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Abstract12

Geoscientists use observed data to estimate properties of the Earth’s interior. This of-13

ten requires non-linear inverse problems to be solved and uncertainties to be estimated.14

Bayesian inference solves inverse problems under a probabilistic framework, in which un-15

certainty is represented by a so-called posterior probability distribution. Recently, vari-16

ational inference has emerged as an efficient method to estimate Bayesian solutions. By17

seeking the closest approximation to the posterior distribution within any chosen fam-18

ily of distributions, variational inference yields a fully probabilistic solution. It is impor-19

tant to define expressive variational families so that the posterior distribution can be rep-20

resented accurately. We introduce boosting variational inference (BVI) as a computa-21

tionally efficient means to construct a flexible approximating family comprising all pos-22

sible finite mixtures of simpler component distributions. We use Gaussian mixture com-23

ponents due to their fully parametric nature and the ease to optimise. We apply BVI24

to seismic travel time tomography and full waveform inversion, comparing its performance25

with other methods. The results demonstrate that BVI achieves reasonable efficiency and26

accuracy while enabling the construction of a fully analytic expression for the posterior27

distribution. Samples that represent major components of uncertainty in the solution28

can be obtained analytically from each mixture component. We demonstrate that these29

samples can be used to solve an interrogation problem: to assess the size of a subsur-30

face target structure. To the best of our knowledge, this is the first method in geophysics31

that provides both analytic and reasonably accurate solutions to fully non-linear, high-32

dimensional Bayesian full waveform inversion problems.33

Plain Language Summary34

This paper introduces an efficient method to solve non-linear problems in which35

Bayesian uncertainties in the solution are to be estimated given some observed data set.36

The method uses a flexible mathematical function which is optimised to best approx-37

imate the set of possible solutions. This enables a fully analytic expression to be esti-38

mated for the inversion results. We use the method to solve tomographic imaging prob-39

lems using first seismic wave travel times, and then full waveform inversion. By inter-40

rogating the resulting distribution, we show how the answer to a specific scientific ques-41

tion of interest, “How large is a particular subsurface structure of interest?”, can be found42

highly efficiently and with minimum bias.43
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2 Introduction47

In many geophysical problems, information about the Earth is inferred using data48

recorded either on or beneath the Earth’s surface, or in the oceans, atmosphere or near-49

Earth orbits. These properties of interest are usually described by so-called latent pa-50

rameters, and it is often the case that observed data can be predicted approximately given51

values for those parameters. This calculation is called the forward problem, and the parameter-52

data relationship is usually non-linear. Yet typically in the same problem, no inverse re-53

lationship, which predicts the parameter values given the data, exists. The process of54

inferring the values of parameters is therefore formulated as an inverse problem. In prac-55

tice, inverse problem solutions are always non-unique, so it is crucial to estimate the range56

of properties that are consistent with observations if solutions are to be interpreted in57

a reliable manner (Tarantola, 2005).58

Geophysical inverse problems are often solved without estimating the true uncer-59

tainty structure. Usually such approaches seek a solution that best fits the observations,60

using a variant of the following procedure: the non-linear forward function is linearised61

around an initial reference Earth model (a set of parameter values) to yield approximate62

forward relationships. Using linear algebra, these approximations allow the parameter63

values to be perturbed so as to better fit recorded data. The process of linearisation and64

updating of parameter values is iterated using successive estimates as new reference mod-65

els until convergence is observed. The final set of parameter values is used as a best es-66

timate of the true model (Iyer & Hirahara, 1993).67

Unfortunately, in many cases the result does not accurately represent the true Earth68

due to non-uniqueness of the inverse problem solution (Boyd & Vandenberghe, 2004),69

particularly in cases where the initial model is significantly different from the true so-70

lution. Moreover, within the above framework it is impossible to evaluate uncertainty71

in the inversion results that originates from non-linearity of the forward relations (Gallagher72

et al., 2009). It is therefore challenging to solve interrogation problems, in which the so-73



lution is interpreted to answer scientific questions of interest (Arnold & Curtis, 2018; Ely74

et al., 2018; X. Zhang & Curtis, 2022; X. Zhao et al., 2022; Siahkoohi et al., 2022).75

As an alternative, a suite of methods collectively referred to as Bayesian inversion76

or Bayesian inference allow statistics of the full uncertainty structure of the solution to77

be estimated. These methods employ Bayes’ rule to update prior (initial) knowledge about78

the parameter values that is described probabilistically, using new information provided79

by the observed data. The result of the inversion is represented by the posterior prob-80

ability distribution (or density) function (pdf): in principle this provides a complete so-81

lution which describes all parameter values that are consistent with the data, and quan-82

tifies their relative probabilities.83

Bayesian inference often uses global search methods such as random sampling to84

characterise the family of values in parameter space that yield acceptable data fits (Rothman,85

1986; Stoffa & Sen, 1991; Sen & Stoffa, 2013; Sambridge, 1999). Monte Carlo methods86

(Press, 1968; Anderssen & Seneta, 1971; Malinverno, 2002) and their variants, includ-87

ing Metropolis-Hastings Markov chain Monte Carlo (MH-McMC – Mosegaard & Taran-88

tola, 1995), reversible-jump McMC (rj-McMC – Bodin & Sambridge, 2009; Bodin et al.,89

2012; Galetti et al., 2015, 2017; Biswas & Sen, 2022), informed proposal Monte Carlo90

(Khoshkholgh et al., 2021; Khoshkholgh, Zunino, & Mosegaard, 2022; Khoshkholgh, Orozova-91

Bekkevold, & Mosegaard, 2022), Hamiltonian Monte Carlo (HMC – Fichtner & Simutė,92

2018; Gebraad et al., 2020; de Lima et al., 2023), Langevin dynamics McMC (Izzatullah93

et al., 2020; Siahkoohi et al., 2022), and others, have been studied extensively for var-94

ious geophysical inversion problems. However, such methods still have notable issues that95

can become problematic in practical problems: (1) slow convergence, sometimes converg-96

ing only in infinite time (Atchadé & Rosenthal, 2005; Andrieu & Thoms, 2008); (2) poor97

scalability to problems with many parameters due to the curse of dimensionality (Scales,98

1996; Curtis & Lomax, 2001); and (3) parallelising some methods at the sample level is99

not possible (Neiswanger et al., 2013).100

A different approach to finding Bayesian solutions is referred to as variational in-101

ference. In variational methods, a family of simple probability distributions (often re-102

ferred to as the variational family) is defined, and an optimal member within this fam-103

ily is sought which best approximates the true (unknown) posterior pdf. This can be found104

by minimising the difference (or mathematically speaking, the distance) between the pos-105



terior and variational distributions. The Kullback-Leibler (KL) divergence (Kullback &106

Leibler, 1951) is typically used for measuring the distance between two distributions. Thus,107

variational methods solve Bayesian problems using potentially efficient and parallelis-108

able optimisation processes and offer well understood convergence criteria (Blei et al.,109

2017; C. Zhang et al., 2018).110

In recent years, sophisticated variational algorithms have been proposed due to ad-111

vances in computational power and the development of modern deep learning frameworks112

such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019), which en-113

able tractable construction and learning of large scale probabilistic models. These meth-114

ods either deterministically generate a set of posterior samples (Liu & Wang, 2016; Gal-115

lego & Insua, 2018) or directly model a parametric probability distribution to approx-116

imate the true posterior pdf (Kingma & Welling, 2014; Rezende & Mohamed, 2015; Kingma117

et al., 2016; Kucukelbir et al., 2017). In geophysics, novel variational inference methods118

were developed for rock physical interpretation and inversion of seismic data by Nawaz119

and Curtis (2018, 2019) and Nawaz et al. (2020). Since then the methodology has been120

applied to a variety of problems including travel time tomography (X. Zhang & Curtis,121

2020a; X. Zhao et al., 2021; Levy et al., 2022), seismic denoising (Siahkoohi et al., 2021,122

2023), seismic amplitude inversion (Zidan et al., 2022), earthquake hypocentre inversion123

(Smith et al., 2022), slip distribution inversion (Sun et al., 2023), full waveform inver-124

sion in 2D (X. Zhang & Curtis, 2020b; Urozayev et al., 2022; Wang et al., 2023) and in125

3D (X. Zhang et al., 2023; Lomas et al., 2023), and survey or experimental design (Strutz126

& Curtis, 2023). In addition, a variety of other methods that train neural networks to127

emulate inverse operators, such that they produce an approximation to the posterior pdf128

of a problem given any recorded data set as input, could be regarded as variational meth-129

ods (Devilee et al., 1999; Meier et al., 2007a, 2007b; A. K. Ray & Biswal, 2010; Shahraeeni130

& Curtis, 2011; Shahraeeni et al., 2012; de Wit et al., 2013; Käufl et al., 2014, 2016; Earp131

& Curtis, 2020; Earp et al., 2020; Cao et al., 2020; Lubo-Robles et al., 2021; X. Zhang132

& Curtis, 2021b; Hansen & Finlay, 2022; Bloem et al., 2023).133

The performance of variational inference methods depends on the complexity and134

expressiveness of the predefined variational family. There is an inherent trade-off involved135

in selecting a tractable set of distributions: increasing the capacity of the variational fam-136

ily to approximate the posterior distribution usually also increases the complexity of the137

optimisation problem. In most variational methods, the approximating family is fixed138



and constrained in ways which might exclude neighbourhoods surrounding the posterior139

distribution, preventing an accurate approximation to the true posterior distribution,140

no matter for how long the algorithm is run (F. Guo et al., 2016; Miller et al., 2017). This141

mismatch between the variational family and the true posterior pdf often results in un-142

derestimation of posterior variances of the model parameters and an inability to capture143

posterior correlations (Miller et al., 2017). For instance, the mean field approximation144

is commonly employed in variational methods in order to simplify the optimisation prob-145

lem. This assumes a factorised structure for the variational distribution such as a Gaus-146

sian distribution with a diagonal covariance matrix. However, the method ignores cor-147

relation between different parameters and can therefore yield poor inversion results (Bishop,148

2006; Blei et al., 2017; X. Zhang et al., 2023). The trend in defining an expressive vari-149

ational family has mainly focused on designing more complex models, often using neu-150

ral network based structures, to achieve greater flexibility. Examples of such models in-151

clude normalising flows (Rezende & Mohamed, 2015) and their improved versions (Dinh152

et al., 2015; Kingma et al., 2016; Durkan et al., 2019; Kobyzev et al., 2019; Papamakar-153

ios et al., 2019). However, building effective variational models and solving the corre-154

sponding optimisation problems, which involve a large number of parameters to be op-155

timised, pose significant challenges.156

A mixture model is a weighted sum of component probability distributions, and157

is useful because a general mixture model has the capability to represent any complex158

probability distribution to any desired level of accuracy (Bishop, 1994, 2006). It is there-159

fore reasonable to construct a variational family using a finite mixture of simple and para-160

metric component distributions such as Gaussians. However, directly optimising a mix-161

ture model is a non-convex problem, so components can easily become trapped in sub-162

optimal solutions. Additionally, it is challenging to determine the appropriate number163

of mixture components in advance.164

Recently, a variational method called Boosting Variational Inference (BVI – F. Guo165

et al., 2016; Miller et al., 2017) has been investigated, which draws inspiration from clas-166

sical gradient boosting techniques (Friedman, 2001; Meir & Rätsch, 2003). BVI starts167

by fitting a single component (a single variational distribution such as a Gaussian); this168

is equivalent to an existing method called automatic differential variational inference (ADVI:169

Kucukelbir et al., 2017). BVI then iteratively enhances that model by adding a new com-170

ponent distribution at each iteration. As more components are included, the posterior171



approximation becomes progressively more accurate, in theory thereby improving the172

results offered by ADVI. An efficient, greedy algorithm is implemented by fixing the so-173

lution from the previous iteration, and optimising only the shape of the new component174

and its relative weight at each iteration. This approach avoids the need to design com-175

plex variational models a priori, but requires an additional optimisation for each added176

component. Similar to conventional mixture models, BVI is capable of capturing mul-177

timodality and incorporating rich covariance structures. However, unlike conventional178

methods, BVI simplifies the objective function by focusing solely on the optimisation of179

a single new component at each step (Locatello, Khanna, et al., 2018). This makes the180

optimisation process more manageable and facilitates the construction of an expressive181

variational family.182

BVI was originally proposed in two independent works (Miller et al., 2017; F. Guo183

et al., 2016). Miller et al. (2017) employed the re-parametrisation trick (Kingma & Welling,184

2014) to jointly optimise the variational parameters of the new component and the cor-185

responding weight coefficient. However, this method is highly sensitive to initialisation:186

a new component should be initialised in a region that is under-represented by the pre-187

vious components and an appropriate initial weight should be close to the proportion188

of the probability mass in that region. On the other hand, F. Guo et al. (2016) pointed189

out the non-convexity of jointly optimising these two parameters, making it challenging190

in general. They proposed a two-step approach where the new component is first opti-191

mised using typical gradient descent, and then the weight is optimised while keeping the192

new component fixed. Subsequently, Locatello, Khanna, et al. (2018) investigated the193

convergence properties of BVI from a modern optimisation viewpoint and established194

connections to the classic Frank-Wolfe framework (Frank & Wolfe, 1956; Jaggi, 2013).195

To ensure convergence, they imposed restrictions on the mixture components by using196

truncated distributions, such as truncated Gaussians. In follow-up work, Locatello, Dres-197

dner, et al. (2018) relaxed this condition and proposed a modified objective function for198

variational optimisation, making BVI suitable for black box solvers (Ranganath et al.,199

2014). Giaquinto and Banerjee (2020) used parametric distribution models called nor-200

malising flows (Rezende & Mohamed, 2015) as mixture components, which improved the201

performance of existing flows based models. On the other hand, Campbell and Li (2019)202

proposed an alternative BVI scheme based on the Hellinger distance (Ghosal et al., 2000)203

instead of the KL divergence.204



Previous studies in geophysics demonstrated that ADVI can be implemented ef-205

ficiently and provides results that are straightforward to interpret. However, while ADVI206

provides an accurate posterior mean model, it tends to underestimate uncertainties (X. Zhang207

& Curtis, 2020a; X. Zhao et al., 2021). In this paper, our goal is to investigate whether208

the performance of ADVI can be improved while preserving its advantages by deploy-209

ing the boosting strategy.210

This paper is organised as follows. In section 2, we provide an introduction to vari-211

ational Bayesian inversion and establish the BVI framework. We analyse the analytical212

properties of the posterior distribution and demonstrate the use of BVI for solving in-213

terrogation problems using representative samples obtained from BVI components. In214

subsequent sections we apply the method to two typical geophysical inversion problems:215

travel time tomography and full waveform inversion, and we compare the results to those216

obtained by using other existing methods. Finally, we discuss our findings and draw con-217

clusions based on our study.218

3 Methodology219

3.1 Variational Bayesian Inversion220

Bayesian inference solves inverse problems in a probabilistic manner by evaluat-

ing the so-called posterior probability distribution function (pdf) using Bayes’ rule:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(m) is the prior distribution of model parameters m, which describes our knowl-221

edge about m prior to the inversion. The conditional probability p(dobs|m) is the like-222

lihood of observing data dobs given an Earth model m. The denominator p(dobs) =
∫
m
p(dobs|m)p(m)dm223

is a normalisation constant called the evidence. By combining these three terms on the224

right hand side, we obtain the posterior distribution p(m|dobs), which describes the prob-225

ability of all possible models that are consistent with the observed data, prior informa-226

tion and physical forward functions used to evaluate the likelihood. Therefore, Bayesian227

inference provides a full inversion solution and quantifies the post inversion state of un-228

certainty.229

Variational inference solves Bayesian problems by estimating the fixed but unknown

posterior pdf. The variational goal is to select one optimal distribution q∗(m) that best



approximates the posterior pdf within a family of known distributions (called the vari-

ational family) Q(m) = {q(m)}. This can be accomplished by finding the distribution

q(m) that minimises the following Kullback-Leibler (KL) divergence (Kullback & Leibler,

1951) between the variational and posterior distributions:

KL[q(m)||p(m|dobs)] = Eq(m)[log q(m)− log p(m|dobs)] (2)

The KL-divergence measures the distance between two distributions q(m) and p(m|dobs).

It has the property KL[q(m)||p(m|dobs)] ≥ 0, with equality only when q(m) = p(m|dobs).

Evaluating the KL-divergence requires that the posterior probability p(m|dobs) is cal-

culated, which is infeasible in many problems since the evidence term p(dobs) is often

intractable. However, it can be shown that minimising the KL-divergence is equivalent

to maximising the evidence lower bound of log p(dobs) (ELBO[q(m)]) defined as:

ELBO[q(m)] = Eq(m)[log p(m,dobs)]− Eq(m)[log q(m)] (3)

This only requires that the joint probability p(m,dobs) is calculated, which is compu-230

tationally tractable (Blei et al., 2017). By maximising equation 3 with respect to q(m),231

we can estimate fully probabilistic solutions to Bayesian inverse problems using optimi-232

sation methods.233

It is evident that the accuracy of variational inference depends on the expressive-234

ness of the variational family Q(m). However, increasing the complexity of Q(m) to im-235

prove accuracy also tends to make the optimisation problem more challenging, or at least236

leads to higher-dimensional inverse problems. In the next section we will demonstrate237

how to mitigate this issue by employing mixtures of simpler distributions as the varia-238

tional family.239

3.2 Boosting Variational Inference240

In boosting variational inference (BVI), we define the variational family to com-

prise the set of distributions that can be represented by a mixture of n simpler compo-

nent distributions

qn(m) =

n∑
i=1

wigi(m) (4)

where each gi(m) represents a chosen mixture component. The component pdfs are cho-241

sen to be parametric (meaning that an explicit formula describes their form, with pa-242



rameters that define their shape). In this work we choose Gaussian component distri-243

butions gi(m) = N (m;µi,Σi) parametrised by a mean vector µi and a covariance ma-244

trix Σi. The weight wi controls the magnitude of the contribution of each component245

gi(m), satisfying 0 ≤ wi ≤ 1 and
∑n
i=1 wi = 1. Remarkably, the mixture in equation246

4 can approximate any target distribution to any level of accuracy, even when using a247

simple base distribution gi(m) (Bishop, 1994; Meier et al., 2007b; Shahraeeni & Curtis,248

2011; Earp & Curtis, 2020; Earp et al., 2020).249

Directly maximising ELBO[qn(m)] with respect to the variational parameters {wi, gi(m); i =

1, 2, ..., n} is a non-convex problem so algorithms may converge to local minima at which

one component dominates while the weights of other components become negligible (F. Guo

et al., 2016). The gradient boosting approach (Friedman, 2001; Meir & Rätsch, 2003)

can be used to solve this problem. The main idea is to sequentially add components to

an ensemble, each being used to correct errors of its predecessors. Inspired by this, we

determine an optimal variational distribution qn(m) through an iterative procedure, adding

one new component distribution to the mixture model at each step. The procedure be-

gins with a single component q1(m) = g1(m) with w1 = 1. We fit g1(m) using a tra-

ditional variational objective function (Blei et al., 2017; C. Zhang et al., 2018). In each

subsequent step t = 2, 3, ..., n, BVI adds one new component gt to the mixture model,

with weight wt ∈ [0, 1]. The new distribution qt(m) is constructed by combining the

previous mixture distribution qt−1(m), weighted by (1−wt), with the new component

gt(m) weighted by wt:

qt(m) = (1− wt)qt−1(m) + wtgt(m) (5)

We then maximise ELBO[qt(m)] with respect to wt and gt.250

Since jointly optimising wt and gt(m) is also a non-convex problem, we adopt a se-

quential approach which finds the optimal component gt(m) first, then finds the corre-

sponding weight wt. Based on equation 5, we treat the new mixture pdf qt(m) as a per-

turbation from the current distribution qt−1(m), where the component distribution gt(m)

describes the shape of the perturbation and wt ∈ [0, 1] describes the size of the pertur-

bation. We take the first-order Taylor expansion of ELBO[qt(m)] around qt−1(m):

ELBO[qt(m)] = ELBO[qt−1(m) + wtgt(m)− wtq
t−1(m)]

= ELBO[qt−1(m)] + wt
〈
gt(m),∇ELBO[qt−1(m)]

〉
− wt

〈
qt−1(m),∇ELBO[qt−1(m)]

〉
+ o(w2

t )

(6)



where 〈x(θ), y(θ)〉 =
∫
x(θ)y(θ)dθ calculates the inner product between functions x(θ)

and y(θ). Term ∇ELBO[qt−1(m)] = log
p(m,dobs)

qt−1(m)
is the functional gradient of the ELBO

with respect to qt−1(m). In order to maximise ELBO[qt(m)] in equation 6, we must choose

the gt(m) that maximises
〈
gt(m),∇ELBO[qt−1(m)]

〉
since qt−1(m) is fixed. That is, we

choose gt(m) to match the direction of ∇ELBO[qt−1(m)]. Then, we obtain gt(m) by

gt(m) = argmax
gt(m)

〈
gt(m),∇ELBO[qt−1(m)]

〉
= argmax

gt(m)

〈
gt(m), log

p(m,dobs)

qt−1(m)

〉
(7)

Direct maximisation of the inner product in equation 7 is ill-posed and can lead to gt(m)

degenerating into a narrow distribution or even a single point mass which only has non-

zero probability value at the maximum of ∇ELBO[qt−1(m)] – a degenerate probability

distribution that has zero width. To solve this problem, we introduce an additional reg-

ularisation term that involves the entropy of gt(m), given by the negative scalar prod-

uct of gt(m) and log gt(m):

gt(m) = argmax
gt(m)

〈
gt(m),∇ELBO[qt−1(m)]

〉
− λ 〈gt(m), log gt(m)〉

= argmax
gt(m)

Egt(m)[log p(m,dobs)]− Egt(m)[log qt−1(m)]− λEgt(m)[log gt(m)]

(8)

where Egt(m)[·] calculates the expectation of any function with respect to gt(m). Param-

eter λ is a regularisation factor that controls the weight of the entropy term. Entropy

measures the uncertainty represented by any pdf, so by maximising the entropy we en-

sure that the pdf does not collapse to a narrow, effectively degenerate distribution. We

refer to the objective function in equation 8 as the residual evidence lower bound (RELBO[gt(m)])

RELBO[gt(m)] := Egt(m)[log p(m,dobs)]− Egt(m)[log qt−1(m)]− λEgt(m)[log gt(m)] (9)

The expectation terms and their gradients in both equations 3 and 9 can be estimated251

using Monte Carlo integration (details can be found in X. Zhao et al., 2021). Since we252

would normally perform many iterations to maximise these two equations, we can use253

a relatively small number of samples per iteration (even only a single sample – Kucukel-254

bir et al., 2017). By maximising this objective function, we can find an optimal gt(m)255

at each step of the algorithm.256

In equation 7, log p(m,dobs)
qt−1(m) describes the residual discrepancy between the current257

variational distribution qt−1(m) and the joint probability distribution p(m,dobs) = p(dobs)p(m|dobs)258

which is equal to the unnormalised posterior distribution p(m|dobs) according to equa-259

tion 1. If qt−1(m) is proportional to the true (normalised) posterior pdf, i.e., qt−1(m) ∝260



p(m|dobs) everywhere in the parameter space, the above residual would be constant. How-261

ever, in most situations this residual has peaks where the current variational distribu-262

tion underestimates the posterior distribution, and has basins where qt−1(m) overesti-263

mates p(m|dobs). By introducing a new component gt(m), we aim to add density to re-264

gions where qt−1(m) underestimates and (through the relative weighting scheme in equa-265

tion 5) weaken regions where it overestimates the posterior pdf (this can be proven us-266

ing information theory). The goal is to find an optimal gt(m) that maximises (Egt(m)[log p(m,dobs)]−267

Egt(m)[log qt−1(m)]), which can be interpreted as minimising the cross entropy of gt(m)268

with respect to p(m,dobs) and maximising that with respect to qt−1(m). In other words,269

gt(m) should be as close as possible to the (unnormalised) posterior distribution, and270

at the same time should be sufficiently different from the current approximation – it should271

capture the aspects of the posterior pdf that the current mixture distribution cannot yet272

approximate. This allows BVI to gradually improve the accuracy of the variational dis-273

tribution by iteratively adding new components.274

There are three commonly used methods to determine the weight coefficient wt ∈

[0, 1] for the new component in BVI. The first method uses an empirical formula to guar-

antee a series of weights for each additional component (Locatello, Dresdner, et al., 2018;

Locatello, Khanna, et al., 2018):

wt =
2

t+ 1
, t = 1, 2, ..., n (10)

Although this formula abandons the ideal of finding optimal weight coefficients, it pro-275

vides a straightforward approach to update the weight. Any error caused by non-optimality276

of this can be corrected by the introduction of additional components to the mixture dis-277

tribution.278

The second method for updating weight coefficients involves a line search. The weight

is updated by maximising ELBO[qt(m)] (note this is not maximising RELBO[gt(m)] with

respect to wt) (F. Guo et al., 2016):

w
(k+1)
t = w

(k)
t +

b

k
∇wt

ELBO[qt(m)] (11)

where superscripts (k+1) and (k) represent two consecutive iterations, and b is the ini-279

tial step size decayed by 1/k. The method to calculate ∇wt
ELBO[qt(m)] is provided in280

Appendix Appendix A.281



The third method, updates the weights for all components when each new com-

ponent is added to the mixture model (Locatello, Dresdner, et al., 2018):

w(k+1) = w(k) +
b

k
∇wELBO[qt(m)] (12)

where w = [w1, w2, ..., wt]
T is a vector containing the weights of all components. The282

gradient term can be calculated similarly to the line search method (Appendix Appendix283

A).284

Once the weight coefficient is obtained the new mixture distribution qt(m) can be285

constructed by combining the new component gt(m) with the existing mixture distri-286

bution using Equation 5.287

3.3 BVI using Gaussian Components288

In this work, we use Gaussian distributions N (µ,Σ) as the mixture components.289

A mixture of Gaussians is capable of representing any target distributions (Bishop, 2006).290

For each component, we optimise a mean vector µ and a covariance matrix Σ by max-291

imising the RELBO in equation 9, and below we test the three schemes to determine the292

weights. Once convergence is achieved, the obtained Gaussian component is added to293

form the new mixture distribution.294

Considering that model parameters in many geophysical inverse problems are sub-

ject to hard constraints (e.g., seismic velocity must be greater than zero), and Gaussian

distributions and their mixtures are defined in the unbounded space of Real numbers,

we apply the inverse logistic function to transform the mixture distribution from the space

of Real numbers into the constrained space (X. Zhang & Curtis, 2020a). This transfor-

mation is defined as:
m = f(z) = a +

b− a

1 + exp(−z)

log p(m|dobs) = log p(z)− log |det ∂zf(z)|

= log
∑
i wiN (z;µi,Σi)− log |det ∂zf(z)|

(13)

where m and z are model parameters in the constrained and unconstrained spaces, re-295

spectively. Hyper-parameters a and b are lower and upper bounds on m, and are fixed296

during optimisation. In the second equation, p(z) is the mixture distribution obtained297

using BVI in the space of Real numbers. Term |det(·)| calculates the absolute value of298

the determinant of the Jacobian matrix corresponding to this transform, which accounts299



for the volume change. We use equation 13 to transform each parameter in vector z to300

that in m, such that the corresponding Jacobian matrix is a diagonal matrix and its de-301

terminant is analytic and easy to calculate. This means that the correlation information302

of vector m is purely determined by the covariance matrices Σi (therefore we do not lose303

posterior correlation by applying this transform). As a result, the posterior distribution304

modelled using the proposed BVI algorithm, as well as its statistical properties, can be305

represented analytically.306

As noted above, BVI becomes automatic differential variational inference (ADVI307

– Kucukelbir et al., 2017) when only a single Gaussian component is used. ADVI also308

provides an analytic approximation to the posterior distribution, and usually seems to309

estimate the mean model accurately. However, due to its theoretical assumption of a sin-310

gle Gaussian distribution in the unconstrained space, the method usually underestimates311

parametric uncertainty around the mean. By adding more Gaussian components we re-312

gard BVI as an iterative method to enhance the performance of ADVI.313

Figure 1 shows a toy example that demonstrates the performance of BVI with Gaus-314

sian components. The target posterior distribution is a mixture of two Gaussian distri-315

butions: p(x) = 0.5N (x;−1, 0.4) + 0.5N (x; 1, 0.6), represented by black line in Figure316

1. To apply BVI, we first optimise the initial component by maximising the ELBO in317

equation 3, which is equivalent to a conventional variational problem. The dashed or-318

ange line in Figure 1 shows the first component after convergence. It is evident that this319

single Gaussian distribution fails to approximate the bimodal posterior distribution ac-320

curately, highlighting the limitations of ADVI, and variational methods in general when321

an inappropriate variational family that does not include the true posterior pdf is cho-322

sen.323

We then iteratively add more Gaussian components to the mixture model by max-324

imising the RELBO using equation 9. We compare the performance of the 3 different325

weight calculation methods in equations 10, 11 and 12. In each test, we boost the pos-326

terior distribution by adding 40 Gaussian components so as effectively to ensure full con-327

vergence of BVI. Although it looks redundant to use 40 Gaussian components to approx-328

imate a mixture of two Gaussian distributions, we generally do not know the true pos-329

terior distribution, so do not know when to stop the algorithm unless convergence is ob-330

served. The results using equations 10, 11 and 12 are shown by the dashed red, blue and331



Figure 1. BVI results obtained using 3 different weight calculation methods. Black line rep-

resents the target distribution, while the dashed orange line shows the result from conventional

variational inference without boosting, which uses a single Gaussian component (essentially the

ADVI method). Dashed red, blue, and green lines correspond to the results obtained using dif-

ferent weight calculation methods in equations 10, 11 and 12. The last two methods yield better

results but require additional computations.

green lines in Figure 1, respectively. All three methods provide a fair approximation to332

the true posterior distribution, with the first method performing the worst and the third333

method performing the best. However, the second and third methods require additional334

computations to estimate the gradient of the ELBO in equations 11 and 12, which in-335

volve evaluating the posterior distribution many times. This example demonstrates that336

even the simple fixed weight method significantly improves upon the initial variational337

solution (dashed orange line in Figure 1) without any additional computational complex-338

ity. Since we are interested in applying these methods to high-dimensional problems, min-339

imising computational complexity is paramount if we are to find meaningful solutions.340

In the subsequent inversion examples, we therefore employ the fixed weight calculation341

method, but highlight that in other circumstances practitioners might prefer a different342

choice.343

3.4 Probabilistic Interrogation using BVI344

In scientific investigations, the ultimate goal is usually to answer some specific, low-345

dimensional questions. In geophysics, such questions are typically answered by interpret-346

ing imaging or inversion results, but this often leads to biased answer because human347



interpretation is a subjective process and since usually only one single instance or statis-348

tic of a model is considered during interpretation. Interrogation theory (Arnold & Cur-349

tis, 2018) offers a systematic approach to answer high-level questions. It combines in-350

verse theory, decision theory, elicitation theory and experimental design theory to op-351

timise scientific investigations, with the overall goal to obtain the most informative an-352

swers to scientific inquiries. X. Zhao et al. (2022) and X. Zhang and Curtis (2022) ex-353

emplified the theory by answering a specific type of question: what is the size of a sub-354

surface body? For a more comprehensive understanding of interrogation theory and its355

implementation, we recommend readers to refer to the above three papers.356

In interrogation theory, a utility function U(a) is defined which quantifies the net

benefits associated with accepting any possible answer a. The optimal answer a∗ is found

by maximising this utility function within the space of possible answer: a∗ = arg max
a∈A

U(a).

To reduce the complexity of this maximisation problem, Arnold and Curtis (2018) in-

troduced a target space T such that the scientific question Q can be answered directly

within this space. They defined a target function T (m) that maps the high dimensional

model parameter m to a low dimensional target space parameter values t. A simplified

utility function can then be defined as U(a|t, Ed), where the utility function is conditioned

on the experimental design Ed to account for the cost of conducting the experiment. One

of the utility functions considered in Arnold and Curtis (2018) is a negative squared er-

ror function:

U(a|t, Ed) = U(a|t) = −(a− t)2 (14)

in which t is considered to represent the true state in the target space. The above util-

ity function is useful when value t represents exactly the answer that we seek, and the

utility is maximised when the estimated answer a is equal to the true state t. However,

in problems with uncertain solutions a single set of values that represent the true state

is never known, so it is necessary to find an optimal answer by maximising the utility

on average across possible true states. This formulation leads to an analytical expres-

sion for the optimal answer:

a∗ = E[T (m|f(m), C)|dobs, Ed]

=
∑

f(m),C

∫
m

T (m|f(m), C)p(m,f(m), C|dobs, Ed) dm

=

∫
m

T (m)p(m|dobs) dm

(15)



where f(m) is the forward function that relates the model space and data space and C357

represents any particular choice of mathematical or computational algorithms used to358

solve the forward, inverse, and design problems. X. Zhao et al. (2022) showed that re-359

lying solely on the results from one single algorithm can lead to biased interrogations.360

Therefore, they combined different such algorithms to mitigate bias in the optimal an-361

swer. In this work we simplify the analysis by considering a single forward function, a362

single choice of algorithms to find the solution, and a fixed experimental design. This363

simplification allows us to omit f(m), C and Ed in the subsequent derivation, but it is364

easy to extend our conclusions to the cases involving multiple forward functions, com-365

putational algorithms, and experimental designs if desired. The third line of Equation366

15 states that the optimal answer corresponds to the posterior expectation of the tar-367

get function, and different forms for this expression result from different choices of util-368

ity function in equation 14 (Arnold & Curtis, 2018).369

In previous works (X. Zhao et al., 2022; X. Zhang & Curtis, 2022), the target func-370

tion was assumed to be deterministic, meaning that the target value was uniquely de-371

termined given a model sample m. Consequently, uncertainty in the answer was attributed372

solely to uncertainty in the inversion process. In reality, the definition of the target func-373

tion often incorporates knowledge from a variety of experts, which introduces human bi-374

ases and uncertainties (O’Hagan et al., 2006; Polson & Curtis, 2010; Bond et al., 2012).375

In an interrogation example below, we show that biased judgments from different indi-376

viduals can lead to incorrect answers. To address the uncertainty in the final answer caused377

by the deterministic target function in order to mitigate bias, we use fully probabilis-378

tic target functions.379

Define a random variable τ to represent different states of possible target function

values, with an associated probability distribution function p(τ). This approach char-

acterizes the nondeterministic behaviour of the target function and addresses the inher-

ent uncertainty. The optimal answer, which calculates the posterior mean of the sum-

marized state τ , is given by

a∗ = E[τ |dobs] =

∫
m

∫
τ

τp(τ,m|dobs) dmdτ

=

∫
m

∫
τ

τp(τ |m,dobs)p(m|dobs) dmdτ

=

∫
m

∫
τ

τp(τ |m)dτp(m|dobs) dm

(16)



In the first line, we extend the deterministic target function from equation 15 to a prob-380

abilistic formulation using the law of total probability p(x) =
∫
y
p(x, y)dy. Following381

Siahkoohi et al. (2022), we assume that the target function value τ and the observed data382

dobs are conditional independent given the model parameter m, when using interroga-383

tion theory to solve a decision problem that maps specific information from the inver-384

sion results. This assumption leads to the third line in equation 16. The inner integral385

E[τ |m] :=
∫
τ
τp(τ |m)dτ captures uncertainty in the target function value which rep-386

resents the uncertainty in the interrogation process, while the outer integral accounts for387

uncertainty in the inversion process. Note that the above conditional independence as-388

sumption does not hold when solving a design problem using interrogation theory, as the389

optimal answer, which is the best design in this context, depends on the different datasets390

that would be observed given any considered design (Arnold & Curtis, 2018; Strutz &391

Curtis, 2023).392

To summarise, equation 16 can be viewed as a more general version of the origi-393

nal interrogation framework, achieved by considering a random variable τ with a prob-394

ability distribution function p(τ) which allows for the incorporation of uncertainty in the395

target function. When p(τ) is defined as a Dirac delta function, denoted by p(τ) = δ(τ=T )(τ),396

where T represents the deterministic target function in equation 15, equation 16 reduces397

to equation 15. Thus, equation 16 encompasses the original framework as a special case398

when the target function is deterministic.399

Monte Carlo integration can be used to evaluate equation 16. First, we draw ran-400

dom model samples from the posterior distribution p(m|dobs). Given each posterior sam-401

ple, we generate an ensemble of possible target function values from p(τ |m). By com-402

bining these target values, the posterior distribution of the answer a can be obtained,403

and the optimal answer a∗ to the question Q is the expectation of this distribution.404

In the previous sections we showed that BVI provides an analytic expression of the

posterior distribution. Directly incorporating this analytic result into equations above

using either the deterministic or probabilistic target function is unfortunately non-trivial

because the definition of the target function often contains some conceptual process which

is easier to evaluate using posterior samples and is difficult to formulate as an explicit

expression. In an interrogation example provided below, the calculation of the target func-

tion requires the largest continuous body within a velocity model to be found, which is



not straightforward to perform using the analytic posterior expression. To address this,

we propose an implicit approach. In the BVI framework the posterior distribution is ap-

proximated in the Real (unconstrained) space as a mixture of Gaussian distributions,

and significant information is captured by the mean vectors µi of the set of components.

We transform these mean vectors µi back to the constrained space using equation 13 af-

ter which the transformed vectors mi can be treated as a set of representative samples,

weighted by the coefficient wi corresponding to each Gaussian component in BVI. We

use these samples to partly represent the full posterior pdf, and the optimal answer in

equations 15 and 16 can be approximated as

a∗ =

∫
m

T (m)p(m|dobs) dm ≈
∑
i

wiT (mi) (17)

for the deterministic case, and

a∗ =

∫
m

∫
τ

τp(τ |m)dτp(m|dobs) dm

≈
∑
i

wi

∫
τ

τp(τ |mi)dτ =
∑
i

wiE[τ |mi]
(18)

for the probabilistic case. Since only tens of components are used in BVI to approximate405

the posterior distribution, the target function is calculated using the same number of sam-406

ples from BVI. This computational simplicity is particularly important when the target407

function itself is computationally expensive to evaluate, especially in the case of inter-408

rogation using probabilistic target function, and as we show below, equations 17 and 18409

can still enable accurate interrogation.410

4 Travel Time Tomography411

Seismic travel time tomography is a typical non-linear geophysical inverse prob-412

lem used to image the Earth’s interior. The underground seismic velocity structure is413

mapped using measured first-arrival travel times of waves travelling between source and414

receiver locations. In this section, we present two tomographic examples to demonstrate415

the performance of BVI.416

4.1 Synthetic Example417

The first example is a 2D synthetic test. Figure 2 shows the true velocity model,418

which consists of a circular low velocity anomaly of 1 km/s surrounded by a high veloc-419

ity background of 2 km/s. White triangles show the locations of 16 receivers, and assum-420



Figure 2. True velocity model of the 2D synthetic test. A low velocity circular anomaly with

velocity 1 km/s is embedded within a background velocity of 2 km/s. White triangles show lo-

cations of 16 receivers (and sources), and travel times between each pair of locations form the

observed data set in this example.

ing that each receiver can also be used as a virtual source using seismic interferometry421

(Campillo & Paul, 2003; Wapenaar, 2004; Curtis et al., 2006). 120 inter-receiver first-422

arrival travel times of waves that travel between each pair of receiver locations form the423

data set for this problem. For inversion we parametrise the model parameter m (the ve-424

locity vector) into 21 × 21 regular grid cells with a grid size of 0.5 km in both directions.425

We define a Uniform prior probability distribution bounded between 0.5 and 3.0 km/s426

for each grid cell. The likelihood function is assumed to be a diagonal Gaussian distri-427

bution with a data uncertainty σd = 0.05 s for all data points. We solve the forward428

problem to predict synthetic data using the fast marching method (FMM – Rawlinson429

& Sambridge, 2005).430

For BVI we use a diagonal Gaussian distribution for all component distribution,431

and the empirical formula in equation 10 to calculate weight coefficients. The first com-432

ponent is obtained by maximising the ELBO in equation 3 which is equivalent to mean433

field ADVI (Kucukelbir et al., 2017). In subsequent BVI iterations, we sequentially op-434

timise new components by maximising the RELBO in equation 9. We combine the ob-435

tained Gaussian components into a mixture distribution and transform it back to the436

constrained space using equation 13. The resulting distribution is used to approximate437

the true posterior distribution. For each component, we update the diagonal Gaussian438

distribution for 5000 iterations, and within each iteration 2 samples are used to approx-439

imate the RELBO (or ELBO for the first component) and its gradient using Monte Carlo440

integration. To test the convergence performance of BVI, we greedily add 10 components441



by which point the statistics of the posterior pdf show no substantial change with each442

iteration, as shown in Figure 3.443

Figures 3a and 3b show the mean and standard deviation maps of the posterior dis-444

tribution obtained using BVI with different Gaussian components. All of these maps are445

calculated analytically from BVI solution without drawing any posterior samples, using446

equation 13. Within the receiver array, the mean models effectively recover the circu-447

lar low velocity anomaly and are similar to the true velocity model shown in Figure 2,448

even with only 1 component, which corresponds to mean field ADVI as discussed pre-449

viously. However, as expected the uncertainty map obtained using one component sig-450

nificantly underestimates uncertainties. As we introduce more components, the poste-451

rior uncertainties increase. The mean and standard deviation maps essentially converge452

such that no significant changes are observed after adding 6 – 7 components. We observe453

two higher uncertainty loops in the uncertainty maps: inner one is located at the bound-454

ary of the low velocity anomaly and arises from variations in anomaly shapes and ve-455

locity values among the plausible models that fit the observed data, and the other loop456

corresponds to the lower average velocity loop between the receiver array and the cen-457

tral anomaly, potentially because the observed data exhibits lower sensitivity in this re-458

gion, as observed in previous studies (Galetti et al., 2015; X. Zhang & Curtis, 2020a; X. Zhao459

et al., 2021).460

Metropolis-Hastings Markov chain Monte Carlo (MH-McMC) was also run to es-461

timate the solution for comparison. We ran 12 chains in parallel, each drawing 1 mil-462

lion samples to ensure convergence. After sampling, we discard the first 500,000 sam-463

ples as the burn-in period, and retain every 50th sample from the remaining samples to464

approximate samples of the posterior distribution. This result serves as a reference so-465

lution for this tomographic problem. Figure 4 shows the mean and standard deviation466

maps obtained using MH-McMC. We find that the mean models obtained from BVI and467

MH-McMC show similar results, and the uncertainty maps from both methods exhibit468

similar loop-like higher uncertainty structures. However, the uncertainties from BVI are469

slightly lower than those from MH-MCMC, indicating that BVI still underestimates the470

true uncertainty to some extent. Nevertheless, since BVI yields results comparable to471

MH-MCMC (which is often assumed to provide the true solution), we conclude that BVI472

provides an approximately correct and, more importantly, fully analytic result. Further-473

more, it significantly improves upon the results obtained using mean field ADVI.474



Figure 3. (a) Mean and (b) standard deviation maps of the posterior distribution obtained

using BVI with different number of Gaussian components denoted in the title of each subfigure.

White triangles show the 16 receiver locations and black crosses denote three specific locations

whose marginal distributions are compared in Figure 5.

Figure 4. (a) Mean and (b) standard deviation maps obtained using MH-McMC. This result

serves as the reference solution for this Bayesian tomographic problem.



In Figures 5a – 5c, we compare the marginal distributions of three representative475

points at (0, 0) km, (1.8, 0) km and (3.0, 0) km. These locations are denoted by black476

crosses in Figures 3 and 4. The first point lies within the low velocity anomaly, the sec-477

ond point is at the edge of the anomaly where the inner higher uncertainty loop is ob-478

served, and the last point is in the outer higher uncertainty loop. In each figure, the grey479

histogram shows the marginal distribution obtained using MH-McMC for reference, and480

dashed yellow line shows the Uniform prior pdf. For BVI, we can calculate the analytic481

marginal pdfs for these three points without drawing any samples. Results using 1 BVI482

component (mean field ADVI), 4 components, 7 components, and 10 components are de-483

picted by blue, dashed green, dashed black, and red lines, respectively. It is evident that484

mean field ADVI underestimates the posterior uncertainties, particularly in Figures 5b485

and 5c. However, as we add more components to the mixture, the marginal pdfs become486

increasingly similar to those obtained from MH-McMC, especially for the third point in487

Figure 5c, where the red line perfectly matches the grey histogram. In Figure 5b the re-488

sults obtained using BVI and McMC are a little different. While we treat the result from489

McMC as a reference solution for this non-linear problem, we never know the true so-490

lution because it is likely that the Monte Carlo solution has not converged in a problem491

of this dimensionality. Therefore, it is difficult to conclude which one of these two results492

is better. Nevertheless, we still observe that each new component corrects some of the493

residual from the previous distributions in the ensemble, apparently boosting the accu-494

racy of the current variational distribution (hence the name, “boosting variational infer-495

ence").496

Figures 3 and 5 show that the results achieve a reasonable approximation to the497

true posterior distribution using only 7 components. Unfortunately, in real problems we498

do not have access to the true posterior distribution, and running a McMC test for high-499

dimensional problems is often infeasible. Consequently, it becomes challenging to decide500

when to stop adding more components. A viable approach is to monitor the convergence501

of the KL-divergence: after each BVI iteration, we estimate KL[qt(m)||p(m|dobs)] by draw-502

ing samples from the mixture distribution qt(m), and stop the BVI algorithm once KL[qt(m)||p(m|dobs)]503

ceases to decrease. However, accurately estimating the KL-divergence for high-dimensional504

problems is hindered by the curse of dimensionality. In this example, we therefore com-505

pared statistical properties that can be estimated more stably such as the mean, stan-506

dard deviation, and marginal pdf of the current mixture distribution with those obtained507



Figure 5. Marginal posterior distributions of velocity at three points located at (a) (0, 0)

km, (b) (1.8, 0) km and (c) (3.0, 0) km, marked by three black crosses in Figures 3 and 4. In

each figure, the grey histogram shows the marginal distribution obtained using MH-McMC, and

dashed yellow line shows the prior distribution. Blue, dashed green, dashed black, and red lines

show marginal distributions obtained using BVI with 1 component (corresponding to mean field

ADVI), 4, 7 and 10 components, respectively.

from previous iterations. If no significant changes are observed, we assume that BVI has508

converged and refrain from adding more components.509

4.2 Field Data Test510

In a more complicated field data example we applied BVI to Love wave tomogra-511

phy of the British Isles. The British Isles have been extensively studied and well under-512

stood using ambient noise tomography with different inversion methods, including lin-513

earised inversion (Nicolson et al., 2012, 2014), rj-McMC (Galetti et al., 2017) and vari-514

ational inference (X. Zhao et al., 2021, 2022). Therefore, this is a suitable real-data test515

case to evaluate the performance of the proposed method and analyse the results by com-516

parison. We use part of the dataset created by Galetti et al. (2017): ambient noise data517

recorded by 61 seismometers located around the British Isles, as indicated by red trian-518

gles in Figure 6. The data were collected during three periods: 2001–2003, 2006–2007,519

and in 2010. The two horizontal components of the data were cross-correlated to com-520

pute Love waves between pairs of receiver stations. Subsequently, the first arrival travel521

times of group velocity were estimated at different periods ranging from 4 s to 15 s. De-522

tailed information regarding the station network and data processing procedures can be523



Figure 6. The location of 61 seismometers (red triangles) around the British Isles. The re-

ceiver stations are also treated as virtual sources for ambient noise interferometry to estimate

inter-receiver first arrival travel times, which are used as the observed data in this test.

found in Galetti et al. (2017). For this test, we use the travel time measurements of Love524

waves at period of 10 s.525

We parametrise the target region in Figure 6 into 37 × 40 regular grid cells with526

a spacing of 0.33◦ in both longitude and latitude directions. For each grid cell, we de-527

fine a Uniform prior distribution ranging from 1.56 to 4.84 km/s: the average value of528

the Uniform distribution is obtained by measuring the average velocity across all valid529

ray paths by assuming a homogeneous medium, and the upper and lower bounds are cho-530

sen to exceed the range of velocities observed on the dispersion curves. The likelihood531

function is chosen to be a Gaussian distribution, and the travel time uncertainty for each532

inter-receiver path is estimated from the standard deviation of the estimated travel time533

of the corresponding station pair constructed by stacking randomly selected subsets of534

daily cross-correlations (Galetti et al., 2017).535

Given this problem’s higher dimensionality (1480) and non-linearity (due to higher536

noise and irregular data distribution) compared to the 2D synthetic test, BVI requires537

more components to converge to a reasonable approximation of the true posterior dis-538



tribution. However, the greedy algorithm described in previous sections is time-consuming539

and does not fully use the computational power of modern compute clusters. To address540

this we propose an efficient implementation of BVI by running multiple independent runs541

in parallel, similar to McMC methods that often run independent chains in parallel. In542

this implementation, we start each independent BVI run from the second component,543

as the first component (corresponding to ADVI) has been shown to provide a stable (though544

inaccurate) result (Kucukelbir et al., 2017; X. Zhang & Curtis, 2020a). Each indepen-545

dent BVI run is initialised randomly and optimised separately, and after optimisation,546

the mixture distributions obtained from all runs are averaged to obtain the final approx-547

imation to the posterior distribution. This parallelisation approach allows BVI to take548

advantage of parallel computing capabilities while still providing analytic results.549

We apply BVI and MH-McMC to this tomography problem for comparison. We550

run 4 independent BVI tests in parallel, and for each test, we sequentially add 5 com-551

ponents until the posterior distribution stops changing significantly. This results in a to-552

tal of 20 Gaussian distributions used to model the posterior distribution. Again, we use553

a diagonal Gaussian distribution as the mixture component. Each component is updated554

for 5000 iterations with 2 samples used at each iteration. The weight coefficients for the555

mixture components are calculated using equation 10. After optimisation, we average556

the distributions obtained from the 4 runs to obtain the final results. To obtain results557

using MH-McMC, we run 10 Markov chains in parallel. Each chain consists of 1.5 mil-558

lion samples, with the first 1 million samples discarded as burn-in. We discard a large559

number of samples in the hope that the remaining samples are reasonably well distributed560

according to the posterior distribution. After the burn-in period every 100th sample is561

retained to approximate an ensemble of posterior samples.562

Figures 7b and 7c show the average velocity (top row) and standard deviation (bot-563

tom row) maps of the Love wave tomography results obtained using BVI and MH-McMC.564

We also display the results obtained using mean field ADVI, which corresponds to the565

first component obtained from BVI, as shown in Figure 7a. The average velocity maps566

from the three methods exhibit similar features that are consistent with the known ge-567

ology of the British Isles. For example, we observe a high velocity anomaly in the Scot-568

tish Highlands (6◦W – 4◦W and 57◦N – 59◦N), reflecting the crystalline metamorphic569

origin of the rocks in that region. A low velocity structure is observed in the area be-570

tween 5◦W – 3◦W and 53◦N – 55◦N, which corresponds to the East Irish Sea sedimen-571



tary basins. Several low velocity anomalies are also observed around the Midland Plat-572

form in southern England (3◦W – 1◦E and 50◦N – 52◦N), corresponding to various sed-573

imentary basins such as the Cheshire Basin, the Anglian-London Basin, and the Wes-574

sex Basin.575

The uncertainty models obtained from BVI and MH-McMC present similar pat-576

terns. For instance, lower uncertainties are observed in regions with densely placed re-577

ceiver arrays such as across the Highlands and southern England. A higher uncertainty578

loop is observed around the East Irish Sea (4◦W and 54◦N) since a wide variety of dif-579

ferent anomaly shapes and velocity values fit the observed travel time data, which is con-580

sistent with the findings from previous studies (Galetti et al., 2017; X. Zhao et al., 2021).581

The results obtained from BVI and MH-McMC are similar to those from other vari-582

ational methods: normalising flows and Stein variational gradient descent (SVGD) in X. Zhao583

et al. (2021). However, there are some small differences in the structures observed in Fig-584

ures 7b and 7c compared to those obtained from rj-McMC in Galetti et al. (2017), which585

can be attributed to the different parametrisations used in that work (Voronoi cells ver-586

sus regular cells). In the rj-McMC study (Galetti et al., 2017), 16 chains and 3 million587

samples per chain were used to ensure convergence. In this test, 10 chains and 1.5 mil-588

lion samples were used for MH-McMC. The presence of some non-smooth structures in589

Figure 7c compared to the smooth structures in the synthetic test (Figure 4) suggests590

that the chains may not have fully converged even after 1.5 million samples, and that591

10 chains might not be sufficient to explore all possible parameter subspaces that fit the592

data. In X. Zhao et al. (2021), full rank ADVI was also applied to this problem. How-593

ever, both full rank ADVI in that work and mean filed ADVI here, exhibit strong biases594

in the uncertainty results, with lower uncertainty than the McMC results observed ev-595

erywhere inside the receiver array. In conclusion, since similar solutions have been ob-596

tained by multiple different methods, it can be assumed that BVI is capable of provid-597

ing a reasonable estimate of the posterior distribution with an analytic expression, while598

also improving performance compared to mean field ADVI.599

Table 1 compares the computational costs associated with several different meth-600

ods, measured in terms of the required number of forward evaluations, since forward sim-601

ulation is the most expensive part in each inversion. The computational costs of full rank602

ADVI, normalising flows and SVGD are obtained from X. Zhao et al. (2021), while the603



Figure 7. Mean (top row) and standard deviation (bottom row) maps of the Love wave to-

mography results of the British Isles using (a) mean field ADVI, (b) BVI, and (c) MH-McMC.

White triangles show the locations of the receivers used in this example.



cost of rj-McMC is obtained from Galetti et al. (2017). For BVI, four parallel tests with604

five components are run, each updated for 5000 iterations with two samples per itera-605

tion. However, since the first component (mean field ADVI) is very stable, it only needs606

to be trained once, resulting in a total of 170,000 forward evaluations for BVI and 10,000607

for mean field ADVI. MH-McMC consists of 10 chains with 1.5 million samples each, re-608

sulting in a total of 15 million samples. It should be noted that the comparison depends609

on subjectively detecting the convergence of each method and may not reflect the min-610

imum possible computational cost. X. Zhao et al. (2021) showed that the same MH-McMC611

with 2 million samples only provides a few of the main features in the mean velocity model612

and hardly provides any useful information in the standard deviation map. This removes613

the possibility that our subjective assessment of when the Monte Carlo method had con-614

verged led to the large number of samples attributed to the method above, and justi-615

fies that the number of samples used for MH-McMC is reasonable. It is also true that616

significantly more efficient Monte Carlo methods may exist for this problem. Neverthe-617

less, the significantly different numbers in Table 1 provide valuable insights into the amount618

of computation that we and other authors judged necessary to approach convergence for619

each method. Both mean field ADVI and full rank ADVI have the lowest computational620

costs, but they also provide biased results. Normalising flows are slightly more efficient621

than BVI, but they require a sophisticated design of flow structures and often rely on622

neural networks (Dinh et al., 2015, 2017; Kingma et al., 2016; Papamakarios et al., 2017;623

Durkan et al., 2019), which can be challenging or even impossible to train for high-dimensional624

problems such as full waveform inversion. BVI has a simpler structure, and each com-625

ponent is optimised sequentially, making it more attractive for large scale datasets with626

higher dimensionality in real applications. SVGD is the most expensive variational method,627

but it still offers a significant reduction in cost compared to these two Monte Carlo meth-628

ods. The huge numbers of samples used in the latter methods indicate a significant ef-629

ficiency improvement offered by variational inference for solving large scale and high di-630

mensional inverse problems.631

5 Full Waveform Inversion632

5.1 Bayesian FWI Implementation633

Seismic full waveform inversion (FWI) is a powerful technique to image subsurface634

structures using full waveform information in seismic data (Tarantola, 1984; Tromp et635



Table 1. Number of forward evaluations required for different methods to provide the Love

wave tomography results across the British Isles. The results for full rank ADVI, normalising

flows and SVGD are from X. Zhao et al. (2021), while the result for rj-McMC is from Galetti et

al. (2017).

Method Forward Evaluations

Mean field ADVI 10,000

Full rank ADVI 10,000

Normalizing Flows 100,000

BVI 170,000

SVGD 600,000

MH-McMC 15,000,000

RJ-McMC 48,000,000

al., 2005). It is a highly non-linear and non-unique problem. Traditional linearised in-636

version methods can not reliably offer accurate solutions or effectively estimate the un-637

certainties in the inversion results. As a result, it is important to employ fully non-linear638

inversion methods for FWI.639

FWI problems typically have high dimensionality, and the forward modelling step,640

in which synthetic seismic waveforms are computed for a given velocity model, is usu-641

ally expensive. To address these challenges, several efficient Monte Carlo methods have642

been applied to FWI (Qin et al., 2016; A. Ray et al., 2016; Visser et al., 2019; P. Guo643

et al., 2020; Gebraad et al., 2020; Z. Zhao & Sen, 2021; Biswas & Sen, 2022; de Lima et644

al., 2023). Alternatively, in recent years variational methods have also been introduced645

to address the computational challenges of Bayesian FWI (X. Zhang & Curtis, 2021a;646

Wang et al., 2023; X. Zhang et al., 2023; Lomas et al., 2023). However, none of these meth-647

ods provide an accurate and analytic approximation to the posterior probability distri-648

bution. In this section, we apply the BVI method to Bayesian FWI, to test its ability649

to provide analytic results efficiently.650

We demonstrate the preceding BVI algorithm using a 2D acoustic FWI example.651

The true velocity model is a truncated Marmousi model (Martin et al., 2006), as shown652

in Figure 8a. The density is assumed to be constant. The velocity field is discretized us-653



ing 110 × 250 square grid cells with side length 20 m. Twelve sources are placed along654

the surface at 400 m intervals (shown by red stars in Figure 8a), and 250 receivers are655

placed along the seabed at a depth of 200 m (white line in Figure 8a). The observed wave-656

form data are obtained by solving the 2D acoustic wave equation using the finite differ-657

ence method, and the total simulation time is 4 s with a sample interval of 2 ms. The658

source is a Ricker wavelet with a dominant frequency of 5 Hz. Figure 8c shows this wave-659

form dataset.660

For inversion, we use a Uniform prior distribution for the velocity model at each661

depth, with lower and upper bounds shown in Figure 8b. Velocity in the water layer is662

fixed at the true value during inversion. Therefore, there are 25,000 free parameters to663

be inverted, corresponding to the subsurface velocity model. We use the finite difference664

method to solve the forward function, and the adjoint-state method to calculate the data-665

model gradient (Fichtner et al., 2006; Plessix, 2006). The likelihood function is chosen666

to be a diagonal Gaussian function with a constant data error of 0.05 for each data point.667

In this test, we compare BVI with 3 different variational methods: mean field ADVI,668

Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD). Stochastic669

SVGD is an extension of SVGD that incorporates a noise term to enhance the efficiency670

and accuracy of SVGD for large-scale inference problems (Gallego & Insua, 2018). It ef-671

fectively converts the variational SVGD method to a Markov chain, showing that the di-672

vide between these methodological approaches can be bridged. SSVGD has recently been673

applied to a 3D FWI problem (X. Zhang et al., 2023). For mean field ADVI we use a674

diagonal Gaussian distribution to model the posterior distribution in the unconstrained675

space (Kucukelbir et al., 2017). A total of 50,000 hyper-parameters (means and variances676

in each cell) are updated for 10,000 iterations, and 5 samples per iteration are used. For677

SVGD, we randomly select 600 samples from the prior distribution and update them for678

600 iterations. Once convergence is achieved, these samples are used to approximate statis-679

tics of the posterior distribution. For sSVGD, the algorithm starts with 24 random sam-680

ples drawn from the prior distribution. These samples are then updated for 10,000 it-681

erations, with the first 5,000 iterations discarded as the burn-in period. In this algorithm682

every sample value evaluated can be retained post burn-in, so all remaining samples are683

used to approximate the posterior distribution. For BVI, four parallel runs are performed,684

and each run contains six diagonal Gaussian distributions. This results in a total of 24685



Figure 8. (a) The true Marmousi P wave velocity model with source locations indicated by

red stars and receiver line marked by white line. Three dashed black lines display the locations

of three well logs discussed in the main text. (b) Upper and lower bounds for the Uniform prior

probability distribution for P wave velocity at each depth. (c) Twelve common shot gathers used

as the observed data in this test.



Gaussian components used to approximate the posterior distribution. Each component686

is updated for 5,000 iterations, and two samples per iteration are used.687

Figures 9a – 9d display the inversion results obtained using the aforementioned meth-688

ods. The first two rows show the mean and standard deviation maps of the posterior dis-689

tribution, while the third row displays the relative error, which is calculated by divid-690

ing the absolute error between the true and mean models by the standard deviation model.691

The mean velocity models from the 4 methods exhibit a similar pattern and generally692

resemble the true model. For example, within the white box in Figure 8a, we observe693

a low velocity structure in the true and mean velocity models. However, all four mean694

velocity maps fail to capture some of the fine-scale structures present in the true model.695

This can be attributed to the low dominant frequency used in this test (5 Hz). Among696

the four methods, the mean velocities obtained using mean field ADVI and SVGD ap-697

pear smoother compared to those obtained using BVI and sSVGD. This observation is698

consistent with the results obtained in the previous example of 2D synthetic travel time699

tomography, where the posterior distribution obtained using MH-McMC (Figure 4) is700

smoother than that obtained using BVI (Figure 3). In the case of BVI, since we use a701

diagonal Gaussian distribution as the component distribution, each model parameter is702

updated independently. Every new component is initialised randomly to enhance the cur-703

rent posterior pdf by boosting it on either the lower or higher velocity end, and is op-704

timised to approximate the posterior distribution within a local region in the parame-705

ter space, introducing a degree of variation between iterations. Hence, the results ob-706

tained from BVI exhibit less smoothness, despite the fact that results obtained from its707

first component (ADVI) are smooth. As for sSVGD, the introduction of a noise term dur-708

ing each iteration perturbs the samples, leading to increased randomness (X. Zhang et709

al., 2023). The result may therefore become smoother as a larger number of samples and710

iterations are used.711

The standard deviation obtained using mean field ADVI significantly differs from712

the other three results and tends to be underestimated. Moreover, a majority of the rel-713

ative errors are larger than 3, indicating inaccuracy of the results. However, the uncer-714

tainty map still exhibits similar geometrical structures compared to the mean and true715

velocity models. Therefore, we consider ADVI to be an efficient method that provides716

a fairly accurate mean model but biased uncertainties due to its restrictive theoretical717

assumptions (X. Zhang & Curtis, 2020a; X. Zhao et al., 2021). Similarly to the mean718



Figure 9. Mean (top row), standard deviation (middle row) and relative error (bottom row)

of the posterior distribution for the 2D acoustic FWI test obtained using (a) mean field ADVI,

(b) BVI, (c) SVGD and (d) sSVGD. The relative error is the absolute error between the mean

and true models divided by the corresponding standard deviation.

velocities, SVGD yields a smoother standard deviation map compared to BVI and sSVGD.719

In other aspects, the results obtained using these three methods are similar, with errors720

distributed around two standard deviations. For example, we observe lower uncertain-721

ties and higher relative errors at locations with higher velocity anomalies (such as the722

higher velocity layer at a depth of 1.3 km depth and a distance between 0 – 2 km). Ad-723

ditionally, higher uncertainties are observed at layer boundaries, which is consistent with724

our observations in the two travel time tomography examples and correspond to uncer-725

tainty loops in previous studies (Galetti et al., 2015), especially in the shallower subsur-726

face where data exhibits higher sensitivity. However, the uncertainty values obtained us-727

ing BVI are slightly smaller compared to the other two methods. We attribute this to728

two main factors. First, the use of a diagonal Gaussian distribution in BVI tends to un-729

derestimate the uncertainty information compared to a Gaussian distribution with a full730

covariance matrix (Kucukelbir et al., 2017). This underestimation of posterior uncertain-731

ties is also evident in Figures 3 and 4. On the other hand, SVGD and sSVGD employ732

a repulsive force between different samples (Liu & Wang, 2016; Gallego & Insua, 2018):733

this pushes samples away from each other such that they can explore different param-734

eter subspaces (while still approximating the posterior pdf with sample density). In cases735

where samples are sparsely distributed within the parameter space, as is the case in this736

test with 600 samples for SVGD and 24 samples for sSVGD, the repulsive force might737

push samples towards the corners of parameter hyperspace to maximise the objective738



function. This leads to the results in Figures 9c and 9d with higher uncertainties. A sim-739

ilar phenomenon was observed in Love wave tomography using SVGD (X. Zhao et al.,740

2021). Given the absence of a true solution to this Bayesian FWI problem, it is challeng-741

ing to determine which method provides a more accurate result. Nevertheless, obtain-742

ing similar results using three methods based on two different theoretical frameworks lends743

credibility to these findings.744

For better comparison, Figures 10a – 10d display the marginal pdfs obtained us-745

ing ADVI, BVI, SVGD and sSVGD, respectively, along three vertical profiles marked by746

dashed black lines in Figure 8a. Each row shows the marginal distributions along one747

profile using the four methods. Red lines show the true velocity profiles and black lines748

show the mean velocity profiles obtained using each method. Similarly to the mean and749

standard deviation maps in Figure 9, ADVI provides accurate mean velocity profiles but750

underestimates posterior uncertainties, as evidenced by the narrower marginal pdfs com-751

pared to the other three methods. As discussed in the Methodology section, BVI boosts752

the results obtained from ADVI by using multiple Gaussian components to approximate753

the posterior distribution. This effect can be observed when comparing Figures 10a and754

10b: BVI explores the parameter space that was not adequately represented by ADVI,755

resulting in wider (and potentially more accurate) marginal distributions. This is par-756

ticularly noticeable at a depth of 1.2 km within the two white rectangular boxes in the757

second row in Figures 10a and 10b, where the true velocity value exceeds the prior up-758

per bound (deliberately, to check performance in anomalous cases in which prior distri-759

butions are mis-specified). The posterior pdf obtained using BVI is concentrated closer760

to the upper bound of the prior distribution compared to ADVI. The marginal pdfs ob-761

tained using BVI and sSVGD are highly similar and slightly different from those obtained762

using SVGD. The results from SVGD are sparser (due to limited number of samples) and763

smoother. In the shallower part of the second row of Figure 10c (indicated by red ar-764

row), the higher probability region of the posterior pdf from SVGD is located close to765

the prior bound and deviates from the true value. This might be caused by either the766

limited number of samples or the relatively large step size used in SVGD, which pushes767

samples towards the boundary of the parameter space by the repulsive force. At a depth768

of 1.7 km in the third row of Figure 10c (indicated by white arrow), the mean velocity769

value deviates from the true value since SVGD fails to provide a sufficiently high reso-770

lution result to recover this high velocity anomaly compared to BVI and sSVGD. Ad-771



ditionally, as indicated by three dashed white boxes in the second row, the posterior dis-772

tributions from SVGD and sSVGD cover a larger parameter space than that from BVI,773

especially around the high velocity region. Consequently, we observe higher standard de-774

viation values in Figures 9c and 9d compared to Figure 9b. However, in this region, the775

mean velocity model obtained using BVI is more similar to the true model, which might776

indicate higher accuracy compared to both SVGD and sSVGD. This demonstrates that777

higher uncertainties provided by SVGD and sSVGD might be less convincing due to ef-778

fects of the the repulsive force, as previously discussed and observed in X. Zhao et al.779

(2021).780

Finally, we compare the computational cost of the four methods in Table 2. In FWI,781

the forward simulation and data-model gradient calculation are much more expensive782

compared to those in travel time tomography. Therefore, the number of gradient eval-783

uations provides a fair comparison. For mean field ADVI the model is updated for 10,000784

iterations using 5 samples per iteration, resulting in 50,000 evaluations. In the case of785

BVI, we run 4 parallel tests, each containing 6 Gaussian components. However, we do786

not need to optimise the first component 4 times, thus a total of 21 Gaussian distribu-787

tions are used. For each component, we use 5000 iterations and 2 samples per iteration.788

Therefore, BVI requires 210,000 gradient simulations. It is worth noting that the num-789

ber of simulations used to optimise each component for BVI is smaller than that for ADVI,790

even though they have the same hyper-parameters (mean and standard deviation for a791

diagonal Gaussian distribution). This is because in BVI we do not require full conver-792

gence of each component. As long as new components fill some of the gap (residual) be-793

tween the current mixture distribution and the true posterior distribution, this improves794

the current result. By adding more components, BVI gradually improves the posterior795

approximation. For sSVGD and SVGD, they require 240,000 and 360,000 gradient eval-796

uations, respectively. Overall, ADVI is the cheapest method, but it produces biased re-797

sults. BVI requires more computations to improve the biased results from ADVI, and798

is slightly more efficient than sSVGD. More importantly, BVI provides an analytic so-799

lution to the posterior distribution, while sSVGD only provides posterior samples. SVGD800

is the most expensive method, and it only provides 600 samples, which is far from suf-801

ficient to approximate such a high dimensional (25,000) space in this test.802



Figure 10. Marginal posterior distributions along vertical profiles at three locations (rep-

resented by black dashed lines in Figure 8a) obtained using (a) mean field ADVI, (b) BVI, (c)

SVGD and (d) sSVGD, respectively. Each row displays the marginal distribution along one pro-

file. In each figure, two white lines show the prior bounds at each depth, the black line shows the

mean velocity model, and the red line shows the true velocity model.



Table 2. Number of forward and gradient evaluations for mean field ADVI, BVI, SVGD and

sSVGD applied to the 2D FWI test. The values represent an indication of the computational cost

of each method, as the evaluation of data-model gradients is the most computationally expensive

part of this test.

Method Number of Gradient Evaluations

ADVI 50,000

BVI 210,000

SVGD 360,000

sSVGD 240,000

5.2 Interrogating FWI Results803

We demonstrate the interrogation theory in section 2.4 by using the FWI results804

to answer a specific question: what is the size of the low velocity volume within the white805

box in Figure 8a? Such inquiries are common in the geoscience community and are used,806

for example, to estimate the volume of a sedimentary basin or the size of a reservoir for807

oil and gas exploration and for CO2 storage (Fletcher & Ponnambalam, 1996; Burshtein,808

2006; Romdhane & Querendez, 2014; X. Zhao et al., 2022; X. Zhang & Curtis, 2022).809

We therefore refer to the low velocity volume as a reservoir hereafter. Figures 11a and810

11b show the posterior mean and standard deviation maps inside the white box, obtained811

using BVI.812

Previously, volume-related questions were answered using interrogation theory with813

a deterministic target function in X. Zhao et al. (2022) and X. Zhang and Curtis (2022).814

Here we provide a brief overview of the procedure. We first introduce a mask to restrict815

the region used to calculate the low velocity anomalies, as illustrated by the dashed black816

box in Figures 11a and 11b. Other low velocity bodies outside of this mask are assumed817

to be unrelated to the anomaly of interest and are ignored during the interrogation pro-818

cess. Considering a reservoir should be a continuous geological body in space, we define819

the target function to be the area of the largest continuous low velocity body inside the820

mask. To evaluate this function, we need to distinguish between low velocity and high821

velocity cells, which can be accomplished by introducing a threshold value: cells with822



velocity values below the threshold are classified as low velocity, others are classified as823

not low velocity.824

We use the same data-driven method as X. Zhao et al. (2022) to calculate the thresh-825

old value with minimal bias. First, we select a set of points from the inversion results826

that are most likely to belong to the low velocity reservoir since they have low mean ve-827

locity values and low standard deviation values (indicated by white stars in Figures 11a828

and 11b), and another set of points likely to be outside of the reservoir (represented by829

black crosses in Figures 11a and 11b). Then we calculate the average marginal cumu-830

lative density function (cdf) of the low velocity white stars accumulating as velocity in-831

creases, and of the high velocity black crosses accumulating as velocity decreases. The832

intersection point of these cdfs is the threshold value that discriminates low from high833

velocities with minimal bias according to the prior information provided by the locations834

of white stars and black crosses. The corresponding threshold value is illustrated by the835

blue line in Figure 11c. Given this value we can classify each cell as either a low or high836

velocity cell, find the largest continuous low velocity body inside the mask, and calcu-837

late its size which is the target function value. Figure 12d shows the posterior distribu-838

tion of the target function (reservoir size) obtained using this threshold value. Accord-839

ing to equation 15, the optimal answer is the mean of the target function values from840

all posterior samples, and is denoted by dashed black line in Figure 12d. For compar-841

ison, the true size is denoted by red line in Figure 12d.842

The above method calculates the threshold value and the target function determin-843

istically. As stated in section 2.4, this does not consider the uncertainty introduced by844

human bias, which may result in different sets of low and high velocity cells being se-845

lected by different experts, thus different threshold values and different target functions,846

potentially biasing reservoir size estimates. We therefore also apply interrogation with847

a probabilistic target function, which is defined by a probabilistic threshold value in this848

example. We implement this by randomly selecting a subset of the grid cells from each849

of the low and high velocity cells in Figures 11a and 11b. This random selection simu-850

lates possible variation in the selection by different experts. We also consider other cells851

situated on the boundaries of the low velocity body, as indicated by red dots in Figures852

11a and 11b which in fact contain valuable information about reservoir shape and ve-853

locity values (Galetti et al., 2015), and incorporate the information provided by these854

cells to calculate the probabilistic threshold value. To do that, we randomly select a sub-855



Figure 11. (a) Mean and (b) standard deviation maps of the posterior distribution obtained

using BVI within the white box in Figure 8a. Black dashed box shows the mask inside which we

calculate the area of the largest continuous low velocity body, which serves as the target function.

White stars and black crosses denote cells that are most likely to be inside and outside the reser-

voir, respectively. Red dots denote cells predominantly located on the reservoir boundaries, where

uncertainty remains regarding their classification as low or high velocities. (c) Threshold values

to discriminate low and high velocities. Green histogram shows the probabilistic threshold value

established in the main text. Blue line shows the deterministic threshold value obtained using

the white stars and black crosses only, and purple line shows the maximum probability threshold

value from the green histogram.

set of cells marked by those red dots, and assign cells that are directly connected to the856

cells marked by the white stars as low velocity cells (inside the reservoir) and the remain-857

ing cells as high velocity cells (outside the reservoir). This can be interpreted as a mis-858

classification of low and high velocity cells at the boundaries of the reservoir, again sim-859

ulating possible human bias and subjective choice. We use these randomly selected cells860

to calculate the threshold value. The above procedure is repeated 1000 times, resulting861

in a probability distribution over the threshold value represented by the green histogram862

in Figure 11c.863

We perform interrogation using the green histogram in Figure 11c as the stochas-864

tic threshold value, which then defines the probabilistic target function. For each pos-865

terior model sample (velocity model obtained from BVI), we draw 100 random thresh-866

old values from the green histogram and calculate the size of the largest continuous low867

velocity body corresponding to each threshold value. The resulting distribution of 100868

reservoir sizes values incorporates the uncertainty in the target function, so we repeat869

this process for each posterior model sample. Figure 12a shows the distribution of the870

target function values, and the optimal answer calculated using equation 16 is denoted871



Figure 12. Posterior distributions of the target function by interrogation with probabilistic

target function obtained using (a) full BVI inversion results, (b) 24 representative samples from

BVI components, and (c) 40 random samples from full BVI inversion results. Panels (d) and (e)

show the posterior target functions obtained using deterministic target functions whose thresh-

old values are represented by the blue and purple lines in Figure 11c. In each figure, the red

line denotes the true answer to this question, and black dashed line denotes the optimal answer

obtained using interrogation theory.

by the dashed black line. This represents the interrogation results (with the probabilis-872

tic target function) obtained using the full posterior distribution from BVI. We also con-873

struct a solution using only the representative samples obtained from BVI components874

to perform interrogation, and the posterior target function is displayed in Figure 12b.875

The optimal answer is calculated using equation 18 (black dashed line in Figure 12b).876

Since we only use the mean vectors of the Gaussian components to obtain those repre-877

sentative samples, without considering the corresponding covariance matrices, the un-878

certainty of the posterior target function might be underestimated. Nevertheless, this879

still provides an accurate optimal answer while significantly reducing the number of tar-880

get function evaluations. Additionally, we randomly choose 40 posterior samples from881

the full BVI inversion result and conduct probabilistic interrogation on these: the result-882

ing posterior histogram is displayed in Figure 12c. In comparison to Figure 12b, the op-883

timal answer obtained from this set of 40 samples is notably inaccurate, whereas of the884

order of ten representative samples from BVI provide almost equal interrogation results885

to the full posterior solution. This proves the value of these representative samples.886

To simulate the bias that may be introduced by using a deterministic target func-887

tion for example one defined by a single expert, we choose the maximum probability value888

from the green histogram in Figure 11c as the threshold value (denoted by purple line889

in Figure 11c). This value falls within the high probability region and can be treated as890

a reasonable threshold value obtained from one expert. We perform interrogation using891



this single threshold value, and the result is displayed in Figure 12e. The optimal an-892

swer (black dashed line) shows a larger error and deviates more from the true answer893

than any estimate other than that from 40 random samples of the model posterior dis-894

tribution in Figure 12c.895

Overall, the comparison of the five histograms in Figure 11 reveals that interroga-896

tion using deterministic target functions may yield biased results due to the subjective897

nature of human interpretation. This bias can be mitigated by using probabilistic tar-898

get functions. Note that the optimal answer using the deterministic target function in899

Figure 12d also provides an accurate result, and the posterior target function is similar900

to that in Figure 12a. However, we usually do not know the true answer to our question901

in real problems, and therefore have no means to prioritise the answer from one inter-902

pretation over any other. Probabilistic interrogation considers the subjectivity from dif-903

ferent experts, and provides a more convincing answer. The optimal answer obtained us-904

ing representative samples from BVI components is accurate, which proves that these905

samples capture a key portion of the uncertainty information in the inversion results. In906

contrast, randomly selected posterior samples fail to adequately represent this uncertainty.907

Therefore, subsequent uncertainty analysis tasks, especially those that are computation-908

ally intractable to perform for thousands of posterior samples (e.g., reservoir simulation),909

could be more efficiently carried out using the representative samples obtained from BVI.910

6 Discussion911

In BVI, the variational distribution is built by a mixture of simpler component dis-912

tributions that are added sequentially using a greedy algorithm. This differs from tra-913

ditional approaches that jointly optimise weight coefficients and component distributions914

in a mixture model. Such approaches are generally non-convex and challenging to im-915

plement (Bishop, 2006; F. Guo et al., 2016). Additionally, deciding in advance the num-916

ber of components to construct the mixture distribution is difficult. In our work, we use917

an arbitrary number of Gaussian distributions as mixture components, adding compo-918

nents until little further benefit is obtained, and the resulting approximation to the pos-919

terior distribution can be represented analytically by equation 13.920

Our synthetic travel time tomography examples illustrate how BVI progressively921

enhances the accuracy of the posterior approximation, and provide a reliable criterion922



for assessing the algorithm’s convergence. The application to a field dataset to perform923

Love wave tomography of the British Isles provides convincing results that are consis-924

tent with known geology and previous studies (Nicolson et al., 2012, 2014; Galetti et al.,925

2017; X. Zhao et al., 2021). Having established the method’s credibility, we apply BVI926

and three other methods to an FWI problem, namely mean field ADVI, SVGD and stochas-927

tic SVGD (sSVGD). ADVI strongly underestimates the uncertainties, whereas the other928

three methods independently offer similar, thus hopefully approximately correct results.929

As stated by the No Free Lunch theorem (Wolpert & Macready, 1997), no method930

is better than any other method when averaged across all problems, so there is no pos-931

sibility to find a ’best’ method in general. However, for a particular class of problems932

it is possible to find better or worse suited algorithms from different points of view. In933

all of our examples, ADVI yields biased uncertainty results, but provides an accurate mean934

velocity map and is the most computationally efficient method. The first component of935

BVI can be regarded as equivalent to ADVI, and so establishes an estimate of the mean.936

BVI then introduces additional components to better approximate uncertainty in the true937

posterior distribution, trading off with a higher computational cost.938

Table 2 shows that BVI and sSVGD have similar computational costs. However,

sSVGD provides higher uncertainties compared to BVI, as shown in Figures 9a and 9d.

It is difficult to determine which method is more accurate since they employ fundamen-

tally different approaches to explore the parameter space and to avoid degenerating into

a single point mass at the maximum a posteriori (MAP) model. Specifically, sSVGD and

SVGD employ a repulsive force in their objective functions to push samples away from

each other (Liu & Wang, 2016; Gallego & Insua, 2018). BVI (as well as some other vari-

ational methods such as normalising flows and ADVI) maximises ELBO explicitly in its

objective function

ELBO[q(m)] = Eq(m)[log p(dobs|m)]−KL[q(m)||p(m)] (19)

Therefore, maximising the ELBO involves maximising the expectation of the log-likelihood939

and minimising the KL divergence between the variational distribution q(m) and the prior940

distribution p(m). The latter encourages q(m) to explore the full prior space, rather than941

being restricted to the vicinity of the MAP. Consequently, it increases the complexity942

of the results (Blei et al., 2017; Wang et al., 2023). Additionally, using a sampling-based943

method such as sSVGD makes it is easier to calculate higher-order statistical informa-944



tion such as correlations between different parameters (X. Zhang et al., 2023), whereas945

BVI, using diagonal Gaussian components as in this paper, struggles to capture such in-946

formation. One possible improvement is to use Gaussian components with a full covari-947

ance matrix, but this can be computationally cumbersome for high-dimensional prob-948

lems such as FWI, as it requires D(D+1)/2 hyper-parameters for a D-dimensional co-949

variance matrix. Considering that only a few pairs of variables may exhibit significant950

posterior correlations (e.g., neighbouring cells), a feasible approach is to approximate the951

full covariance matrix using a low-rank plus diagonal approach (Miller et al., 2017). Re-952

gardless, BVI is parametric which allows as many samples as needed to be generated post953

optimisation, whereas this is difficult for sampling based methods (SVGD and sSVGD).954

More importantly, BVI provides an analytic representation of the posterior pdf, and all955

inversion results presented in this paper are obtained using analytic calculations with-956

out drawing any samples (except for the probabilistic interrogation example). On the957

other hand, SVGD is the most expensive method, and it provides only a limited num-958

ber (hundreds) of samples which may not be sufficient to represent key properties of the959

posterior distribution.960

Normalising flows are another variational method which can effectively model pos-961

terior correlations between different parameters (Dinh et al., 2015, 2017; Kingma et al.,962

2016; Papamakarios et al., 2017). The trend in the field of normalising flows is to develop963

deeper and more complex flows to achieve greater flexibility. It has been demonstrated964

that normalising flows outperform ADVI (X. Zhao et al., 2021), making them a promis-965

ing choice for improving BVI. By using probability distributions modelled by normal-966

izing flows as the component distributions in BVI, we might capture posterior correla-967

tions and create a wider, rather than strictly deeper, model that enhances the capabil-968

ities of existing normalising flows while reducing the complexity for designing flows struc-969

tures, albeit at the expense of greedy optimisation (Giaquinto & Banerjee, 2020).970

Gaussian processes (GP) is another class of methods that use Gaussian distribu-971

tions to approximate the probability distribution of model parameters. GP is a form of972

stochastic process, and can be regarded as a way to define a Gaussian distribution over973

functions (for example, to define Gaussian distributions for velocity values at every sub-974

surface location). It is commonly used as a non-parametric regression method that pre-975

dicts model parameters and the corresponding uncertainties within a continuous region.976

A. Ray and Myer (2019), A. Ray (2021) and Blatter et al. (2021) used GP together with977



a trans-dimensional McMC sampling scheme to perform inversion. In those works GP978

was used as a regression method to build a finely discretized or even spatially continu-979

ous (infinite-dimensional) model vector m, which can be viewed as a random sample from980

an infinite-dimensional multivariate Gaussian distribution, given parameter values at some981

known locations. The obtained model was used to calculate the synthetic data to fur-982

ther update the GP. Valentine and Sambridge (2020a, 2020b) used GP to solve linear983

(or weakly non-linear) inverse problems. The inversion result can be expressed as a GP984

which represents the posterior distribution in function space. Due to the nature of GP,985

these works assume a Gaussian prior distribution for the model parameter at each lo-986

cation and a linear forward function (as in Valentine & Sambridge, 2020a). Such assump-987

tions are not necessary for BVI as described in this paper.988

Making use of the analyticity of BVI results can be challenging, but we have de-989

veloped an implicit approach to address this issue. Our approach involves selecting one990

representative sample from each BVI component: leveraging the fact that a paramet-991

ric and symmetric Gaussian distribution is used as the component distribution. We sim-992

ply adopt the mean vector as a representative sample, allowing us to obtain tens of sam-993

ples directly that partially represent the posterior distribution for uncertainty analysis.994

Considering that we also obtain a diagonal covariance matrix for each component, it is995

easily possible to incorporate the information from the covariance matrix into these rep-996

resentative samples (for example, by selecting a number of component samples that is997

proportional to the weight of that component and combining all such samples). This would998

capture more detail from the posterior distribution and improve the effectiveness of un-999

certainty analysis.1000

In our interrogation example, we show that the optimal answer obtained using the1001

representative samples is accurate and comparable to that obtained using full inversion1002

results. This is particular attractive when implementing probabilistic interrogation as1003

proposed in this paper, or when the evaluation of the target function is computation-1004

ally expensive. For example, if our goal is to estimate CO2 saturation of a reservoir us-1005

ing FWI results, the target function might involve reservoir simulation or (non-linear)1006

rock physics inversion to convert seismic velocity values into CO2 saturation. Calculat-1007

ing the target function for thousands of posterior samples could then be prohibitively1008

expensive. In such cases, we can simply use the representative samples obtained from1009

BVI components for analysis. Moreover, storing a large set of posterior samples on disk1010



and loading them into memory can be extremely demanding, especially for 3D FWI prob-1011

lems (X. Zhang et al., 2023; Lomas et al., 2023), to which the use of representative sam-1012

ples from BVI components provides a practical solution. Finally, it is important to note1013

that obtaining these representative samples would be challenging without the analytic1014

expression of the posterior distribution provided by BVI, which provides these samples1015

directly.1016

7 Conclusion1017

We have presented boosting variational inference (BVI) as a powerful variational1018

method for solving fully non-linear Bayesian geophysical inverse problems. BVI constructs1019

a flexible approximating family using a mixture of simple component distributions, with1020

the Gaussian distribution chosen specifically for its ease of optimising and its paramet-1021

ric nature. The components are optimised sequentially using a greedy algorithm, pro-1022

gressively improving the accuracy of the posterior approximation as more components1023

are added. We have demonstrated the effectiveness of BVI through applications to seis-1024

mic travel time tomography and full waveform inversion (FWI). By comparing the re-1025

sults obtained using BVI with other variational and Monte Carlo sampling methods, we1026

conclude that BVI is capable of providing efficient and accurate inversion results. One1027

key advantage of BVI is its ability to provide an analytic expression for the posterior prob-1028

ability distribution function, which provides a low number of representative samples that1029

partially represent the posterior uncertainty. We have introduced a probabilistic frame-1030

work that uses these samples to solve an interrogation problem - answering a specific sci-1031

entific question by interrogating the probabilistic inverse problem solution. The result1032

demonstrates that the representative samples yield similar accuracy compared to that1033

obtained using the full posterior distribution. This approach reduces the computation1034

for subsequent uncertainty analysis, making it promising for large scale problems.1035

8 Open Research1036

Both synthetic and field data, and software used in this study are available at Ed-1037

inburgh DataShare (https://datashare.ed.ac.uk/handle/10283/8528, X. Zhao &1038

Galetti, 2023). Software used for the variational methods as well as the 2D McMC can1039

be found at PyMC3 website (https://docs.pymc.io/en/v3/, Salvatier et al., 2016).1040



Software used to perform Automatic Differentiation can be found at PyTorch website1041

(https://pytorch.org/, Paszke et al., 2019).1042
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Appendix A Derivation and calculation for ∇ELBO1391

In this Appendix, we derive the gradient of ELBO[qt(m)] with respect to the weight1392

coefficient wt in equation 11 and the numerical method used for its calculation.1393



Substitute equation 5 into 3, and this gradient term can be written as

∇wtELBO[qt(m)] = ∇wtEqt(m)[log p(m,dobs)− log qt(m)]

= ∇qtEqt(m)[log p(m,dobs)− log qt(m)]∇wt

(
(1− wt)qt−1(m) + wtgt(m)

)
=

∫
(log p(m,dobs)− log qt(m))(gt(m)− qt−1(m))dm

= Egt(m)[log
p(m,dobs)

qt(m)
]− Eqt−1(m)[log

p(m,dobs)

qt(m)
]

(A1)

which can be estimated using Monte Carlo integration by drawing samples from gt(m)1394

and qt−1(m). Then we iteratively update wt using stochastic gradient descent (equation1395

11).1396


