Demographic correlations are pervasive in wildlife populations and can represent important secondary drivers of population growth. Empirical evidence suggests that correlations are in general positive for long-lived species, however little is known about the degree of variation among populations in relation to local conditions. For three widely geographically separated Atlantic puffin populations (Fratercula arctica), we compared the relative importance of survival-reproduction correlations for two cross-season correlations, reflecting either effects of non-breeding season or breeding season conditions. Demographic rates and their correlations were estimated with an integrated population model, and their respective contributions to variation in population growth were calculated using a transient-LTRE. Demographic correlations were positive for all three populations, but their strength differed. By comparing three populations with geographically distinct foraging areas throughout the year, this study shows that demographic correlations are, in part, driven by environmental conditions, which impacts their population viability and vulnerability to environmental change.