore, to identify30

the dominant factor causing spread in the future ∆R/∆T across CMIP6 models through investigating31

regression relationships of future ∆R/∆T with other hydrological variables, monthly data of32

precipitation from 21 CMIP6 models, snow melting runoff from 16 CMIP6 models (Table S3), soil33

water content from 21 CMIP6 models (Table S4) and total evaporation from 19 CMIP6 models34

(Table S5) under the four emission scenarios of SSP126, SSP245, SSP370 and SSP585 are collected35

from https://esgf-node.llnl.gov/projects/cmip6/.36

https://esgf-node.llnl.gov/projects/cmip6/
http://www.cru.uea.ac.uk/
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/projects/cmip6/


37

To investigate the implications of the constrained ∆R/∆T on extreme rainfall events, the daily data of38

precipitation from 10 CMIP6 models (Table S6) under the four emission scenarios SSP126, SSP245,39

SSP370 and SSP585 is also collected from the CMIP6 database. To verify that our main findings are40

not dependent on a specific observational data set, we also collected the other two data sets, namely41

“GPCC and HadCRUT5” (https://www.cgd.ucar.edu/cas/catalog/surface/precip/gpcc.html) and the42

“GISS and GPCC” (https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html), used for43

deriving ∆P/∆T from observations.44

45

2. Methods46

2.1 Emergent constraint method47

Earth system models are widely used to predict future climate changes at regional to global48

scale, but these climate projections have large uncertainties (Knutti et al., 2013). The “emergent49

constraint” method has been developed to reduce such uncertainties (Hall et al., 2006). Specifically,50

the emergent constraint method consists of a physically-explainable empirical relationship between51

the inter-model spread of an historical observable variable (namely “independent variable x”) and the52

inter-model spread of a future climate predicted variable (namely “dependent variable y”) (Cox et al.,53

2018; Chai et al., 2021). The “independent variable x” ideally is well enough observed to provide an54

accurate mean state, variability or variation trend (Klein et al., 2015). By projecting the observed55

estimate of the “independent variable x” with its observational uncertainty (±one standard deviation)56

onto the y-axis through the empirical linear relationship, a more reliable and accurate “dependent57

variable y” with hopefully narrower uncertainties can be obtained (Brient et al., 2020). Importantly,58

https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html


because empirical relationships could just be fortuitous, a plausible physical mechanism is a59

fundamental requirement for the underlying empirical relationship (Hall et al., 2019).60

61

2.2 Building an emergent constraint relationship62

We use the least-squares linear regression method to build the emergent constraint relationships63

(Chai et al., 2021). The ‘prediction error’ of the regression is σy, calculated by equation (1); y(x) is64

the linear regression equation (2);65
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where yi (future global annual average ∆R/∆T) is the value given by xi (historical observed68

global annual average ∆P/∆T); a and b are the slope and intercept, respectively; s is used for69

minimizing the least-squares error, calculated by equation (3); and N is the number of data points70

(number of models). σx is the variance of xi, calculated by equation (4); x is the mean value;71
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74
2.3 Calculation of probability density75

Based on the assumption that all model simulations are equally likely and form a Gaussian76

distribution (Kwiatkowski et al., 2017), we calculate the probability density function (PDF) for the77

original inter-model spread of the future global annual average ∆R/∆T (y) using equation (5).78
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where PDF(y/x) is the probability density function around the best-fit linear regression, which80



represents the estimated probability density of y given x.81

We use the equation (6) to calculate the PDF for the constrained future global annual average82

∆R/∆T (y). Where PDF(F/H) is the probability density of “future global annual average ∆R/∆T (y)”83

given “historical observable global annual average ∆P/∆T (x)”; PDF(H) is the observation-based84

PDF for “observed global annual average ∆P/∆T (x)”; Thus, after the emergent constraint, the PDF85

for “the constrained future global annual average ∆R/∆T (y)” (PDF(F)) is calculated by numerically86

integrating PDF(F/H) and PDF(H).87
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89

2.4 Definition and calculation of annual heavy and light rain days90

Changes in heavy and light rainfall days can directly affect land surface runoff, leading to a91

tight relationship between these variables. After obtaining the constrained global annual average92

∆R/∆T, this relationship, combined with the constrained ∆R/∆T, is used to investigate the future93

changes in heavy and light rainfall days, which would be an indication for future changes of global94

average dry and wet conditions. Extreme light and heavy rainfall days here are defined as the days95

with rainfall (including days without rainfall) lower than the long-term 10th percentile and the96

rainfall higher than long-term 90th percentile, respectively. Based on the outputs of the daily97

precipitation during 2015 – 2100 from 12 CMIP6 models, we estimated the annual light and heavy98

rainfall days in each grid. The mean value of the annual light and heavy rainfall days in all terrestrial99

grids is regarded as the global average number of annual drought days and heavy rainfall days.100

101
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137
Figure S1. Comparison of CMIP5 simulations of global land surface temperature (℃)to observations from138
the HadCRUT5 data set. Fig. S1 shows the CMIP5-based difference that is estimated by the simulated historical139
temperature minus the observed temperature for the period of 1986 – 2005.140

141



142
Figure S2. Changes in future land surface temperature based on CMIP6 models. Panels (a), (b), (c) and (d)143
show the CMIP6 multi-model median change in 20-year return values of global annual average land surface144
temperature as simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of145
SSP126, SSP245, SSP370 and SSP585, respectively.146

147



148
Figure S3. Compariosn of CMIP5 simulations global precipitation (mm day-1) with to observations from the149
HadCRUT5 data set. Fig. S2 shows the CMIP5-based difference that is estimated by the simulated historical150
precipitation minus the observed precipitation for the period of 1986 – 2005.151

152



153
Figure S4. Changes in future precipitation based on CMIP6 models. (a), (b), (c) and (d) are the CMIP6154
multi-model median change in 20-year return values of global annual average land surface precipitation as155
simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of SSP126, SSP245,156
SSP370 and SSP585, respectively.157

158



159
Figure S5. Observation-based Global Composite Runoff Fields from the Global Runoff Data Centre.160

161



162
Figure S6. CMIP5-based distribution of the global land surface mean runoff over the period of 1986 – 2005.163

164



165

166
Figure S7. Changes in future land surface runoff based on CMIP6 models. Panels (a), (b), (c) and (d) are the167
CMIP6 multi-model median change in 20-year return values of global annual average land surface runoff as168
simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of SSP126, SSP245,169
SSP370 and SSP585, respectively.170

171



172
Figure S8. Estimated global ∆P/∆T (mm day-1 ℃-1) based on CMIP5 model simulations. Fig. S8 shows the173
linear regression relations between annual average daily precipitation and annual average land surface temperature174
based on CMIP5 outputs for the historical period of 1979 – 2014 (P=0.0550T, r=0.90, p value<0.001), and for the175
future period of 2015 – 2100 under RCP26 (P=0.0414T, r=0.81, p value<0.001), RCP45 (P=0.0392T, r=0.97, p176
value<0.001), RCP60 (P=0.0397T, r=0.95, p value<0.001) and RCP85 (P=0.0312T, r=0.98, p value<0.001).177

178



179
Figure S9. Simulated global ∆R/∆T (mm day-1 ℃-1) based on CMIP5 models. Fig. S9 shows the linear180
regression relations between runoff and temperature based on CMIP5 outputs for the historical period of 1979 –181
2014 (R=0.0084T, r=0.77, p value<0.001), and for the future period of 2015 – 2100 under RCP26 (R=0.0031T,182
r=0.29, p value<0.005), RCP45 (R=0.0015T, r=0.51, p value<0.001), RCP60 (R=0.0035T, r=0.70, p value<0.001)183
and RCP85 (R=0.0037T, r=0.92, p value<0.001).184

185



186

187
188

Figure S10. Linear regression relations between the future land surface runoff changes (mm day-1) and the189
future main climatic factors changes (mm day-1) from 2015–2014 to 2091–2100 based on CMIP6 projections.190
Panels (a), (b), (c) and (d) show the relations between the future land surface runoff changes (∆R) and the future191
precipitation changes (∆P) under SSP126, SSP245, SSP370 and SSP585, respectively. Similarly panels (e), (f), (g)192
and (h) show the relations between the future land surface runoff changes (∆R) and the future evapotranspiration193
changes (∆ET). (i), (j), (k) and (l) are the relations between the future land surface runoff changes (∆R) and the194
future soil water content changes (∆SW). Panels (m), (n), (o) and (p) show the relations between the future land195
surface runoff changes (∆R) and the future snow runoff melting runoff changes (∆SR).196

197



198

Figure S11. Future changes in global average annual light rain days during 2015-2100 based on the outputs199
from the 12 CMIP6 models. (a), (b), (c) and (d) are the trends for the emission scenarios under SSP126, SSP245,200
SSP370 and SSP585, respectively. Each number represents a CMIP6 model (See full name in Table S6)201

202



203

204

Figure S12. Future changes in global average annual heavy rainfall days during 2015-2100 based on the205
outputs from the 12 CMIP6 models. Panels (a), (b), (c) and (d) show the trends for the emission scenarios under206
SSP126, SSP245, SSP370 and SSP585, respectively. Each number represents a CMIP6 model (See full name in207
Table S6)208

209



210
Figure. S13 Emergent constraint on the future sensitivity of global land surface runoff to temperature based211
on CMIP6 projections. (a), (b) and (c) are the emergent constraint for the outputs from CMIP6 models under212
SSP126, SSP245 and SSP370 respectively. Note: red line is the linear regression relationship between “the213
sensitivity of the future global annual land surface runoff to temperature during 2015-2100 (see left y-axis)” and214
“the sensitivity of the historical global annual precipitation to temperature during 1979-2014 (see bottom x-axis)”;215
yellow shading is the observational precipitation sensitivity from the HadCRUT5 (observed value ± 1 standard216
error, 0.056 ± 0.016 mm.day-1.℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and217
blue line are the probability density functions (PDFs, see top x-axis and left y-axis) for the future global annual218
runoff sensitivities before and after emergent constraint, by assuming all models are following by Gaussian219
distribution (See method for PDF calculation);220

221



222

Figure. S14 Emergent constraint (EC) on the future annual runoff sensitivity from CMIP6 projections based223
on the datasets of “GPCC–HadCRUT5” and “GISS–GPCC”. These PDFs are respectively deduced from a, the224
SSP126 scenario, b, the SSP245 scenario, c, the SSP370 scenario, and d, the SSP585 scenario.225

226



227

Figure. S15 Emergent constraint on the future sensitivity of global land surface runoff to temperature228
based on CMIP5 projections. (a), (b), (c) and (d) are the emergent constraint for the outputs from CMIP5229
models under RCP26, RCP45, RCP60 and RCP85 respectively. Note: red line is the linear regression relationship230
between “the sensitivity of the future global annual land surface runoff to temperature during 2006-2100 (see left231
y-axis)” and “the sensitivity of the historical global annual precipitation to temperature during 1979-2005 (see232
bottom x-axis)”; yellow shading is the observational precipitation sensitivity from the HadCRUT5 (observed value233
± 1 standard error). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are the234
probability density functions (PDFs, see top x-axis and left y-axis) for the future global annual runoff sensitivities235
before and after emergent constraint, by assuming all models are following by Gaussian distribution;236

237



238
Figure S16. Linear relationships between future annual ∆P/∆T and ∆R/∆T for the CMIP6 models under the239
emission scenarios of SSP126, SSP245 and SSP370.240



241
Figure. S17 Constraint on the future yearly changes in global average annual drought days using the242
constrained future annual runoff sensitivity. Panels (a), (b) and (c) are the constraint for the emission scenarios243
under SSP126, SSP245 and SSP370, respectively. Note: red line is the linear regression relationship between244
“future yearly changes in global average annual drought days during 2015-2100 (see left y-axis)” and “the245
sensitivity of the future global annual runoff to temperature during 2015-2100 (see bottom x-axis)”; yellow shading246
is the constrained future global annual runoff using the HadCRUT5 (observed value ± 1 standard error, 0.0117 ±247
0.009 mm day-1 ℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are248
the probability density functions (PDFs, see top x-axis and left y-axis) for the future yearly changes in global249
average annual drought days before and after constraint, by assuming all models are following by Gaussian250
distribution;251

252



253

254
Figure. S18 Constraint on the future yearly changes in global average annual heavy rainfall days using the255
constrained future annual runoff sensitivity. Panels (a), (b) and (c) are the constraint for the emission scenarios256
under SSP126, SSP245 and SSP370, respectively. Note: red line is the linear regression relationship between257
“future yearly changes in global average annual heavy rainfall days during 2015-2100 (see left y-axis)” and “the258
sensitivity of the future global annual runoff to temperature during 2015-2100 (see bottom x-axis)”; yellow shading259
is the constrained future global annual runoff using the HadCRUT5 (observed value ± 1 standard error, 0.0117 ±260
0.009 mm day-1 ℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are261
the probability density functions (PDFs, see top x-axis and left y-axis) for the future yearly changes in global262
average annual heavy rainfall days before and after constraint, by assuming all models are following by Gaussian263
distribution;264

265
266



Table S1. Full name of the 21 CMIP6 models used for the data of monthly precipitation, runoff and temperature during the historical period (1979–2014)
and the future period (2015–2100).

Precipitation / Runoff / Temperature

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 BCC-CSM2-MR BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 CESM2 CESM2 BCC-CSM2-MR ACCESS-ESM1-5
3 BCC-CSM2-MR CESM2-WACCM CESM2-WACCM CESM2 BCC-CSM2-MR
4 CESM2 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CESM2
5 CESM2-WACCM CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-CM6-1-HR CESM2-WACCM
6 CNRM-CM6-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-CM6-1
7 CNRM-CM6-1-HR FIO-ESM-2-0 FIO-ESM-2-0 GISS-E2-1-G CNRM-CM6-1-HR
8 CNRM-ESM2-1 GISS-E2-1-G GISS-E2-1-G INM-CM4-8 CNRM-ESM2-1
9 FIO-ESM-2-0 HadGEM3-GC31-LL INM-CM4-8 INM-CM5-0 FIO-ESM-2-0
10 GISS-E2-1-G INM-CM4-8 INM-CM5-0 IPSL-CM6A-LR GISS-E2-1-G
11 HadGEM3-GC31-LL INM-CM5-0 IPSL-CM6A-LR MIROC6 INM-CM4-8
12 INM-CM4-8 IPSL-CM6A-LR MIROC6 MPI-ESM1-2-LR INM-CM5-0
13 INM-CM5-0 MCM-UA-1-0 MIROC-ES2L NorESM2-MM IPSL-CM6A-LR
14 IPSL-CM6A-LR MIROC-ES2L MPI-ESM1-2-LR MIROC6
15 MCM-UA-1-0 MPI-ESM1-2-LR NorESM2-LM MIROC-ES2L
16 MIROC6 NorESM2-MM NorESM2-MM NorESM2-LM
17 MIROC-ES2L UKESM1-0-LL UKESM1-0-LL NorESM2-MM
18 MPI-ESM1-2-LR
19 NorESM2-LM

20 NorESM2-MM
21 UKESM1-0-LL



Table S2. Full name of the 17 CMIP5 models used for the data of monthly precipitation, runoff and temperature

Precipitation / Runoff / Temperature

Number
Historical
period

Future period
under RCP26

Future period
under RCP45

Future period
under RCP60

Future period
under RCP85

1 ACCESS1-0 CNRM-CM5 ACCESS1-0 CSIRO-Mk3-6-0 ACCESS1-0
2 CNRM-CM5 CSIRO-Mk3-6-0 CNRM-CM5 GISS-E2-R CNRM-CM5
3 CSIRO-Mk3-6-0 GISS-E2-R CSIRO-Mk3-6-0 IPSL-CM5A-MR CSIRO-Mk3-6-0
4 CSIRO-Mk3L-1-2 IPSL-CM5A-MR CSIRO-Mk3L-1-2 MIROC-ESM GISS-E2-H-CC
5 GISS-E2-H-CC MIROC5 GISS-E2-H-CC MIROC-ESM-CHEM GISS-E2-R
6 GISS-E2-R MIROC-ESM GISS-E2-R NorESM1-M inmcm4
7 GISS-E2-R-CC MIROC-ESM-CHEM GISS-E2-R-CC NorESM1-ME IPSL-CM5A-MR
8 inmcm4 MPI-ESM-LR inmcm4 IPSL-CM5B-LR
9 IPSL-CM5A-MR MPI-ESM-MR IPSL-CM5A-MR MIROC-ESM
10 IPSL-CM5B-LR NorESM1-M IPSL-CM5B-LR MIROC-ESM-CHEM
11 MIROC5 MIROC-ESM MPI-ESM-MR
12 MIROC-ESM MIROC-ESM-CHEM
13 MIROC-ESM-CHEM MPI-ESM-MR
14 MPI-ESM-LR NorESM1-M
15 MPI-ESM-MR NorESM1-ME
16 NorESM1-M
17 NorESM1-ME



Table S3. Full name of the 16 CMIP6 models used for the data of monthly snow melt

Snow melting runoff

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5
3 BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR
4 CanESM5 CanESM5 CanESM5 CanESM5 CanESM5
5 CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE
6 CESM2 CESM2 CESM2 CESM2 CESM2
7 CESM2-WACCM CESM2-WACCM CESM2-WACCM CESM2-WACCM CESM2-WACCM
8 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1
9 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1
10 GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G
11 HadGEM3-GC31-LL HadGEM3-GC31-LL HadGEM3-GC31-LL IPSL-CM6A-LR HadGEM3-GC31-LL
12 IPSL-CM6A-LR IPSL-CM6A-LR IPSL-CM6A-LR MIROC6 IPSL-CM6A-LR
13 MIROC6 MIROC6 MIROC6 MIROC-ES2L MIROC6
14 MIROC-ES2L MIROC-ES2L MIROC-ES2L MPI-ESM1-2-LR MIROC-ES2L
15 MPI-ESM1-2-LR MPI-ESM1-2-LR MPI-ESM1-2-LR UKESM1-0-LL MPI-ESM1-2-LR
16 UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL



Table S4. Full name of the 21 CMIP6 models used for the data of monthly soil water content

Soil water content

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5
3 BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR
4 CanESM5 CanESM5 CanESM5 CanESM5 CanESM5
5 CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE
6 CESM2 CESM2 CESM2 CESM2 CESM2
7 CESM2-WACCM CESM2-WACCM CESM2-WACCM CNRM-CM6-1 CESM2-WACCM
8 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1-HR CNRM-CM6-1
9 CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-ESM2-1 CNRM-CM6-1-HR
10 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 INM-CM4-8 CNRM-ESM2-1
11 HadGEM3-GC31-LL HadGEM3-GC31-LL HadGEM3-GC31-LL INM-CM5-0 HadGEM3-GC31-LL
12 INM-CM4-8 INM-CM4-8 INM-CM4-8 IPSL-CM6A-LR INM-CM4-8
13 INM-CM5-0 INM-CM5-0 INM-CM5-0 MIROC6 INM-CM5-0
14 IPSL-CM6A-LR IPSL-CM6A-LR IPSL-CM6A-LR MIROC-ES2L IPSL-CM6A-LR
15 MIROC6 MIROC6 MIROC6 MPI-ESM1-2-LR MIROC6
16 MIROC-ES2L MIROC-ES2L MIROC-ES2L MRI-ESM2-0 MIROC-ES2L
17 MPI-ESM1-2-LR MPI-ESM1-2-LR MPI-ESM1-2-LR NorESM2-LM MPI-ESM1-2-LR
18 MRI-ESM2-0 MRI-ESM2-0 MRI-ESM2-0 NorESM2-MM MRI-ESM2-0
19 NorESM2-LM NorESM2-LM NorESM2-LM UKESM1-0-LL NorESM2-LM
20 NorESM2-MM NorESM2-MM NorESM2-MM NorESM2-MM
21 UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL



Table S5. Full name of the 19 CMIP6 models used for the data of monthly total evaporation

Total evaporation

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 BCC-CSM2-MR BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 CanESM5 CanESM5-CanOE BCC-CSM2-MR ACCESS-ESM1-5
3 BCC-CSM2-MR CanESM5-CanOE CESM2 CanESM5-CanOE BCC-CSM2-MR
4 CanESM5 CESM2 CESM2-WACCM CESM2 CanESM5-CanOE
5 CanESM5-CanOE CESM2-WACCM CNRM-CM6-1 CESM2-WACCM CESM2
6 CESM2 CNRM-CM6-1 CNRM-CM6-1-HR CNRM-CM6-1 CESM2-WACCM
7 CESM2-WACCM CNRM-CM6-1-HR CNRM-ESM2-1 CNRM-CM6-1-HR CNRM-CM6-1
8 CNRM-CM6-1 CNRM-ESM2-1 GISS-E2-1-G CNRM-ESM2-1 CNRM-CM6-1-HR
9 CNRM-CM6-1-HR GISS-E2-1-G INM-CM4-8 GISS-E2-1-G CNRM-ESM2-1
10 CNRM-ESM2-1 INM-CM4-8 INM-CM5-0 INM-CM4-8 GISS-E2-1-G
11 GISS-E2-1-G INM-CM5-0 IPSL-CM6A-LR INM-CM5-0 INM-CM4-8
12 INM-CM4-8 IPSL-CM6A-LR MCM-UA-1-0 IPSL-CM6A-LR INM-CM5-0
13 INM-CM5-0 MCM-UA-1-0 MIROC6 MCM-UA-1-0 IPSL-CM6A-LR
14 IPSL-CM6A-LR MIROC6 MIROC-ES2L MIROC6 MCM-UA-1-0
15 MCM-UA-1-0 MIROC-ES2L MPI-ESM1-2-LR MIROC-ES2L MIROC6
16 MIROC6 NorESM2-MM NorESM2-MM NorESM2-MM MIROC-ES2L
17 MIROC-ES2L NorESM2-MM
18 MPI-ESM1-2-LR
19 NorESM2-MM



Table S6. Full name of the 10 CMIP6 models used for the data of daily precipitation

Daily precipitation

Number
Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 CESM2-WACCM BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 CESM2 CESM2-WACCM CESM2 CESM2-WACCM
3 CNRM-ESM2-1 CESM2 CNRM-ESM2-1 CESM2
4 HadGEM3-GC31-LL CNRM-ESM2-1 INM-CM4-8 INM-CM4-8
5 INM-CM4-8 INM-CM4-8 INM-CM5-0 INM-CM5-0
6 INM-CM5-0 INM-CM5-0 IPSL-CM6A-LR IPSL-CM6A-LR
7 IPSL-CM6A-LR IPSL-CM6A-LR NorESM2-MM NorESM2-LM
8 NorESM2-MM NorESM2-LM NorESM2-MM
9 UKESM1-0-LL NorESM2-MM
10 UKESM1-0-LL



Table S7. Observed annual precipitation sensitivity (∆P/∆T) ± one standard deviation from the four datasets, and predicted annual land surface runoff sensitivity
(∆R/∆T) ± one standard deviation based on CMIP6 models before and after emergent constraint.

Observed
precipitation

sensitivity ± one
standard deviation
(mm day-1 ℃-1)

Emission
Scenarios

Future runoff sensitivity
before emergent constraint

(mm day-1 ℃-1)

Future runoff sensitivity
after emergent constraint

(mm day-1 ℃-1)

Future original
runoff changes
± one standard
deviation
(mm day-1)

Future
constrained

runoff changes
± one standard
deviation
(mm day-1)

Mean value
one

standard
deviation

Mean value
one

standard
deviation

HadCRUT5 0.056 ± 0.016

SSP126 0.005 0.0082 0.0102 0.0075 0.009±0.009 0.0111±0.0088
SSP245 0.007 0.0097 0.0119 0.0090 0.019±0.022 0.0300±0.0225
SSP370 0.009 0.0092 0.0122 0.0081 0.035±0.032 0.0522±0.0342
SSP585 0.007 0.0100 0.0117 0.0090 0.032±0.039 0.0656±0.0504

HadCRUT5+GPCC 0.061 ± 0.016

SSP126 0.005 0.0082 0.0115 0.0075 0.009±0.009 0.0122±0.0088
SSP245 0.007 0.0097 0.0132 0.0090 0.019±0.022 0.0325±0.0225
SSP370 0.009 0.0092 0.0133 0.0081 0.035±0.032 0.0556±0.0342
SSP585 0.007 0.0100 0.0131 0.0090 0.032±0.039 0.0729±0.0504

GISS+GPCC 0.061 ± 0.015

SSP126 0.005 0.0082 0.0115 0.0075 0.009±0.009 0.0122±0.0077
SSP245 0.007 0.0097 0.0132 0.0090 0.019±0.022 0.0325±0.0225
SSP370 0.009 0.0092 0.0133 0.0080 0.035±0.032 0.0556±0.0342
SSP585 0.007 0.0100 0.0131 0.0090 0.032±0.039 0.0729±0.0560



Table S8. Implications of the unconstrained and the constrained future runoff sensitivities on the future extreme climates

SSP126
(mm day-1 ℃-1)

SSP245
(mm day-1 ℃-1)

SSP370
(mm day-1 ℃-1)

SSP585
(mm day-1 ℃-1)

<-0.0088 >0.0265 <-0.011 >0.0317 <-0.009 >0.0327 <-0.0114 >0.0325
Unconstrained 5% 0% 3% 0% 2% 0% 3% 0%
Constrained 0% 2% 0% 2% 0% 1% 0% 1%


