
Takahiro Abe1, Go Iwahana2,3, Takeo Tadono4, and Yoshihiro Iijima1

1Graduate School of Bioresources, Mie University, Tsu, JAPAN.
2Internatinal Arctic Research Center, University of Alaska Fairbanks, Fairbanks,
USA.
3Arctic Research Center, Hokkaido University, Sapporo, JAPAN.
4Earth Observation Research Center, Japan Aerospace Exploration Agency,
Tsukuba, JAPAN.

Corresponding author: Takahiro Abe (abe@bio.mie-u.ac.jp)

Key Points:

• Ground subsidence was primarily associated with the severity of forest
fires, and slope orientation was likely an additional factor.

• Seasonal frost heave measured by InSAR corresponded to seasonal change
of summer precipitation.

• Existing phase change expansion model could not explain observed sea-
sonal displacement quantitatively.

Abstract

Forest fires significantly impact permafrost degradation in the subarctic regions.
However, inter-annual and seasonal variations in surface deformation due to per-
mafrost thawing in burned areas were poorly understood. Measuring the ground
surface displacement in fire scars helps us understand the freeze–thaw dynam-
ics of near-surface ground and predict the future state, particularly in ice-rich
permafrost regions. This study used the L- and C-band interferometric syn-
thetic aperture radar (InSAR) technique to reveal inter-annual subsidence and
seasonal thaw settlement/frost heave in a fire scar near Mayya, Sakha Republic
in Eastern Siberia burned in 2013. We found that the cumulative subsidence
was up to 7 cm between 2014 and 2020, most of which had occurred by 2016.
The magnitude of seasonal thaw settlement and frost heave varied each year
from 2017 to 2020 after the fire, but the inter-annual change in frost heave
corresponded to the temporal variation in precipitation during the thawing sea-
son from 2017 to 2020. This suggests that the precipitation amount during
the thawing season is related to the magnitude of segregation–ice formation in
the sediments, which determines the frost heave amount. The observed sea-
sonal displacements could not be quantitatively explained by models inferred
from the Stefan’s equation and volume changes associated with ice–water phase
change. This implies that other models associated with segregated ice (ice lens)
formation/thaw are required to explain the observed seasonal displacement.

Plain Language Summary

Forest fires in permafrost regions significantly affect regional landscape changes
and ecosystems through permafrost degradation and subsequent ground defor-
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mation. However, the number of observations of post-forest fire surface displace-
ment is extremely limited. We calculated surface displacement in a fire scar in
Eastern Siberia from spaceborne radar images captured using Interferometric
Synthetic Aperture Radar (InSAR). Our observed data will help us understand
permafrost degradation processes in forest fire scars.

1 Introduction

Recent climate change has increased the number of wildfires in Arctic and sub-
arctic (boreal) regions, which has significantly impacted on permafrost condi-
tions (Gibson et al., 2018; Holloway et al., 2020; Zhang et al., 2015). Wildfires
do not directly thaw permafrost, but trigger their degradation through the loss
of surface vegetation and organic layers (Yoshikawa et al., 2003), which play an
important role in preventing solar radiation shielding. Regardless of the cause of
wildfires, the loss of vegetation and organic layers has both immediate and long-
term effects on permafrost environments through changes in the surface energy
balance, ground thermal and hydrological regimes, and soil and aquatic biogeo-
chemistry (Holloway et al., 2020). Furthermore, the organic carbon trapped in
permafrost regions is estimated to be twice that in the current atmosphere, and
permafrost thawing may further enhance global warming (Mack et al., 2011;
Schuur et al., 2015).

Central Yakutia (Figure 1a) is underlain by ice-rich continuous permafrost
(Brown et al., 2002). Recently, topographic changes and lake formation due
to thermokarst have increased (Fedorov et al., 2014; Ulrich et al., 2017).
Thermokarst is a characteristic process that results from ice-rich permafrost
thawing and massive underground ice melting (Czudek & Demek, 1970; van
Everdingen 2005). Heterogeneous surface subsidence occurs in the initial stage
of thermokarst, which is related to ice volume loss (Ulrich et al., 2014). In the
last three decades, the mean air temperature has increased by apporoximately
3 ℃ (Desyatkin, Fedrov, et al., 2021) and, in particular, high temperatures
and intensive precipitation in the late 2000s are considered to have caused
thermokarst progression and forest mortality (Iijima et al., 2010; Fedorov et al.,
2014). In the continuous permafrost zone, including Central Yakutia, open and
disturbed areas including wildfire scars on ice-rich permafrost, are at the risk
of degradation (Fedorov et al., 2017). Therefore, wildfire scars are the focus
of permafrost degradation in the Arctic region (Yanagiya and Furuya, 2020).
Despite the significant impact of wildfires on permafrost, spatial and temporal
changes in permafrost degradation in fire scars are not well understood due to
the lack of quantitative observation data.
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Figure 1. Study area. (a) Enlarged map near Yakutsk in the right bank of
Lena River. Yellow rectangle shows the area enlarged in (b). Location of the
2013 forest fire is approximately 10 km far from Mayya (red dot). (b) Elevation
map around the study area. (c) Landsat true color image on 18 August, 2013
over the 2013 forest fire area.

Remote sensing techniques are useful for monitoring ground surfaces without
conducting field surveys. In particular, interferometric synthetic aperture radar
(InSAR) is a powerful tool to investigate surface displacement in fire scars un-
derlain by permafrost (Liu et al., 2014; Iwahana et al., 2016; Molan et al., 2018;
Michaelides et al., 2019; Yanagiya and Furuya, 2020; Yanagiya, 2022), while
very few studies have used this technique. Yanagiya and Furuya (2020) recently
showed spatial and temporal changes in surface displacement after a wildfire
in 2014 in Batagay, northeastern Siberia, using the Advanced Land Observing
Satellite-2 (ALOS-2) InSAR time-series analysis. They revealed cumulative sub-
sidence of 30 cm from 2015 to 2019 with apparent increases in seasonal thaw
settlement and frost heave in the burned areas. This time-series displacement
data is very rare and important to better understand permafrost degradation
processes in fire scars (Kornei, 2020). However, they did not detail the inter-
annual change in seasonal displacement. Thus, further studies on long-term and
seasonal displacements at fire scars are required.

InSAR-based displacement data have been utilized for estimating maximum
seasonal thaw depth [active layer thickness (here after ALT)] using the Stefan’s
equation and an assumption of volume expansion/decrease due to phase change
of water within the active layer (Liu et al., 2012; Schaefer et al., 2015). However,
these studies did not show whether the observed displacement could be explained
by the phase change expansion model; air temperature data were used as a tem-
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poral constraint condition for deriving the time-series displacement data. Molan
et al. (2018) modeled the ALOS InSAR-based post-wildfire surface subsidence
in the Alaskan Yukon River Basin considering a two-layer system of an active
layer and an underlying permafrost. Their approach was also based on the ex-
pansion model. Furthermore, even though soil moisture is the key parameter of
the modeled displacement in the expansion model, no study has focused on how
much the moisture is necesary to explain the observed displacement data. Thus,
detailed investigations are needed to clarify whether freezing/thawing and sub-
sequent volume expansion/decrease of pre-existing pore water are sufficient to
explain the observed ground surface displacement among freeze–thaw processes.

This study has three objectives: First, to reveal the inter-annual ground surface
displacement after a few years due to permafrost degradation and estimate the
thawed ice volume. This study focused on a forest fire that occurred in 2013 in
Mayya (Figures 1a and 1b), Central Yakutia, underlain by continuous ice-rich
permafrost. Abe et al. (2020) reported thermokarst subsidence in Mayya using
ALOS/ALOS-2 InSAR stacking, indicating that thermokarst-induced ground
subsidence in the Mayya region has been ongoing. Therefore, the forest fire
in Mayya is a good case for examining the impact of landcover change by fire
on permafrost degradation. The second objective is as to examine what con-
trols the seasonal surface displacement. Although ALT is closely related to air
temperature, the relationship between ALT and seasonal surface displacement
remains unclear. It is important to understand the factors other than air tem-
perature that are related to seasonal surface displacement. The third objective
is to investigate whether the observed seasonal displacement could be explained
using an existing phase change expansion model. To clarify this, we used the
phase change expansion model and soil parameters based on related field surveys
to compare the modeled displacement with the InSAR-based observed seasonal
displacement. This investigation will help us better understand the physics of
seasonal freeze/thaw cycles and the subsequent surface displacement.

2 Study area

Mayya (Figures 1a and 1b) is a rural locality located on the right bank of the
Lena River and 40 km southeast of Yakutsk. It is mostly surrounded by boreal
forests with larch and pine trees (Figure 1a), although the village was deforested
for farming, primarily in the 1970s. Mayya is located on fairly flat ground with
~140 m elevation, and the southern part of the village is higher, with up to
200 m elevation (Figure 1b). Alases, the final geomorphological stage of old
thermokarst development (Bosikov, 1991), can be identified by its slightly lower
elevation and greenness compared to the surrounding yellow inter-alas meadow
(Figure 1b). The long-term averaged ALT in thermokarst-affected areas is 2–3.5
m, while that in intact areas is 1.8–2.7 m in the Mayya region. Mayya represents
the residential areas in Central Yakutia with thermokarst development. Abe et
al. (2020) first examined the spatial variation of averaged ground subsidence
rate in Mayya using ALOS-2 InSAR stacking, and revealed the subsidence rate
to be 0.5–2 cm yr–1 in the deforested areas, all of where thermokarst-induced
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polygonal texture were identified. The forest fire studied occurred in June–July
2013 (Figure 1c), approximately 10 km south of Mayya village on the Abalakh
terrace of the Lena River (Soloviev, 1959; Ulrich et al., 2017).

3 Data and method

3.1 Identification of fire scar and monitoring vegetation recovery by Landsat
multi-spectral images

The normalized burn ratio (NBR) is a useful index for identifing wildfire–affected
areas by focusing on vegetation changes. Vegetation is more significant in the
near-infrared (NIR) region than that in the shortwave infrared (SWIR) region,
whereas fire scars are more significant in the SWIR region. Based on these
properties, NBR is defined as (NIR − SWIR) / (NIR + SWIR). The difference
in NBRs (dNBR) pre-and post-fire indicates burn severity (Key & Benson, 2006;
Miller & Thode, 2007). Generally, a fire with dNBR > 0.66 is regarded as
highly severe (Key & Benson, 2006). We calculated dNBR for the 2013 fire
using spectral radiance in the Landsat 7 NIR (Band 4; 0.77–0.90�m) and SWIR
(Band 7; 2.09–2.35�m) bands (Table 1) to support the identification of the burned
area.

In addition to identifying the burned area, we examined vegetation recovery after
the fire. The normalized difference vegetation index (NDVI) is defined as (R -
NIR) / (R + NIR), where R is a red band. We calculated NDVI between 2013
and 2020 using spectral radiance in the Landsat 8 red (Band 4: 0.64–0.67�m)
and near-infrared (Band 5: 0.85–0.88�m) bands (Table 1) to reveal inter-annual
NDVI changes after the fire.

Table 1 List of Landsat images used in this study.

Scene ID Date (dd/mm/yyyy)
Landsat 7
LE07_L1TP_121017_20120807_20200908_02_T1 07/08/2012
LE07_L1TP_121017_20130810_20200907_02_T1 10/08/2013

Landsat 8
LC08_L1TP_121017_20130818_20200912_02_T1 18/08/2013
LC08_L1TP_121017_20150808_20200908_02_T1 08/08/2015
LC08_L1TP_120017_20160819_20200906_02_T1 19/08/2016
LC08_L1TP_120017_20170721_20200903_02_T1 21/07/2017
LC08_L1TP_120017_20180809_20200831_02_T1 09/08/2018
LC08_L1TP_120017_20190727_20200827_02_T1 27/07/2019
LC08_L1TP_121017_20200618_20200823_02_T1 18/06/2020

3.2 InSAR analysis and validation using ALOS-2 and Sentinel-1 data

InSAR is a uniquel tool to examine surface displacement using two SAR images
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at different times with an accuracy of a few centimeters (Hanssen, 2001). InSAR
has been used for detecting surface deformations related to permafrost such as
seasonal freeze/thaw cycles (e.g., Liu et al., 2010; Short et al., 2011; Daout
et al., 2017; Strozzi et al., 2018; Rouyet et al., 2019), thermokarst (Liu et
al., 2015; Annotova et al., 2018; Chen et al., 2018; Abe et al., 2020; Iijima et
al., 2021), and wildfires (Liu et al., 2014; Iwahana et al., 2016; Molan et al.,
2018; Michaelides et al., 2019; Yanagiya & Furuya, 2020; Yanagiya, 2022). L-
band InSAR is more suitable than C-and X-band InSAR to examine long-term
displacement such as thermokarst subsidence, with respect to coherence (Wang
et al., 2017; Strozzi et al., 2018; Abe et al., 2020; Yanagiya & Furuya, 2020;
Yanagiya, 2022). On the contrary, C-band SAR Sentinel-1 has performed high-
frequency observations over the study area at an interval of 12 or 24 days, which
enabled us to investigate seasonal thaw settlement and frost heave. Thus, we
also used the Sentinel-1 images to analyze the seasonal displacement.

In this study, L-band SAR obtained from the Phased Array-type L-band
Synthetic Aperture Radar (PALSAR)-2 aboard ALOS-2 and C-band SAR
from Sentinel-1 images were processed using Gamma software (Wegmüller
and Werner, 1997). Six scenes of ALOS-2 stripmap mode 3 (SM3) with
10-m resolution over the fire site in 2014-2020 (Table 2) were used to derive
inter-annual changes in ground surface displacement. The revisit interval for
ALOS-2 was 14 days, but the observation interval for interferometry over the
study area was basically one or two times per year, almost all of which occurred
from August to October. In addition, the center frequency of beam F2_6 (the
same beam we used) was modifed in June 2015. Therefore, interferometry
between the F2_6 data acquired before and after June 1 2015, is undesirable
because of the significant coherence decrease (Natsuaki et al., 2016). Thus, we
generated interferograms using the data acquired before and after June 1 2015.
After checking the interferograms, we regarded one interferogram between
2014 and 2015 (Table 2), which is useful for this study in terms of coherence.
Sentinel-1 has collected more than 100 scenes in the interferometric wide swath
mode at 5×20 m2 resolution (Table S1) since November 2016 over the study
area. Thus, we processed Sentinel-1 data from April 2017 to March 2021 to
derive seasonal changes in surface displacement. The incidence angles of the
ALOS-2 and Sentinel-1 SAR images at the fire site were approximately 36°and
33°, respectively. In the datasets used, ALOS-2 and Sentinel-1 illuminated the
surface from the west and east, respectively; thus, the signs of sensitivity to the
east–west displacement were reversed. The topographically related phase was
removed using the ALOS World 3D -30 m- (AW3D30, Takaku et al., 2020).

Table 2 Interferometric paris of ALOS-2 used in the Figure 4. B-perp stand
for the distance perpendicular to the line of sight between the positions of the
satellite at different times.

Image 1 (dd/mm/yyyy) Image 2 (dd/mm/yyyy) B-perp (m) Span (day)
03/10/2014 02/10/2015 42.5 364
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Image 1 (dd/mm/yyyy) Image 2 (dd/mm/yyyy) B-perp (m) Span (day)
02/10/2015 30/09/2016 -101 364
30/09/2016 12/10/2018 127 742
12/10/2018 11/10/2019 -141 364
11/10/2019 17/07/2020 58.8 280
02/10/2015 17/07/2020 -56.3 1750

Our InSAR processing procedures were similar to those used in previous studies
(Strozzi et al., 2018; Abe et al., 2020; Yanagiya and Furuya, 2020; Iijima et
al., 2021). We generated single-look complex (SLC) data from ALOS-2 level
1.1 data. After performing co-registration between two SLC images, we gen-
erated interferograms and selected 11 interferograms, excluding those with the
image acquisition period of over four years or with in the same year (Table 2).
Goldstein–Werner’s adaptive spectral filter with an exponent of 0.7 was applied
to smooth the signals (Goldstein and Werner, 1998), and phase unwrapping by
minimum cost flow was performed (Costantini, 1998). The spatial resolution
after terrain-corrected geocoding projecting onto the UTM coordinate was set
to 30 m. InSAR reference points should be set in each interferogram, but there
was no information for selecting as a stable ground point in the area. Thus, the
averaged phase outside the fire scar in each interferogram was shifted to zero to
derive the ground surface displacement in the fire scar relative to the outside of
the fire scar.

Tropospheric and ionospheric noises sometimes affect each interferogram, which
sometimes introduces significant errors in the extraction of the surface displace-
ment. Our study area is located on a relatively flat fluvial terrace of the Lena
River, and the regional climate is semi-arid (annual precipitation apporoxi-
mately 250 mm). Thus, we considered the tropospheric effect sufficiently small
to be neglected. The effects of ionospheric disturbances are often observed as
linear long-wavelength trends. Our analysis area was spatially limited to ~ 5×5
km2, and we modeled and subtracted the trend by fitting a 2D polynomial
function.

Although validation using in-situ data such as leveling and/or GNSS is ideal,
there are no available data for comparison with the InSAR-based surface dis-
placement, as already mentioned above. Thus, we cross-validated the interfer-
ograms using different band and orbit SAR data from ALOS-2 and Sentinel-1,
as reported by Yanagiya and Furuya (2020). The ALOS-2 and Sentinel-1 obser-
vation frequencies were significantly different over the study area. The ALOS-2
observation frequency of ALOS-2 is one or a few times per year, and we could not
generate interferograms showing seasonal displacement for almost all years. On
the contrary, Sentinel-1 has performed frequent observations over the area with
an interval of 12 days, which has enabled us to calculate seasonal displacement.
Even with high-frequency Sentinel-1 acquisitions, we could not obtain coherent
interferograms using the data from the early thawing season in April–May, prob-
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ably due to surface inundation by snowmelt. Therefore, it was quite difficult to
derive inter-annual changes in the surface displacement using Sentinel-1 data.
Fortunately, there were a few ALOS-2 observations over the area in 2019. Two
consecutive ALOS-2 interferograms were generated and compared with stacked
Sentinel-1 interferograms for validation (Table 3).

Table 3 Interferometric paris of ALOS-2 and Sentinel-1 used in Figure 6.

Image 1 (dd/mm/yyyy) Image 2 (dd/mm/yyyy) B-perp (m) Span (day)
ALOS-2 interferograms
07/06/2019 19/07/2019 -74.5 42
19/07/2019 11/10/2019 63.2 84

Sentinel-1 interferograms
11/06/2019 23/06/2019 -9.9 12
23/06/2019 05/07/2019 85.0 12
05/07/2019 17/07/2019 19.0 12
17/07/2019 29/07/2019 -56.4 12
29/07/2019 10/08/2019 -19.6 12
10/08/2019 22/08/2019 -18.4 12
22/08/2019 15/09/2019 49.1 24
15/09/2019 27/09/2019 122.6 12
27/09/2019 09/10/2019 -161.3 12

3.3 InSAR time-series analysis

To infer long-term temporal changes and cumulative displacements, we per-
formed a small baseline subset (SBAS)-type time-series analysis (Berardino et
al., 2002; Schmidt & Bürgmann, 2003; Biggs et al., 2007; Liu et al., 2015;
Yanagiya & Furuya, 2020), using 11 high-quality ALOS-2 interferograms. The
averaged line-of-sight (LOS) change at each acquisition epoch was estimated
without assuming any temporal change models, such as the cyclic function and
air temperature data. We also estimated the propagation error from the time-
series analysis assuming that each ALOS-2 interferogram contained 0.2 cm er-
rors, which is identical to that reported by Yanagiya and Furuya (2020).

3.4 Modeling seasonal displacement based on the Stefan’s equation

To interpret the observed seasonal displacements, we modeled the surface dis-
placement based on the Stefan’s equation, a conventional and simple model for
calculating the thawing depth from air temperature data (Stefan, 1891). The
depth Z(t) at a certain time t is defined as

Z (𝑡) = √ 2𝑘𝑛𝑠𝐴(𝑡)
��L (1)

where k is the thermal conductivity of soil (W·m−1·K−1), n is the n-factor
indicating the ratio of ground surface temperature to air temperature (Lunar-
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dini, 1978; Klene et al., 2001), s is the scaling factor for the conversion of time
dimension, A(t) is the accumulated degree days of thawing or freezing (ADDT
or ADDF, unit: °C days), � is the soil bulk density (kg·m−3), � is the volumetric
water content (m3·m−3), and L is the specific latent heat of fusion for water
( J·kg−1). In this study, we calculated the ADDT and ADDF using air tem-
perature data for Yakutsk provided by the National Centers for Environmental
Information (NCEI) of the National Oceanic and Atmospheric administration
(NOAA) (Menne, Durre, Korzeniewski et al., 2012; Menne, Durre, Vose et al.,
2012). The physical constants listed in Table 4 were used in the modeling. Ther-
mal conductivity of unfrozen and frozen soil were set to 1.1 and 1.4, respectively,
based on the in-situ results reported by Romanovsky and Osterkamp (2000) and
Yershov (1998). The n-factors for summer and winter used were reported by
French (2017) and Karunaratne and Burn (2003). Soil bulk density used was
reported by Iwahana et al. (2005) and Desyatkin, Filippov et al. (2021).

Table 4 Physical constants used for modeling used in Figure 8 and 9.

Name of Constant Symbols Values Units
Thermal conductivity for unfrozen/frozen soil k 1.1/1.4 W�m−1�K−1

n-factor for Summer/Winter n 0.8/0.32 dimensionless
Scaling factor for time dimension s 8.64×104 dimensionless
Soil bulk density 𝜌 1.4×103 Kg�m−3

Latent heat of fusion for water L 3.34×105 J�Kg−1

Density of water 𝜌𝑤 1000 Kg�m−3

Density of ice 𝜌𝑖 920 Kg�m−3

Here we assumed that the phase change of water causes the active layer volume
during the freezing/thawing season (Liu et al., 2012). Pore water/ice within the
active layer turns into ice/water, causing an ~9% volume increase/decrease and
the subsequent ground uplift/subsidence, respectively.

The displacement du is calculated as

𝑑𝑢 = 𝜌𝑤− 𝜌𝑖
𝜌𝑖

�dz (2)

where �w and �i represent the density of water and ice, respectively. Assuming
that � is spatially heterogeneous within the active layer and constant with depth,
the surface displacement u(t) at a certain time t is derived from Equations (1)
and (2)

u (𝑡) = 𝜌𝑤− 𝜌𝑖
𝜌𝑖

√ 2𝑘𝑛𝑠𝜃𝐴(𝑡)
�L (3)

The surface displacement u(t) at a certain time t was rearranged using the
coefficient of E as

u (𝑡) = 𝐸√𝐴(𝑡), (4)

where E is defined as
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𝐸 = 𝜌𝑤− 𝜌𝑖
𝜌𝑖

√ 2𝑘𝑛𝑠𝜃
�L (5)

E is a time-invariant coefficient, that consists of the products of soil and water
properties. Here, E in the freezing and thawing seasons is denoted as Ef and Et,
respectively.

This equation was used as a temporal constraint condition when deriving the
components of seasonal and long-term displacement, and ALT change was ob-
tained from the time-series displacement (Liu et al., 2012; Liu et al., 2015;
Schafer et al., 2015; Hu et al., 2018; Michaelides et al., 2019). However, soil
parameters in E determined under the constraint have been poorly discussed,
although E contains information about ground conditions that explain seasonal
surface displacement. In this study, E was first determined using the observed
seasonal thaw settlement and frost heave for each year and the differences be-
tween the square root of A(t) in the corresponding period (Equation 4). Among
the soil properties constituting E, the spatial variation in the volumetric water
content (�) was calculated with other soil properties (Table 4). The properties,
except �, are assumed to have no spatial variation in the study area and can be
used as representative values from previous related studies.

When the surface displaces Δu at the time Δt, � is calculated by transforming
Equation (5):

𝜃 = ( 𝜌𝑖
𝜌𝑤− 𝜌𝑖

)2 �L𝐸2
2𝑘𝑛𝑠 (6)

Assuming that � is unlikely to be over 60 % in view of in-situ data in Eastern
Siberia (Iwahana et al., 2005; Fedorov et al., 2017; Iijima et al., 2017; Abe et
al., 2020; Yanagiya, 2022), we replaced the calculated � over 60% with 60% and
conversely modeled the surface displacement using Equation (3). This manip-
ulation means that the modeled displacement should be equal to the observed
displacement when � is less than 60%, whereas the modeled and observed dis-
placements should be different when � is greater than 60%. The threshold value
of 60 % is somewhat arbitrary and may be larger than that of the in-situ ob-
servation data. It is important to investigate whether the volumetric change
caused by the phase change in soil moisture can explain the ground surface dis-
placement. While soil moisture comprises air and water saturation fractions in
the ground and has a vertical distribution, there is no available field data for
constraining them. InSAR detects “surface” displacement; thus, we do not con-
sider the vertical distribution of soil properties. Comparing the observed and
modeled displacements, we have discussed the seasonal freeze/thaw dynamics
in Section 5.3.

4 Results

4.1 Burn severity and recovery of vegetation by Landsat images

Figure 2a shows a map of the dNBR between 2012 and 2013, which indicates the
burned area of the 2013 forest fire. Null data with diagonal areas were caused
by the sensor failure of Landsat 7 (United States Geological Survey, 2003). The
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area indicated by the black line was calculated as 5.78 km2, and the most severe
part was located in the center of the northern burned area of 0.22. The areas
with negative values correspond to those of the Alas lakes, which are not related
to the burned area. The topography of the burned area is shown in Figure 2b.
The most severe part of the slope lies on a north-dipping slope of approximately
2 °. The elevation ranges from 160 to 220 m southward.

Figure 2. (a) Map of difference in dNBR before and after the fire. Black line
shows the identified burn area of the 2013 forest fire. (b) Map of elevation in
and around the fire scar.

Figure 3 shows the spatial and temporal changes in NDVI from 2013 to 2020,
indicating vegetation recovery after the fire. The NDVI in August 2013 (immedi-
ately after the event) is almost 0 in the northern area, which increased over five
years to 0.37 in 2018. However, the NDVI decreased up to 0.23 in 2019–2020.
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Figure 3. Spatial and temporal changes in NDVI between 2013 and 2020
derived from Landsat 8 multi-spectral images. The black line indicates the
burned area identified in Fig. 2a.

4.2 Annual displacement by ALOS-2

The annual LOS changes in the burned area calculating using ALOS-2 interfero-
grams are shown in Figure 4. The interferogram for 2014–2015 shows ~2 cm LOS
lengthening in the fire scar (Figure 4a). The following interferogram for 2015–
2016 shows that LOS lengthened by ~3 cm (Figure 4b), which is larger than
that in the previous year. In the next two years (2016–2018), LOS lengthened
by ~1 cm in the north area (Figure 4c). The two interferograms for 2018–2019
(Figure 4d) and 2019–2020 (Figure 4e) indicated almost no LOS changes (~0.5
cm) in the area. The interferogram for 2015–2020 shows that LOS lengthened
by ~4.5 cm in the northern burned area (Figure 4f). The spatial distribution
of LOS change shows that larger displacements were detected in the northern
burned area, followed by that in the middle part.
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Figure 4. ALOS-2 interferograms indicating annual LOS displacement in (a)
2014–2015, (b) 2015–2016, (c) 2016–2018, (d) 2018–2019, (e) 2019–2020, and (f)
2015–2020. The detail of the dataset is listed in Table 1. Positive and negative
values represent LOS lengthening and shortening.

4.3 Seasonal displacement by Sentinel-1 and validation with ALOS-2

Figure 5 shows stacked Sentinel-1 interferograms indicating seasonal LOS change
for 2017–2020. The detail of the interferograms used in Figure 5 is shown in
Table S1. In 2017–2018, the LOS lengthened by over 7 cm between May and
August (early thawing season) in the north area (Figure 5a), but did not change
between August and October (late thawing season; Figure 5b). On the contrary,
the LOS shortened by up to 5 cm in the north area from October to December
(early freezing season; Figure 5c). During December 2017–March 2018 (late
freezing season), there was no LOS change with good coherence (Figure 5d).
From 2018 to 2021, a similar pattern of seasonal LOS change was repeated.
The LOS lengthened between May and August (early thawing season) in 2018,
2019, and 2020 by up to 5, 6.5, and 3.5 cm, respectively, in the north area
(Figures 5e, 5i, and 5m). In the following period between August and October
each year, there were no LOS changes (Figures 5f, 5j, and 5n). From October
to December, the LOS shortened in 2018, 2019, and 2020 by up to 6, 2.5, and
1.3 cm, respectively, in the north area (Figures 5g, 5k, and 5o). In December–
March, there was also no LOS change with good coherence (Figures 5h, 5l, and
5p). The spatial distributions of LOS shortening (Figures 5a, 5e, 5i, and 5m) and
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lengthening (Figures 5c, 5g 5k, and 5o) were almost comparable. However, the
magnitude of the seasonal LOS lengthening/shortening was different each year,
and it decreased secularly. Coherences of Sentinel-1 interferograms in thawing
season, particularly from the end of March to the beginning of May every year,
were significantly lost probably due to snowmelt, and surface displacements
lacked in these periods. Thus, we should note that the total amount of seasonal
thaw subsidence each year was uncertain.

Figure 5. Stacked Sentinel-1 interferograms in the four periods (May–Aug,
Aug–Oct, Oct–Dec, Dec–Mar) during 2017–2020. The detail of the dataset is
listed in Table S1. Positive and negative values represent LOS lengthening and
shortening.

Since there are no available in-situ data for validating our InSAR-based displace-
ments, we performed cross-validated then using the corresponding ALOS-2 and
Sentinel-1 InSAR data to assess the quality. Figure 6 shows an inter-comparison
of LOS changes between ALOS-2 and Sentienl-1 during the thawing season in
2019 (Table 3). The ALOS-2 and Sentinel-1 interferograms in June and July
2019 show LOS lengthening of up to 3 cm with similar spatial pattern (Fig-
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ures 6a and b). The mean difference between them, with standard deviation, is
0.0±0.8 cm. In the subsequent period of June and July 2019, the ALOS-2 and
Sentinel-1 interferograms showed almost no displacement in the analysis area,
with the mean difference being 0.0±0.7 cm. Although some Sentinel-1 interfer-
ograms in the thawing season did not show good coherence (Figures 6b and 6e),
the validation results indicated that the ALOS-2 and Sentinel-1 interferograms
could detect the same LOS displacements. Validation during the early winter
season (using interferograms indicating frost heave) is desirable, but could not
be performed due to the absence of ALOS-2 data in early winter over the study
area.

Figure 6. Comparison of LOS changes between (a and d) ALOS-2, (b and e)
stacked Sentinel-1 interferograms, and (c and f) the differences of them in the
two different periods. The detail of the dataset is listed in Table S1. Positive
and negative values represent LOS lengthening and shortening.

4.4 Long-term displacement by ALOS-2 InSAR time-series analysis and estima-
tion of thawed excess ice volume

Using generated 11 ALOS-2 interferograms (Figure 7a), we conducted SBAS-
type time-series analysis to derive the cumulative displacement for 2014–2020.
Figure 7b shows the spatial distribution of cumulative subsidence in the burned
area between 2014 and 2020. The cumulative LOS displacement was projected
onto the vertical subsidence with the assumption of no horizontal displacement.
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The maximum subsidence occurred around P1 (up to 7 cm), followed by P2 (up
to 4.5 cm). Temporal changes in subsidence at three points in the burned area
(P1–P3) are shown in Figure 7c. The results indicate that major subsidence
occurred by 2016 (~5 cm), followed by a few centimeters in the next four years.
In 2019–2020, the magnitude of subsidence was greater than that in the previous
year. In contrast, there was no cumulative displacement outside the scar at P4
(Figure 7c), indicating that the ground was stable.

From the temporal evolution of post-forest fire deformation data from October
2014 to July 2020 and the assumption that the long-term subsidence was caused
by ground ice melting, we estimated the total thawed ice volume to be 0.11±0.2
km3. The estimation error was calculated based on the root mean square of
the no deformation signals outside the burned area (Figure 7a). The thawed ice
thickness was 0.02 m�km–2. Since there was no deformation data immediately
after the fire (2013–2014), the volume of thawed ice may be considered to be
larger.

Figure 7. (a) Interferometric pairs used for the SBAS time-series analysis. (b)
Cumulative subsidence map between October 2014 and July 2020 by the SBAS
analysis using the dataset shown in (a). (c) Temporal changes in subsidence at
P1–P4. P1–P3 are in the burned area, but P4 is outside..

4.5 Modeled seasonal thaw settlement and frost heave using air temperature and
soil properties
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Using the observed seasonal thaw settlement and frost heave data, we modeled
the surface displacement using the method described in Section 3.4. Figure
8 shows the observed and modeled seasonal thaw settelement for 2017–2020.
The observed data in Figure 5 are also projected onto the vertical displacement,
similar to Figure 7. In 2017, the modeled subsidence in the northern burned area
was up to 5 cm smaller than the observed subsidence (Figures 8a–8c). Similar
differences were observed in 2018 (Figures 8d–8f) and 2019 (Figures 8g–8i), but
the area of difference over 2 cm between the observed and modeled subsidence
was smaller than that in 2017 (Figures 8f and i). In 2020, the modeled subsidence
was equal to the observed subsidence (Figures 8j-8l).

Figure 8. Observed and modeled yearly seasonal thaw settlement at 2017–2020.
(a), (d), (g), and (j) represent the observed seasonal thaw settlement derived
from the stacked Sentinel-1 interferograms shown in Fig 5a, 5e, 5i, and 5m,
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respectively. (b), (e), (h), and (k) represent the thaw settlement modeled using
Equation 3. (c), (h), (i), and (l) are the differences of them.

A similar analysis was conducted for frost heave. Figure 9 shows the observed
and modeled frost heave during 2017–2020. Despite different parameter values
(Table 4), we obtained a similar difference between the observed and modeled
data, as shown in Figure 8. In 2017, the modeled uplift in the northern burned
area was smaller than the observed uplift (Figures 9a and 9b). The difference
was up to 2.5 cm (Figure 9c). A similar difference was observed in 2018, up to 3
cm, but the simulated uplift in 2019 and 2020 was almost equal to the observed
uplift (Figures 9g–9l).

Figure 9. Observed and modeled yearly seasonal frost heave at 2017–2020.
(a), (d), (g), and (j) represent the observed seasonal frost heave by the stacked
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Sentinel-1 interferograms shown in Fig 5c, 5g, 5k, and 5o, respectively. (b), (e),
(h), and (k) represent the frost heave modeled using Equation 3. (c), (h), (i),
and (l) are the differences of them.

5 Discussion

5.1 Spatial variation of cumulative subsidence and burn severity

We compared the spatial variation in cumulative subsidence revealed by ALOS-
2 (Figure 7b) with the burn severity associated with the 2013 forest fire (Figure
2a). Large subsidence areas (around P1 and P2 in Figure 7b) correspond to
relateively high severity in the fire scar. This suggests that the high severity of
dNBR reflects the degree of vegetation lost, including the organic layer, which
led to deepening of ALT and permafrost thaw in the ground through changes
in the albedo and water cycle through vegetation (Yoshikawa et al., 2003; Hol-
lowway et al., 2020). However, the distribution of cumulative subsidence did
not exactly match that of severity. The burn severity of the area from P3 to
the northwest in Figure 7b was moderate (Figure 2a), whereas the cumulative
subsidence in this area was small (Figure 7b). This discrepancy was also ob-
served in Batagay (Yanagiya & Furuya, 2020). In that case, they considered
the relationship between subsidence and local landforms. Larger subsidence was
observed in the east-facing slope, where thin active layers were likely to develop
many gullies. In this study, a large subsidence occurred on the north-facing
slope (Figure 2b), which corresponds to high burn severity. We have considered
that the relatively larger amount of ground ice under the north-facing slope and
the strong severities of the fire caused the significant subsidence.

The time-series plot of the cumulative subsidence (Figure 7c) revealed that
major subsidence occurred in 2014 and 2016 within a few years after the fire.
This temporal pattern was reported in some previous studies. Michaelides et
al. (2019) showed that seasonal deformation was the maximum a few years
after a fire event using event samples of wildfires in southwestern Alaska. Our
time-series data also verified this pattern, with the annual subsidence decreasing
until 2019. However, annual subsidence again increased in 2019–2020 from that
in the previous year, even though the last SAR data was obtained in July,
not September or October. This may reflect the intense heat in the spring of
2020. The number of wildfires in 2020 was much higher than that in other
years (McCarty et al., 2020), which could promote permafrost thaw in the post-
wildfire area. Long-term observations are needed to assess future permafrost
stability.

5.2 Thawed excess ice volume and comparison of other forest fire cases

The estimated volume of thawed excess ice associated with the 2013 forest fire
is 0.11 km3, which is significantly smaller than in Batagay (Yanagiya & Furuya,
2020). The estimated excess ice loss in Batagay is 3.56 km3, more than 30
times larger than in Mayya. Although the burned area was much larger in
Batagay than in Mayya, the average thickness of ground ice melting in Batagay
is about 0.1 m�km–2, five times as much as in Mayya. This is possibly due to
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the presence of massive ground ice in Batagay, which has been considered to be
present through the investigation at Batagaika megaslump (Murton et al., 2017).
Moreover, the study area of Batagay is located far north and at a higher altidude
than Mayya, and ALT is considered to be small. Thus, the impact of wildfires
on permafrost could be larger in Batagay than that in Mayya, causing large
surface subsidence due to significant permafrost thaw. On the contrary, there
is no information about the existence of ground ice in the fire scar in Mayya,
and the ALT at disturbed areas in Mayya is large, up to 2–3 m. Therefore, the
observed long-term subsidence of ~ 7 cm may be caused by ice-lens melting in the
transient layer (Shur et al., 2005). Transitent layer thickness varies depending
on the environmental conditions and landscape disturbance, with the thickness
in disturbed areas of Central Yakutia being 0.1–0.3 m (Iijima and Fedorov, 2019).
Assuming that the volumetric ice content in the transient layer was 40 % and
the layer thawed after the fire, the estimated subsidence was 4–12 cm, which is
reasonable for our observed data.

The details of the seasonal displacement in Figure 5 indicate that the seasonal
thaw subsidence terminated in August and almost no displacement occurred in
late summer (between August and October). Inter-annual subsidence caused
by ground ice melting in northwestern Alaska was observed in late summer
(Zwieback � Meyer, 2021), and our data suggest that inter-annual subsidence
had almost stopped since at least 2017, four years after the event. This corre-
sponds to the results of the ALOS-2 time-series analysis (Figure 7c). In contrast,
the seasonal thaw settlement in Batagay was greater than the frost heave in 2018,
even four years after the event (Yanagiya & Furuya, 2020). The seasonal sub-
sidence decreased in 2019, but the inter-annual subsidence may continue for a
few years, which is longer than that in Mayya.

5.3 Comparison of observed seasonal displacement with vegetation and meteo-
rological data

Although the Sentinel-1 interferograms revealed seasonal thaw settlement and
frost heave in the post-forest fire area (Figures 5, 8, and 9), the magnitude
of the displacements varied each year. We compared the magnitude of subsi-
dence/uplift with temporal vegetation changes and meteorological data. Figure
10a shows a comparison of the displacement with NDVI. Immediately after the
fire, the NDVI was almost 0 (Figure 3a). The NDVI in 2018, five years after the
event, recovered to 0.37 (also see Figure 3d), and then the NDVI decreased to
0.23 in 2020. This temporal pattern was similar to that of the seasonal displace-
ments. Due to the decrease of vegetation in the fire scar, evapotranspiration
would become small and soil water content should get increased. On the con-
trary, the magnitude of seasonal displacements decreased. This indicates that
the inter-annual changes in vegetation was not directly linked to the magnitude
of seasonal displacements. A comparison of seasonal thaw settlement and frost
heave indicated that the magnitude of frost heave in a year was close to that of
thaw settlement in the subsequent year.
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Figure 10. (a) Comparison among the magnitude of seasonal thaw settlement,
frost heave, and NDVI in 2017–2020. Magenta and cyan hatches indicate thaw-
ing (April–September) and early freezing (October–December) seasons. (b) The
blue bars show precipitation between May and October, and the red line shows
the square root of the accumulated degree days of thawing (ADDT) in 2017–
2020.

A comparison of the surface displacement with the air temperature and pre-
cipitation is shown in Figure 10b. The root of the ADDT between 2017 and
2020 was almost stable, and that in 2020 was slightly large, probably due to the
intense heat in the 2020 spring season. However, the precipitation between May
and October in 2017–2020 changed inter-annually; the precipitation in 2018 was
slightly higher than that in 2017, but it decreased in 2019 and 2020. The pat-
tern of the temporal change corresponds to that of the magnitude of frost heave
(Figures 10a and 10b). This indicates that the magnitude of frost heave may be
linked to precipitation during the thawing season. High precipitation during the
thawing season increases the soil moisture, which has the potential to generate
many ice lenses in early winter. Moreover, the observed uplift signal shows that
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frost heave stopped at the end of the year (Figures 5c, 5d, 5g, 5h, 5k, 5l, 5o,
and 5p). One of the possible reasons is that the soil moisture in the active layer
becomes completely frozen at the time; one of the alternatives is that unfrozen
soil moisture stopped contributing to ice lens formation. No displacement in
mid-winter was observed by Yanagina and Furuya (2020), despite the increase
in the ADDF in the period. These observations indicate that the amount of
water available to form ice lenses is important for causing frost heave, and that
the temperature gradient instead of the temperature itself may be related to an
ice lens generation. When many ice lenses are formed in an early freezing sea-
son, causing larger frost heave, the magnitude of subsidence in the next thawing
season could be larger than that caused by the ice–water phase change.

5.4 Implication for geophysical modeling inferred from modeled seasonal dis-
placement

InSAR-observed seasonal thaw settlement is sometimes assumed to be propor-
tional to the square root of the ADDT, and the maximum subsidence occurs
on or after the surface temperature returns to below freezing (Liu et al., 2012;
Schaefer et al., 2015; Michaelides et al., 2019), which is based on the Stefan’s
equation. These studies assumed that subsidence occurred due to volumetric
change from ice to water, and ALT was derived from the observed InSAR data.
Our observed InSAR data showed that seasonal subsidence was completed at the
beginning of August, even when the ADDT still increased (Figures 5a, 5e, 5i, and
5m). We considered that the seasonal subsidence could not be directly linked
to the ADDT, but was associated with ice lens melting. Ice lenses are consid-
ered the main cause of frost heave. Taber (1930) showed that frost heave could
not be explained by volumetric expansion due to phase change of pore water,
and various studies have focused on frost heave mechanisms in recent decades
(reviewed in Peppin � Style, 2013). Yanagiya and Furuya (2020) concluded that
the observed frost heave signals could be interpreted by 1-D premelting dynam-
ics proposed by Rempel et al. (2004). Our InSAR data also showed significant
frost heave in October–December (Figures 5c, 5g, 5k, and 5o), and no surface
displacement was detected during mid-winter (Figures 5d, 5h, 5l, and 5p) when
the ADDF continued to increase. The frost heave rate in November 2018 was
apporiximately 1.7×10–8 m�s−1, which is similar to that reported by Yanagiya
and Furuya (2020). This implies that our data supports their conclusions.

We also simulated seasonal thaw settlement and frost heave data using various
soil parameters and air temperature data (Figure 11). Compared with the
observed thaw settlement in 2017 (magenta line with markers in Figure 11a), the
simulated subsidence with default parameters (solid black line) used in Figure
8 was smaller in the corresponding period. Even with 60% volumetric water
content, the simulated result (black dotted line) was smaller than the observed
one. Two other sets of parameters with different values of thermal conductivity
and soil bulk density were tested (red and blue lines), which showed that the
simulated data did not match the observed ones. Similar results were obtained
for the seasonal frost heave in 2018 (Figure 11b). Simulated uplifts with various
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parameters did not explain the observed uplift.

These simulations may also indicate that the Stefan’s equation with plausible
soil parameters and volume change associated with ice–water phase change is
not sufficient to quantitatively explain the observed seasonal displacements. Our
results show that at least two-fold more than the simulated result is needed to
explain the observed large surface displacement of over 5 cm, such as the sub-
sidence in 2017 and the uplift in 2018. Recent in-situ observations reported
by Yanagiya (2022) showed that localized thaw settlement within fire scars does
not necessarily correlate with ALT. Our simulation results may support his find-
ings. Furthermore, the temporal changes in the observed and simulated seasonal
displacements, particularly the peak of the displacement gradient, significantly
differ from each other (Figures 11a and b). This implies that the phase change
expansion model does not explain seasonal displacement onset/end or amount.
The ice lens formation reported by Rempel et al. (2004) could explain the In-
SAR frost heave signal as reported by Yanagiya and Furuya (2020). However,
the calculation requires many parameters, such as pore water pressure and the
hydraulic conductivity of frozen fringes, many of which are difficult to be mea-
sured in the field (Chen et al., 2020).
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Figure 11. Simulated seasonal (a) thaw settlement in 2017 and (b) frost heave
in 2018 with various soil parameters and temperature data. Different line styles
represent the different parameters used. The Sentinel-1-observed displacements
are also plotted in magenta lines with markers.

The discrepancies between the observed and simulated seasonal displacements
may be solved using a model based on the ice segregation theory. Konrad and
Morgenstern (1981) proposed a segregation potential model to address problems,
in which requires many essential parameters for the calculation. The segrega-
tion potential is expressed as a function of the pore water pressure at the base
of the ice lens. One of the significant advantages of the model is that it can
be used to calculate frost heave when the temperature is measured. Zhang et
al. (2020) successfully applied this model to a series of one-sided frost heave
tests under external pressure in a closed system. Such a model may explain our
observed frost heave signals if the temperature gradient and pore water pressure
are known. It should be noted that there is a possibility that the significant dif-
ferences between the soil parameters used and in-situ in our simulations cannot
explain the observed displacement. The theoretical mechanisms of frost heave
still remain open questions, and more simulations and in-site observations are
needed.

Our multi-year seasonal displacement data are useful for better understanding
the freeze–thaw dynamics in Central Yakutia. However, even 12 days spanning
the Sentinel-1 interferograms did not capture the entire seasonal thaw settlement
due to low coherence during snowmelt in April and May. Therefore, the seasonal
thaw settlement in our data did not completely correspond to the entire thaw
settlement. To capture this, future L-band SAR missions, such as ALOS-4
and NISAR, are expected in view of high-frequency observations in permafrost
regions, which could derive both seasonal and inter-annual displacement. Such
observation data will help to understand permafrost dynamics and predict the
future state of permafrost regions.

6 Conclusion

Forest fires can enhance abrupt permafrost degradation. However, the tempo-
ral variation of surface deformation due to permafrost thaw in the post forest
fire area remains uncertain due to insufficient observation data. This study
examined inter-annual and seasonal displacement associated with freeze–thaw
dynamics in a forest fire scar in Eastern Siberia, Russia, using InSAR analy-
sis with ALOS-2 L-band and Sentinel-1 C-band SAR data. InSAR time-series
analysis using ALOS-2 data revealed up to 7 cm inter-annual subsidence from
October 2014 to July 2020, which was presumably caused by melting ice lens
in the transient layer. Stacked Sentinel-1 InSAR images from 2017 to 2021
revealed seasonal displacements associated with seasonal thaw settlement and
frost heave. The magnitude of the seasonal displacements varied yearly, but
the temporal change in frost heave corresponded to that in precipitation during
the thawing season from 2017 to 2020. This suggests that precipitation amount
during the thawing season is associated with the magnitude of ice lens forma-
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tion in soil. We modeled the seasonal thaw settlement and frost heave uplift
using the Stefan’s equation and the difference in density between ice and water,
with some assumptions. The modeled results show that the observed seasonal
displacements could not be explained using this model quantitatively, imply-
ing that a new model associated with ice lens formation and thawing must be
considered to explain the observed seasonal displacement.
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