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Summary 9 

Knowledge of crustal stress fields is essential for understanding tectonics and 10 

earthquake generation. One approach for estimating the crustal stress field is based on the 11 

focal mechanisms of earthquakes. This study investigated the focal mechanisms of 12 

approximately 110,000 microearthquakes in the area of the Japanese islands that occurred 13 

at a depth shallower than 20 km, based on the first-motion polarities picked by a simple 14 

neural network model. The model was first trained using a data set of mainly moderate to 15 

large earthquakes throughout Japan. Following on, the model was re-trained using a data 16 

set of microearthquakes in two regions of Japan. The threshold of the confidence score 17 

from the neural network model was chosen to maximize the overall quality of the focal 18 

mechanism solutions. The P- and T-axes of the numerous focal mechanism solutions 19 

provided more detailed distributions of the crustal stress field. For example, in the 20 

Chugoku region, small differences were observed in the trend of P-axes azimuths between 21 

the northern and southern areas, spatially corresponding to geodetic observations. The 22 

results of this study are useful for revealing the crustal stress field, and, as such, for 23 

assessing past and current tectonic activities and potential future earthquake generation. 24 
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1. Introduction 29 

Crustal stress field data is crucial for understanding tectonics and seismic activity; 30 

however, measuring the stress at depths over a large area is challenging. Direct 31 

measurements at specific boreholes (e.g., Wu et al. 2007; Huffman et al. 2016; Brodsky 32 

et al. 2017; Townend et al. 2017) offer detailed information but only as it concerns one 33 

spot. In contrast, seismology provides indirect measurements for a wider area but includes 34 

more uncertainty. The focal mechanisms, which indicate the fault plane and slip directions, 35 

specify the orientation of seismogenic stress. The World Stress Map (Heidbach et al. 2008, 36 

2016, 2018) presents the global compilation of this information. 37 

In the past, routinely determined moment tensor solutions were used for estimating 38 

regional stress fields (Terakawa and Matsu'ura 2010; Hardebeck 2015). However, non-39 

estimated areas remain, even in seismically active areas such as the Japanese islands. 40 

More complete knowledge of the seismogenic stress field requires focal mechanisms for 41 

microearthquakes, particularly in low seismicity areas (e.g., Imanishi et al. 2011, 2012; 42 

Matsumoto et al. 2015). Comprehensive investigations of microearthquake focal 43 

mechanisms contributed to revealing the regional stress field (e.g., Iio et al. 2018; 44 

Imanishi et al. 2019). 45 

The focal mechanisms of moderate or larger earthquakes can be automatically 46 

determined using the full waveform from the local (e.g., Dreger and Helmberger 1993; 47 

Fukuyama et al. 1998) or global (e.g., Ekström et al. 2012) seismic network. However, 48 

the mechanisms of small earthquakes cannot be similarly determined due to the difficulty 49 

of modeling high-frequency seismograms. Instead, the first-motion polarity is typically 50 

used in this regard, where the vertical component initially moves either upward or 51 
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downward. Automatic polarity-picking methods include an approach based on the sign of 52 

the first extremum after the P arrival (Nakamura 2004; Chen and Holland 2016). Pugh et 53 

al. (2016a) proposed a Bayesian approach using the first extremum and a probability 54 

function of P arrival time. Recently, deep learning allowed for automatically picking the 55 

polarity (Ross et al. 2018; Hara et al. 2019). Deep learning has the approximation 56 

capabilities of a multilayer neural network to arbitrary functions (Hornik 1991). This 57 

presents an advantage in the polarity-picking problem, which involves the polarity of the 58 

first pulse and the various forms of seismic noise.  59 

This study aimed to obtain focal mechanism solutions for the Japanese islands, one of 60 

the most seismically active regions in the world. The first-motion polarities were picked 61 

using a neural network model and seismic data from nationwide seismic networks. Finally, 62 

the focal mechanism solutions and spatial trends in P- and T-axes were reviewed. 63 

2. Training the Neural Network Model 64 

2.1. Design of the Neural Network Model 65 

Fig. 1 summarizes the neural network used in this study. The input of the neural 66 

network model was a 256-sample-long seismogram in which the 156th sample 67 

corresponded to the P-arrival time already picked either manually or automatically. The 68 

output comprised two scores (confidence scores) corresponding to the upward and 69 

downward polarities. Note that, in the case of Southern California, Ross et al. (2018) 70 

classified the polarity as “up,” “down,” and “unknown”; however, in this study, the 71 

“unknown” class was not set. The data set included many seismograms with impulsive 72 

onset but no polarity information (Fig. 2), and the lack of polarity information did not 73 
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indicate “unknown” in this case. Thus, no training data set was available for the 74 

“unknown” class and such a class could not be set for the present study. In the cases with 75 

first-motion polarities being ambiguous, the confidence scores for both polarities are 76 

expected to have similar values. A confidence threshold was set for this research at a 77 

subsequent stage to accept suggested polarity information for determining the focal 78 

mechanism. 79 

A simple neural network model (Fig. 1) similar to those used in prior studies (Ross et 80 

al. 2018; Hara et al. 2019) was designed. The neural network model started with two 81 

convolution layers, followed by three units comprising convolution, batch normalization 82 

(Ioffe and Szegedy 2015), and the maximum pooling layers. The model ended with two 83 

fully connected layers. The kernel size of the convolutional layers was 11. For all but the 84 

final layers, the activation function was the rectified linear units (known as “ReLU”) (Nair 85 

and Hinton 2010); the SoftMax function was chosen for the final layer:  86 

softmax(𝐳𝐳)𝑖𝑖 =
exp(𝑧𝑧𝑖𝑖)

∑ exp�𝑧𝑧𝑗𝑗�𝑗𝑗
, (1)  87 

where z = (z1, z2) is the output of the final layer corresponding to the upward and 88 

downward polarities, respectively. The final outputs (confidence scores) are non-negative 89 

and their summation is always 1.  90 

2.2. Training Procedure 91 

Generally, the training of neural network models requires training, validation, and test 92 

data sets. In this study, the data sets comprised the seismograms and the polarity. The 93 

training data set was used for optimizing the parameters in the neural network model. The 94 

initial values of the model parameters were randomly set. The negative log-likelihood 95 
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function was employed as a loss function to quantify the difference between the output of 96 

the model and the polarity expectation from the training data set, i.e., (1, 0) for the upward 97 

polarity and (0, 1) for the downward polarity. The value of the loss function was simply 98 

called a loss. The parameters of the neural network model were updated by back-99 

propagating the loss (Rumelhart et al. 1986) optimized by the adaptive moment 100 

estimation (known as “Adam”) method (Kingma and Ba 2014). This optimization was 101 

iteratively performed to decrease the loss. 102 

The problem to be carefully addressed is the overfitting problem that the trained model 103 

works well with the training data but poorly with unseen data. This study addressed the 104 

overfitting problem in two ways. One was by using the dropout technique (Srivastava et 105 

al. 2014), where 50% of randomly selected perceptions were muted during the training. 106 

The second approach involved performing cross-validation using a validation data set that 107 

was independent of the training set. If the loss for the validation data set increased as the 108 

training progressed, while that for the training data set decreased for 10 iterations (epochs), 109 

the training was stopped. 110 

Following the completion of the training, the performance of the trained model was 111 

examined using another data set (test data set) of small to microearthquakes, as the present 112 

study focused on such small events.  113 

Since the data set of microearthquakes available in this study was small, training of the 114 

neural network model was performed in two stages. In the first stage, training was carried 115 

out using a large data set of moderate to large earthquakes to learn the polarity-picking 116 

problem in general. The second stage employed microearthquake data for re-training the 117 

model. This reflected a fine-tuning approach (Girshick et al. 2014) during which all the 118 
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parameters were optimized in both stages. The merit of this two-stage approach will be 119 

illustrated later by the results of the training. 120 

2.3. Data 121 

In the first stage, the Hi-net data of 18,000 earthquakes with P arrival and polarity data 122 

in the Japan Meteorological Agency (JMA) catalog were used. Most of these earthquakes 123 

were larger than M 3 (Fig. 3). All the data were then spatially divided into the training 124 

and validation data sets (Fig. 4a; Table 1).  125 

In the second stage, the model was trained using the P arrival time and polarity of 126 

microearthquakes in the Kanto and Chugoku regions, which were manually picked by 127 

Geological Survey of Japan, National Institute of Advanced Industrial Science and 128 

Technology (AIST). The Kanto data was also used by Imanishi et al. (2019). The majority 129 

of earthquakes in these data sets were smaller than M 3 (Fig. 3). The magnitude–130 

frequency distributions were similar to that of the target data set (see Section 3), which 131 

will be introduced later. The spatial distributions of events in the Kanto and Chugoku 132 

regions are shown in Figs. 4b and 4c, respectively. The number of seismogram sets and 133 

earthquakes is summarized in Table 1. 134 

In both stages, seismograms of the vertical component were used. The seismograms 135 

had 256 samples, i.e., 156 samples before and 100 samples after P arrival. The samples 136 

were 2.56 s long, as the data was sampled at 100 Hz. Low-frequency noise was removed 137 

by applying a high-pass filter at 1 Hz. The initial portion of the P-wave was emphasized 138 

by clipping seismograms at a particular threshold. Finally, each seismogram was 139 

normalized by its maximum value. Seismograms with amplitudes larger than the clipping 140 

threshold were normalized by the clipping threshold. 141 
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Furthermore, the data was augmented four times by flipping the seismograms upside 142 

down and by using time-shifting. The flipping procedure equalized the number of upward 143 

and downward polarity data. The time shift addressed the potential misalignment of data 144 

due to uncertainties in the arrival-time picking. Various values of the clipping threshold 145 

and the time-shift range were subsequently examined. 146 

2.4. Results 147 

A hundred cases with randomly selected clipping thresholds in the range of 10−6 to 10−4 148 

m/s and with the half-width of the time-shift ranging 0–30 samples were examined. Note 149 

that, since the amplitudes of most of the seismograms were smaller than 10−4 m/s, in the 150 

case of such a large clipping threshold, seismograms were not clipped and were simply 151 

normalized by their maximum values. The results were evaluated based on the loss value 152 

for the test data set. The results indicated that the shorter the half-width of the time-shift 153 

range, the smaller the loss (Fig. 5a). The clipping threshold did not correlate with the loss 154 

value (Fig. 5b).  155 

Hereafter, time-shift was not applied and 10−5 m/s was used as the clipping threshold. 156 

The neural network model was trained using these values.  157 

The performance of the trained neural network model was quantified based on 158 

precision and recall. The precision represented how reliable the model prediction was. By 159 

focusing on one of the classes (upward or downward), the precision is defined as:  160 

Precision =
TP

TP + FP , (2)  161 

where TP represents a true positive, where the neural network model correctly predicts 162 

the designated class, and FP is a fault positive, where the model incorrectly predicts the 163 
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designated class. Thus, TP and FP for the upward and downward polarities are:  164 

TPup = 𝑁𝑁uu, FPup = 𝑁𝑁du,
TPdown = 𝑁𝑁dd, FPdown = 𝑁𝑁ud,   (3)  165 

where Nij is of class i and predicted as class j, and “u” and “d” indicate the upward and 166 

downward polarities, respectively. Here, this study acknowledges that the model 167 

predicted the upward and downward polarity only when the confidence scores were larger 168 

than the confidence threshold. Otherwise, the model prediction is considered to have been 169 

ambiguous. 170 

The recall represents how much data of the designated class is recovered by the neural 171 

network model, and is defined as:  172 

Recall =
TP

TP + FN , (4)  173 

where FN is a false negative, where the model incorrectly predicts the designated class, 174 

and  175 

FNup = 𝑁𝑁ud + 𝑁𝑁ua, FNdown = 𝑁𝑁du + 𝑁𝑁da, (5)   176 

where the subscript “a” indicates ambiguous, where the confidence score is lower than 177 

the confidence threshold.  178 

As the precision and the recall are functions of the confidence threshold, a curve of 179 

precision and recall can be drawn as shown in Fig. 5c. The better the model performance, 180 

the closer to the top right corner the precision-recall curve will be. Comparing the curves 181 

for the model trained only by the JMA data set and for the model trained also by the 182 

microearthquake data set, the latter showed observably better results. The performances 183 

of the models for upward and downward polarities were almost the same. 184 
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3. Application to Crustal Earthquakes in Japan 185 

This study applied the trained model to the target data that is event data of earthquakes 186 

that occurred in the period 2005–2019 at depths of less than 20 km within the coastline 187 

in Japan islands, excluding the events for which polarity information was already 188 

available in the JMA catalog (Table 1). The study employed 1,930,132 seismogram sets 189 

of 113,700 events from Hi-net and the JMA seismic network, with P-wave arrival times 190 

taken from the JMA catalog. The magnitude–frequency distribution of earthquakes 191 

analyzed is shown in Fig. 3. Preprocessing was done in the same manner as in the model 192 

training. Good results were obtained for polarity picking with high confidence scores (Fig. 193 

6), even in noisy cases. 194 

The focal mechanisms were determined using polarity information with confidence 195 

scores larger than a confidence threshold and the HASH code (Hardebeck and Shearer 196 

2002, 2008). The quality of focal mechanisms depended on the confidence threshold (Fig. 197 

5d). If the threshold was too high, the very small number of polarity picks could not 198 

properly constrain focal mechanisms. If the threshold was lower than 0.7, the fraction of 199 

A and B ranks given by the HASH code (Hardebeck and Shearer 2008) was almost 200 

constant. This study adopted a confidence threshold of 0.7 and, accordingly, 1,800,937 201 

polarity picks were used. 202 

Fig. 7 shows the estimated focal mechanisms and their P- and T-axes, in addition to the 203 

NIED F-net moment tensor solutions for reference. The focal mechanisms of 113,700 204 

events were estimated, while those of 7,313 events were undetermined because the 205 

number of seismic stations was smaller than eight. Ranks A, B, C, and D, given by the 206 

HASH code (Hardebeck and Shearer 2008), were assigned to 1,067, 17,897, 36,749, and 207 
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50,674 events, respectively. The focal mechanism solutions covered much more space 208 

than those in a routine catalog. 209 

4. Discussion  210 

4.1. Quality of the First-motion Polarity Picking and Focal Mechanism Solutions 211 

Somewhat surprisingly, the narrower the time-shift range of the data, the better the 212 

model performed (Fig. 5a). This was because the time-shifting made the model more 213 

flexible and robust to uncertainties in arrival-time picking. There were two potential 214 

reasons for this; one was that the arrival times in the test data were accurate because of 215 

careful review by an analyst, and, accordingly, the time-shift was not required. Another 216 

possible reason was that the training was not sufficient due to the shortage of 217 

microearthquake training data.  218 

The stability of the performance of the trained model was measured by, in addition to 219 

the test data set, a comparison of the confidence scores for similar seismic data. First, 220 

using a repeating earthquake catalog (Igarashi 2020), 1,673 repeating earthquake pairs 221 

were taken. For each event pair, seismogram pairs from identical stations were included. 222 

In total, 22,956 pairs of seismograms were selected. Next, the confidence scores of the 223 

pairs were compared using the product of the modified confidence scores as a measure of 224 

similarity, where the modified confidence score was 2 × (confidence score of the upward 225 

polarity – 0.5), to establish their range from −1 to 1. The histogram of the products is 226 

shown in Fig. 8. Most of the products were close to 1, which meant a high similarity for 227 

the outcome of the trained model. Some cases were close to −1. Examples of the 228 

seismograms in such cases are shown in Fig. 9, where some had noticeable opposite 229 
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polarities, while others may have been affected by noise. This investigation suggested 230 

that the model worked well in most cases, although room for improvement remains.  231 

Determination of focal mechanisms from the first-motion polarities of P-waves picked 232 

by the trained neural network model was also important for assessing the quality of 233 

polarity picking. In this study, 47.6% of the focal mechanism solutions were ranked D or 234 

“undetermined”. In a study on the determination of the focal mechanisms of earthquakes 235 

in Southern California using manually picked P-wave polarity and the amplitude ratio of 236 

P and S waves (Yang et al. 2012), the results showed that 56.6% (101,309 among 178,899) 237 

of events were ranked D, comparable to the result of the present study. Thus, the present 238 

study yielded a reasonable quality of P-wave first-motion polarity picking; however, 239 

based on several factors, this comparison is not entirely straightforward. These factors 240 

include differences in observational conditions such as the magnitude range and station 241 

density. Focal mechanism determination can be improved in several ways, e.g., by the 242 

introduction of P-wave amplitude (e.g., Matsushita and Imanishi 2015; Pugh et al. 2016b) 243 

and the ratio of P- and S-wave amplitudes (Hardebeck and Shearer 2003; Yang et al. 244 

2012), alongside the application of advances in P-wave polarity picking. 245 

The quality of the focal mechanism solutions is shown by region in Fig. 5e. In particular, 246 

the quality in the Hokkaido region was much worse than in other regions. The reason for 247 

this was examined by focusing on the number of stations. First, the quality of the focal 248 

mechanism solutions showed a good correlation with the number of stations (Fig. 5f). 249 

Next, the number of usable stations was smaller in Hokkaido than in other regions. This 250 

was likely because of the spatial density of seismic stations (Fig. 7e). Hence, it was more 251 

difficult to determine the focal mechanisms in Hokkaido than elsewhere. 252 
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4.2. Implications for the Stress Field 253 

The spatial distribution of the P- and T-axis azimuths (Figs. 7c and 7d) suggested the 254 

placement of crustal stress field in the Japanese islands. In this regard, first the 255 

consistency of this study using the F-net catalog on a large scale is confirmed, before 256 

briefly discussing the advantages of this study, particularly at small spatiotemporal scales. 257 

The overall features in the spatial distributions of the P- and T-axis azimuths from this 258 

study and the F-net catalog were similar. Note that the events investigated by this study 259 

and those included in the F-net catalog were largely different, as implied by the different 260 

magnitude distributions (Fig. 3). Accordingly, an overview of the spatial trend is provided 261 

by introducing two parameters from directional statistics, i.e., mean direction and circular 262 

standard deviation (CSD) (e.g., Ley and Verdebout 2017). The mean direction of 263 

directional data (𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑁𝑁) is defined as �̅�𝜃, which satisfies the following equations:  264 

cos �̅�𝜃 = 𝐶𝐶̅ =
1
𝑁𝑁
� cos 𝜃𝜃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

, sin �̅�𝜃 = 𝑆𝑆̅ =
1
𝑁𝑁
� sin𝜃𝜃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

.    (6)  265 

The CSD, V, in the radian is defined as: 266 

𝑉𝑉 = (−2 ln𝑅𝑅�)1/2    (7)  267 

where the mean resultant length, 𝑅𝑅�, is:  268 

𝑅𝑅� = �𝐶𝐶̅2 + 𝑆𝑆̅2    (8)  269 

The mean directions of P- and T-axis azimuths from this study and the F-net catalog at 270 

0.5-degree grids are shown in Fig. 10. The differences in the mean directions from this 271 

study and those in the F-net catalog were ~7°–8°, which were within the CSD (~24°) of 272 

the present study and thus not significant. No spatial trends were observed in the 273 
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differences. Interestingly, the CSD of the P- and T-axes mean directions were 274 

systematically larger in the northeast Japan than in the southwest Japan. This was likely 275 

because of actual variation in the axes, rather than uncertainty in the focal mechanism 276 

determination because the qualities of the focal mechanism solutions did not include such 277 

a trend (Fig. 5e). 278 

In the Chugoku region, the P-axes struck in the east–west direction in the northern area 279 

(San-in area), whereas those that struck in the northwest–southeast direction did so in the 280 

southern area (Sanyo area). The contrast between P-axes azimuths in western Tottori was 281 

reported by Kawanishi et al. (2009). The present study also indicated a similar trend for 282 

the entire Chugoku region. This contrast geographically corresponded to the San-in shear 283 

zone (Meneses-Gutierrez and Nishimura 2020). A combination of the current study 284 

alongside geodetic implications will further help to enhance an understanding of 285 

seismotectonics. 286 

Local abnormal stress fields can be detected by focal mechanisms. In the Kansai region 287 

(Fig. 11), the majority of earthquakes exhibited east–west striking P-axes and north–south 288 

T-axes, while groups of events with different trends were also observed, i.e., one group 289 

of normal faulting events with P-axes in the north–south direction, and another group of 290 

events with northeast–southwest P-axes and northwest–southeast T-axes. Knowing the 291 

origins of such local stresses will be helpful to tectonic studies. 292 

Rich focal mechanism data will also assist the study of temporal changes in the stress 293 

field. Fig. 12 shows the orientations of the T-axes before and after the 2016 Kumamoto 294 

earthquake in central Kyushu. T-axes tend to be in the north–south direction, as indicated 295 

by existing studies (e.g., Matsumoto et al. 2015; Savage et al. 2016). Small changes in 296 
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the T-axes azimuths at the 2016 Kumamoto earthquake may have been due to, e.g., the 297 

stress rotation effected by large foreshocks and the mainshock (Yoshida et al. 2016), or 298 

as a result of different fault geometries. Additional investigation is needed in this regard. 299 

Following the 2011 Tohoku-oki earthquake, several events occurred with T-axes in the 300 

east–west direction along the Pacific coast of the Kanto and Tohoku regions, whereas the 301 

majority of events in the entire Kanto and Tohoku regions had P-axes in this direction. 302 

This seismicity was activated following the 2011 Tohoku-oki earthquake. The focal 303 

mechanisms of microearthquakes prior to the 2011 Tohoku-oki earthquake were similar 304 

to those following the same earthquake in the northern Ibaraki prefecture, the Fukushima 305 

Hamadori area (Imanishi et al. 2012; Otsubo et al. 2018), and the Kitakami mountain 306 

range (Yoshida et al. 2015). In the present study, the small number of focal mechanisms 307 

in the Boso peninsula before the Tohoku-oki earthquake were similar to those after this 308 

earthquake (Fig. 13). The east–west extensional stress field in these areas may have 309 

existed before the 2011 Tohoku-oki earthquake.  310 

Despite the dramatic increase in focal mechanism solutions, there remain unstudied 311 

areas among the Japanese islands, where seismicity is relatively low. Accordingly, this 312 

type of study may be required for even smaller earthquakes, a more complex challenge 313 

than that addressed in the present study. Additional campaign seismic observations may 314 

improve the focal mechanism solutions for very small earthquakes. Furthermore, 315 

combining these observations with research that includes geological, geographical, and 316 

geodetical observations will improve our understanding of the crustal stress field and its 317 

origin. 318 



Confidential Manuscript to Geophysical Journal International 

16 

 

5. Conclusions 319 

In this study, the focal mechanisms of small to microearthquakes were estimated for 320 

gaining a better understanding of the crustal stress fields in the area of the Japanese islands. 321 

The focal mechanisms were derived using P-wave first-motion polarities, picked by a 322 

neural network model that takes the vertical component of seismograms with P arrival 323 

times as input. The focal mechanisms of almost all microearthquakes in the entire area of 324 

the Japanese islands were successfully determined. The focal mechanism solutions were 325 

generally consistent with the stress regime on a large scale. For example, the slight but 326 

observable differences in the P-axis azimuths in the northern and southern parts of the 327 

Chugoku region were consistent with the geodetic observations for this region. The results 328 

of this study will be useful for revealing the crustal stress field, and, accordingly, for 329 

assessing past and current tectonic activities and future earthquake generation. 330 
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Tables 528 

Table 1 529 

Numbers of seismograms and earthquakes included in the data sets. 530 

Region Type of Data Set Seismogram Sets Earthquakes 

Entire Japan Training 279,483 17,402 
Validation 7,666 598 

Kanto 
Training 12,814 1,262 
Validation 784 56 
Test 1,483 113 

Chugoku 
Training 63,359 2,259 
Validation 7,674 322 
Test 12,838 595 

Entire Japan Application 1,930,132 113,700 
  531 
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Figures 532 

 533 

Fig. 1 534 

 The design of the neural network model. The numbers on the right indicate the number 535 

of channels and samples, while “ConvBN,” “Conv BNP,” and “FC” denote convolution 536 

and batch normalization layers, convolution, batch normalization, and pooling layers, and 537 

fully connected layers, respectively.   538 
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 539 

Fig. 2 540 

Examples of seismograms with impulsive onsets but no accompanying polarity data in 541 

the JMA Unified Earthquake Catalog. Station names and the origin time and magnitude 542 

of the events are indicated above each panel. Note that this data was not used in the study.   543 
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 544 

Fig. 3 545 

Magnitude–frequency distributions in the data for the target (pink shade), F-net (purple 546 

shade), the JMA (thick navy), Kanto (thin green), and Chugoku (dashed brown) data sets.   547 
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 548 

Fig. 4 549 

Distribution of the epicentres of the earthquakes used for training (red), validation 550 

(green), and testing (blue) of the neural network model. The topography was taken from 551 

ETOPO1 (Amante and Eakins 2009).   552 
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Fig. 5 555 

Summary of the results. Here, (a) and (b) show the loss function values as functions of 556 

the time-shift range and the clipping threshold, respectively. (c) The precision-recall curve 557 

of the trained model for the test data set. The thick red solid and blue dashed lines refer 558 

to the upward and downward polarities, respectively, in the case of the two-stage training. 559 

The thin black solid and dashed lines refer to the upward and downward polarities, 560 

respectively, where the model was trained using only the JMA data set. Circles correspond 561 

to every 0.1 units of the confidence thresholds. (d) Bar graphs of the rank of the focal 562 

mechanism solutions as a function of the confidence threshold. Red, yellow, green, and 563 

blue bars from the bottom to the top represent the A, B, C, and D-ranks, respectively. 564 

Gray bars on the top indicate undefined focal mechanisms. (e) Bar graphs of the rank of 565 

focal mechanism solutions for the whole of Japan and eight specific regions (see Fig. 7e). 566 

Here, a model with a confidence threshold of 0.7 was used. The color scheme is the same 567 

as in the case of (d). (f) Bar graphs as a function of the number of seismic stations. The 568 

color scheme is the same as for (d). (g) Histograms of events as a function of the number 569 

of stations. The black line and gray shaded region indicate the values for Hokkaido and 570 

other regions, respectively.   571 
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 572 

Fig. 6 573 

Examples of seismograms with polarities picked by the neural network model with 574 

confidence scores of (a) 0.95 and (b) 0.70. Seismograms with downward polarities are 575 

flipped. If correctly picked, the first motion appears upward in this figure. Light and dark 576 

colors are alternated for convenience.   577 
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 578 

Fig. 7 579 

(a) Moment tensor solutions of earthquakes from 2006–2019 provided by the NIED F-580 

net project (Fukuyama et al. 1998) for reference. (b) Focal mechanism solutions derived 581 

by this study. Solutions ranked A–C (Hardebeck and Shearer 2008) are colored according 582 

to focal mechanism types (Shearer et al. 2006). The solutions ranked “D” is shown by 583 
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gray beach balls. (c) Azimuths of the P-axes of the estimated focal mechanism solutions 584 

ranked A–C and with plunges less than 30°. Colors indicate the azimuths. (d) Azimuths 585 

of the T-axes. (e) Seismic station distribution.   586 
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 587 

Fig. 8 588 

Histogram of the product of the modified scores of repeating earthquake pairs, where 589 

the modified score is 2 × (confidence score for the upward polarity – 0.5).   590 
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 591 

Fig. 9 592 

Comparisons of seismograms of repeating earthquake pairs at the same stations. The 593 

scores shown in the panels are the confidence scores for the upward polarity.   594 
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Fig. 10 596 

Spatial distributions of (a) the mean directions of P-axes azimuths from this study and 597 

(b) the F-net catalog, (c) the circular standard deviation (CSD) (eq. (7 )) of P-axes 598 

azimuths from this study, and (d) the absolute values of differences of (a) and (b); (e)–(h) 599 

are the values for T-axes. The P- or T- axes with lunges less than 30° and focal mechanism 600 

solutions ranked A–C were used. The values at 0.5-degree grids with four or more events 601 

are shown. In (a) and (e), the areas in the Kitakami mountain range, Fukushima Hamadori 602 

and northern Ibaraki prefecture (FKS-IBR), and Boso peninsula are marked by ellipses.   603 
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 604 

Fig. 11 605 

(a) Focal mechanisms, (b) P-axes, and (c) T-axes in the Kansai area. In (b) and (c), the 606 

axes with plunges less than 30° and the focal mechanism solutions ranked A–C were 607 

plotted. The ellipses indicate areas with distinct focal mechanisms.   608 
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 609 

Fig. 12 610 

The mean directions of the T-axes azimuths at 0.05-degree grids (a) before the 2016 611 

Kumamoto earthquake, (b) within one year of the Kumamoto earthquake, and (c) after 612 

this time, indicated by short bars and colors. T-axes with plunges less than 30° and the 613 

focal mechanism solutions ranked A–C were used.   614 
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 615 

Fig. 13 616 

The T-axis azimuths in the Boso peninsula (a) before and (b) after the 2011 Tohoku-617 

oki earthquake. T-axes with plunges less than 30° and the focal mechanism solutions 618 

ranked A–C were plotted. 619 
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