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• The Coso geothermal field has a high b-value that does not correlate with the seismicity 14 

rate and production data, indicating a low stress level. 15 
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Abstract 17 

 Long-term seismicity is an effective tool to infer fault properties at depth, but the catalog 18 

construction is challenging because of the large data volume. We propose a new deep learning-19 

based workflow that follows a “Train-Detect-Pick” procedure, which solves the generalization 20 

problem in AI pickers. We apply the new workflow on the preseismic phase (2008-2019) of 21 

Ridgecrest-Coso region. Results show that the new workflow realizes efficient and stable detection, 22 

and well substitutes matched filter. Our new catalog helps characterize the preseismic fault 23 

behavior: (1) the Ridgecrest area has a distributed deformation, and the 2019-ruptured segment 24 

has a persistent asperity; (2) the central Garlock fault is unfavorable for rupture propagation, 25 

because of its discontinuous geometry and low coupling ratio; (3) the Coso geothermal field 26 

generates intense and shallow seismicity, which has a high b-value that does not correlate with 27 

seismicity rate and industrial production, thus suggest a low stress level. 28 

Plain Language Summary 29 

 The numerous small earthquakes contain useful information on the fault properties, but to 30 

build a high-quality catalog in a decadal scale is challenging. We propose a new workflow that 31 

train neural networks with local seismic data, so that it can be applied to most cases. In the 32 

Ridgecrest-Coso region, our new workflow outperforms matched filter method in terms of the 33 

efficiency and stability. Based on the new catalog, we obtained new insights on three major fault 34 

systems in this area: (1) the Ridgecrest faults can be discernable before the mainshock in 2019, 35 

and was strongly locked; (2) the central Garlock fault is not easy to rupture, because of the complex 36 

geometry and low coupling; (3) the Coso geothermal field has intense microseismicity, which is 37 

controlled by tectonic process and its temporal behavior suggest a low stress level.   38 

1 Introduction 39 

 Microseismicity provides a direct indication to the fault structure and slip behavior at depth. 40 

Such strategy is especially useful when the fault slips at a high rate, e.g. during early aftershocks 41 

period (e.g. Tan et al., 2021; Zhou et al., 2022a), or for creeping faults (e.g. Waldhauser and 42 

Ellsworth, 2002; Chen et al., 2020). However, a huge portion of faults generate low seismicity rate 43 

during the interseismic period because of a high locking ratio (e.g. Bletery et al., 2020; 44 

Chamberlain et al., 2021; Uchida and Bürgmann, 2021; Zhou et al., 2022b), and these faults are 45 
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also prone to large earthquakes (Sykes, 2021; Lay and Nishenko, 2022). To study the strongly 46 

locked faults, a long-term observation is always necessary. For example, Schurr et al. (2020) built 47 

a seismic catalog for 7 years before the 2014 Iquique earthquake, and found that the pre-earthquake 48 

seismicity complements the coseismic slip; Sugan et al. (2023) observed a 8-year migration of 49 

seismicity towards the nucleation area of the 2016 central Italy seismic sequence. Technically, the 50 

construction of long-term catalogs requires a workflow that is both computationally efficient and 51 

of high detection completeness, which is still a challenging task.  52 

 Currently, two types of cataloging workflow can realize a state-of-the-art performance: (1) 53 

the PAL-style workflow that follows “phase Picking – phase Association – event Location” 54 

procedure (e.g. Zhou et al., 2021b; Zhang et al., 2022; Zhu et al., 2022b), and (2) the matched filter 55 

technique (MFT) that utilizes pre-detected events as templates to detect similar events (e.g. Ross 56 

et al., 2019a; Shelly, 2020; Neves et al., 2022). The detection completeness of PAL-style 57 

workflows is basically dependent on the phase picking algorithm. In recent years, algorithms based 58 

on artificial intelligence (AI), specifically deep learning, realize outstanding phase picking 59 

performance in terms of the detectability and picking precision (e.g. Zhu and Beroza, 2018; Zhou 60 

et al., 2019; Mousavi et al., 2020). However, systematic tests show that the AI pickers can suffer 61 

from inconsistent performance among data in different regions (e.g. Chai et al., 2020; Jiang et al., 62 

2021; Zhu et al., 2022a), which show a lower generalizability compared with traditional rule-based 63 

algorithms, such as short-term-average over long-term average (STA/LTA). The MFT methods 64 

realize even higher detection ability than AI (e.g. Mousavi et al., 2019; Zhou et al., 2021a), but its 65 

low computational efficiency makes it difficult to process big data, and the detection results may 66 

be biased by incomplete templates. In short, the AI-based picker is the most promising method 67 

that combines both high efficiency and high detectability, while further improvements are needed 68 

to realize a consistent picking performance on a large spatiotemporal range of data.  69 

 In this paper, we present a new AI-based cataloging workflow based on a “Train-Detect-70 

Pick” (TDP) strategy, which solves the generalization problem in deep learning models. The TDP 71 

workflow is applied to the preseismic period of the Ridgecrest-Coso region during 2008-2019 to 72 

characterize its fault behavior before the 2019 Mw 7.1 Ridgecrest earthquake.  73 
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2 Cataloging Workflow based on AI Phase Picker 74 

2.1 Train, Detect, and Pick 75 

 The AI phase pickers require large number of training samples to tune the hyper-parameters 76 

with the neural network. As reviewed in the Introduction section, the first generation of AI pickers 77 

attempt to build a pre-trained model that is suitable for all data, which is not very successful so far. 78 

Instead, we designed a new workflow that generates local training samples to train an AI model, 79 

so that it is suitable for local data (Figure 1).  80 

In the first stage, we utilize the PAL method (Zhou et al., 2021b) to construct the training 81 

set (Figure 1). The detection process of PAL is based on STA/LTA, and can provide reliable 82 

identification of signals with high signal-noise ratio (SNR). We slice training samples with the 83 

PAL-picked P & S arrivals (see supplementary Text S1 for more details). The AI model we 84 

adopted is a hybrid method that utilizes Convolutional neural network (CNN) for Event detection 85 

and Recurrent neural network (RNN) for Phase picking (i.e. CERP, Zhou et al., 2019). It is applied 86 

to continuous data in a sliding window manner, where the sliding windows are firstly classified as 87 

earthquakes or noise by CNN (i.e. event detection), and the earthquake windows are then sent to 88 

RNN for phase picking purpose (see more details on the CERP parameters in Text S2). Note that 89 

the CERP model is more light-weighted compared to the U-net and transformer model, thus 90 

requires less training samples, as shown in the blind test by Mousavi et al. (2020).  91 

In the second stage, we substitute the PAL picker with the locally-trained CERP picker 92 

(Figure 1). The CERP picker provide accurate detection for much weaker signals, and will 93 

approximately double the number of initial PAL event detections (e.g. Zhou et al., 2021a). We 94 

also built interface for HypoInverse (Klein, 2002) and HypoDD (Waldhauser, 2001) to relocate 95 

the CERP detections (Figure 1), among which the ph2dt_cc modulus calculates the high-resolution 96 

differential travel times with cross correlation (CC; details can be found in Text S3). This makes 97 

a seamless cataloging workflow that applies to continuous data.  98 
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 99 

 Figure 1. The TDP-style workflow for earthquake cataloging. The blue and yellow modules denote 100 

the detection and location algorithms, respectively. PAL refers to an STA/LTA-based cataloging method 101 

developed by Zhou et al. (2021b); CERP refers to a hybrid deep learning picker combining CNN Event 102 

detection and RNN Phase picking (Zhou et al., 2019).   103 

2.2 Performance on Co- and Pre-seismic Data 104 

 We first test the new AI-based workflow on the early aftershocks of the 2019 Ridgecrest 105 

earthquake from 2019/07/04 to 2019/07/24. With the same set of permanent and temporal stations 106 

as that used by the Southern California Seismic Network (SCSN, Figure S1), adopting the same 107 

set of parameters in Zhou et al. (2021b), PAL detected 45,083 events within the source region (that 108 

in Figure 2) and 408,199 P & S pairs associated with them. For CERP, we set the window length 109 

as 12 s and sliding step as 4 s, so that the P & S waves on stations within a ~60-km epicentral 110 

distance can be covered. After applying CERP, the detection number increase to 81,142, and the 111 

relocation process finally maintains 55,662 well-located events. We compare the final CERP-TDP 112 

catalog with two other CC-relocated catalogs (Figure 2): the relocated SCSN catalog (Hauksson 113 

et al., 2012) and the QTM catalog built by MFT (Ross et al., 2019b). It is clear that the three 114 

catalogs show highly consistent map-view distribution and comparable relocation precision, 115 

despite using different relocation algorithms, parameters, and velocity models. However, the depth 116 



manuscript submitted to Geophysical Research Letters 

 

distribution is less consistent, as shown in the along-strike profiles: the QTM catalog is 117 

systematically shallower by ~2 km (Figure 2b), and our CERP-TDP catalog deepens along with 118 

the coseismic slip, especially at the distance of 15-30 km (Figure 2c).  119 

 120 

 Figure 2. Comparison of aftershock relocation results. (a-c) plot the relocation results of the SCSN 121 

catalog (Hauksson et al., 2012), QTM catalog (Ross et al., 2019b), and the relocated CERP-TDP catalog in 122 

this study, respectively. The events within the blue rectangle are plotted in the profile. The coseismic slip 123 

model comes from Yue et al. (2021). 124 

We also compare the frequency-magnitude distributions (FMD, Figure 3a-b). Results show 125 

that the QTM and CERP-TDP both realize ~3-4 times more detections than the SCSN catalog, 126 

while the QTM catalog only have ~35% of the detections well located, according to the criteria of 127 

Growclust algorithm (Trugman and Shearer, 2017). The detection completeness of the SCSN & 128 

QTM catalog seems to be inconsistent for M 0-2 and M>2 events, as shown in the FMDs that 129 

deviate from the empirical scaling law (Gutenberg and Richter, 1944). Another noteworthy feature 130 

is the change in FMD slope of the SCSN & QTM catalog at M ~3.5 (Figure 3a-b), which is partly 131 

caused by the different magnitude scales adopted (e.g. Ml ,Mw, or Mlr, https://scedc.caltech.edu/eq-132 

catalogs/change-history.html), and can affect the catalog-based b-value studies.  133 

https://scedc.caltech.edu/eq-catalogs/change-history.html
https://scedc.caltech.edu/eq-catalogs/change-history.html
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 Figure 3. Comparison of frequency-magnitude distribution (FMD) and magnitude-time sequence. 135 

(a-c) plot the FMD comparison for the total aftershock detection, well located aftershocks, and the 136 

preseismic period starting from 2008, respectively. The dots and triangles denote cumulative and non-137 

cumulative distribution. (d-f) plot the magnitude-time comparisons for the preseismic period. The thick 138 

black lines denote the magnitude of completeness, and the colored dash lines plot that for two other catalogs.  139 

 For the preseismic period (2008/01/01-2019/07/03), the catalog building is more difficult 140 

for several reasons: (1) only permanent stations are available (Figure S1), which is sparser around 141 

the Ridgecrest faults and is not spatially uniform; (2) nearly half of the stations experienced a 142 

change from 1-channel to 3-channel instrument around 2014 (Figure S4); (3) data glitches (i.e. 143 

instrumental noises in pulse-shape, Figure S6) takes an non-negligible amount of time. We made 144 

special treatments regarding this complex data condition, including the training of CERP picker 145 

and the weighting scheme in relocation (see Text S1 & S4 for more details). In the PAL process, 146 

we detected 70,017 earthquakes in total, along with 489,382 P & S pairs that has a S-P time <8 s, 147 

P wave SNR >12, and a P wave travel time residual <1 s. We train the CERP model under a 148 

window length of 15 s, and apply it with a sliding window step of 5 s. After the same phase 149 

association process, we finally get a total of 125,790 detections, among which 90,892 events are 150 

within the study region (inside map area in Figure 4) and 78,117 of those are well relocated. The 151 

average relative location uncertainty is ~60 m laterally and ~80 m vertically, under the least-square 152 

criteria of hypoDD (see Text S4). Note that the whole process is completed in 5 days with 1 Nvidia 153 

GeForce RTX 2080 GPU card and 1 Intel Xeon E5-2695 CPU.  154 

Similar to the early aftershocks, we compare the CERP-TDP catalog with the relocated 155 

SCSN catalog and QTM (Figure 3c-f). Again, both CERP-TDP and QTM realize a ~1.5-fold 156 

increase of detection number compared with the SCSN catalog, and we still find a better linearity 157 

of the CERP-TDP result in the FMDs (Figure 3c), which is probably related to the change of 158 

magnitude scale through time and for different sizes of earthquakes in the SCSN catalog. In the 159 

magnitude-time comparison (Figure 3d-f), we can see that the SCSN catalog is not temporally 160 

consistent, with high detectability only during the intense seismic sequence. This temporal 161 

inconsistency is not fully solved in the QTM catalog (Figure 3e). This is probably because the 162 

seismic events in the background period and during intense sequences are generated on different 163 

faults or asperities, and their waveforms are not very similar, thus lowering down the performance 164 

of matched filter. However, our CERP-TDP catalog realize a much more stable detection through 165 
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this 10-year period (Figure 3f), which indicates that the statistical features of seismic events over 166 

a large spatiotemporal range are well captured by the neural networks.  167 

As a summary, these comparisons show that our new TDP strategy realizes comparable 168 

earthquake detection completeness as that of the matched filter, but is more computationally 169 

efficient, more temporally stable, and gives more linear FMD. Thus, this new AI-based workflow 170 

provides a launching pad for the long-term seismicity studies.  171 

3 Characterizing Preseismic Fault Behavior 172 

 Using our new CERP-TDP catalog, we aim to characterize the preseismic fault behavior 173 

of the Ridgecrest-Coso region by analyzing the spatiotemporal distribution of seismicity and b-174 

value (Figure 4). This analysis is based on the idea that: (1) small earthquakes occur on faults, and 175 

its occurrence rate is proportional to the fault creep rate (e.g. Liu et al., 2022), as deduced from the 176 

simple asperity model for small earthquakes (Bürgmann, 2018; Uchida and Bürgmann, 2019); (2) 177 

the b-value, which describes the relative number of large and small earthquakes, is negatively 178 

related to the stress level, as shown in multiple experimental and statistical studies (Scholz, 2015, 179 

and references therein). Details for the b-value calculation can be found in the supporting material 180 

Text S5. Three specific fault systems are of interest (Figure 5): the faults ruptured by the 2019 181 

Ridgecrest earthquake, the central Garlock fault, and the Coso geothermal field (CGF).  182 

 183 

 Figure 4. Seismicity and b-value analysis. (a) Seismicity distribution. Seismic events are plotted 184 

in dots coded by its focal depth. Historic events since 1946 with M >5 are plotted in red stars. The black 185 
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and white lines mark the active faults and surface rupture by the 2019 Ridgecrest earthquake, respectively. 186 

The red circle highlights the Coso geothermal field (CGF). (b) Seismicity rate. (c) b-value distribution.  187 

 188 

 Figure 5. Spatiotemporal seismicity analysis. (a) Ridgecrest-ruptured fault. Black lines in the 189 

profile mark the interpreted conjugate structures. The vertical red line denotes the Garlock fault (GF). The 190 

2019 foreshock and mainshock are marked by black stars. (b) Central Garlock fault. The dark-blue lines 191 

plot the unmapped conjugate faults inferred from this study. Two M>4 events are marked by black starts. 192 

The blue bracket roughly marks the stress shadow caused by the Ridgecrest earthquake. The El Paso Peaks 193 

(EPP) paleoseismic site and the Koehn Lake (KL) are also marked. (c-d) Coso geothermal field. (c) plots 194 

the comparison between the seismicity rate within CGF (the red circle in Figure 4a) and the b-value. The 195 

b-value and seismicity rate are calculated with the complete part of catalog, with the MC set to 0.3, as 196 

marked by the white dashed line. (d) plots the geothermal production data.  197 

3.1 2019 Ridgecrest-ruptured fault 198 

 It is well known that the 2019 Ridgecrest Mw 6.4 & 7.1 sequence ruptures a mostly 199 

unmapped orthogonal fault system (Figure 5a, Ross et al., 2019a). However, after a more detailed 200 

geological investigation, Thompson Jobe et al. (2020) found that up to 50-70% of the fault traces 201 

could have been mapped before the earthquake. It is important to know whether long-term 202 

seismicity provides more evidence on the fault existence before the earthquake.  203 
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 Similar as observed in Hauksson and Jones (2020), we also find a low seismicity rate on 204 

Ridgecrest faults before the earthquake (Figure 4b). However, this ~20-km-wide band highlighted 205 

by the microseismicity is still much more active than other area with no mapped faults. It is very 206 

possible that multiple subparallel faults extent to the SE of the foreshock epicenter, where no faults 207 

are previously mapped. The net effect of such a fault system is a distributed shear deformation and 208 

a low slip rate on each fault. Moreover, by examining the depth distribution (Figure 5a), we find 209 

that the pre-earthquake seismicity is highly similar to the aftershock distribution that delineates the 210 

coseismic slip and show orthogonal faulting (Figure 2c), except for a much lower seismicity rate. 211 

This indicates that the Ridgecrest asperity is persistent through decades.  212 

Fortunately, enough number of events are available to resolve the b-value on Ridgecrest 213 

faults (Figure 4c). We find that a low b-value is resolved surrounds the 2019 Mw 6.4 foreshock, 214 

indicating a high stress level. This is consistent with the fact that the Ridgecrest fault is strongly 215 

locked before the earthquake, and that the frictional coefficient is rather high (0.75, Hauksson and 216 

Jones, 2020). In contrast, the Mw 7.1 mainshock area is of high b-value, which can be interpreted 217 

by the stress shadow caused by several M >5 events during 1990s on its western subparallel faults. 218 

Similar preseismic b-value distribution pattern is also obtained in Nanjo (2020) with ~40-year 219 

SCSN catalog. This preseismic b-value contrast near the foreshock and mainshock epicenter can 220 

also explain the location of foreshock, and why did the Mw 6.4 come first.  221 

Thus, (1) the distributed seismicity with a low occurrence rate near the Ridgecrest region, 222 

and (2) the overall low b-value along the Ridgecrest fault, jointly suggest a fault system consisting 223 

of multiple subparallel branches exist before the earthquake. Our results also show that the event 224 

distribution and b-value analysis can jointly delineate asperities that can generate large earthquakes.  225 

3.2 Central Garlock fault 226 

 The central Garlock fault cuts off the Ridgecrest fault on the south, and is a major fault that 227 

accommodates the tectonic loading (McGill and Sieh, 1993; Ganev et al., 2012; Hatem and Dolan, 228 

2018). The segmentation of Garlock fault is based on geometrical complexity, including the fault 229 

bends and stepovers, e.g. the western boundary of the central segment near the Koehn Lake 230 

stepover (KL, Figure 5b). This western end is also microseismically active for decades, and a 231 

seismic swarm is triggered after the 2019 earthquake (Ross et al., 2019a), both of which indicate 232 

a low fault coupling ratio. However, we would like to point out that the b-value for this seismic 233 
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cluster increased from west to east (Figure 4c, S11, S13), thus the eastern portion that generated 2 234 

M~4 events during 2008-2019 (Figure 5b, S15) is probably characterized by higher fault strength. 235 

Stress modeling show that the Ridgecrest earthquake draws a Coulomb stress shadow in the middle 236 

of central Garlock fault (Nanjo, 2020; Toda and Stein, 2020). This should also be the case during 237 

the interseismic period: the slip of Ridgecrest fault unclamps the central Garlock fault, and will 238 

lower down its stress level in the long term.  239 

To understand how such fault properties affect the dynamic rupture process, we compare 240 

the paleo-earthquake behaviors: the El Paso Peaks (EPP) paleoseismic site (Figure 5b) is roughly 241 

the termination for at least 4 consecutive earthquakes in the past ~5600 years, except for the most 242 

recent event in 1450 that went through at least the western and central segment (Dawson et al., 243 

2003; Madden Madugo et al., 2012). This implies that the central Garlock fault may be difficult 244 

for the dynamic rupture to propagate, which is probably a joint effect of geometric complexity, 245 

low fault coupling, and low stress level. However, it is worth noting that the quiescent segment 246 

between EPP and the junction between Ridgecrest fault (Figure 5b) is probably frictionally locked 247 

at depth, considering the 1450 went-through rupture and the low seismicity rate, despite the fact 248 

that a triggered shallow creep is observed (Barnhart et al., 2019; Ross et al., 2019a).  249 

3.3 Coso geothermal field 250 

 The Coso geothermal field (CGF) is one of the largest three geothermal fields in California, 251 

and induced seismicity has been prevalent in this region (Schoenball et al., 2015; Trugman et al., 252 

2016, and references therein). Lying in the center of an extensional stepover, the CGF is also a 253 

tectonically active region that produces sustained and active microseismicity (Hauksson and Unruh, 254 

2007; Hauksson and Jones, 2020). Thus, both anthropogenic and tectonic processes can affect the 255 

occurrence of microseismicity, and the relationship between these processes is of scientific interest.  256 

 As also shown in previous studies (Nanjo, 2020; Im et al., 2021), microseismicity in CFG 257 

is intense and shallow (<4 km, Figure 4a), accompanied by a high b-value (Figure 4c). This can 258 

be explained by a shallow brittle-ductile transition caused by geothermal activities, as shown in 259 

the P & S wave velocity structure (Hauksson and Unruh, 2007; Zhang and Lin, 2014), and that 260 

decades of geothermal production depleted the shear stress in CGF (Im et al., 2021). The 261 

surrounding area of CGF also generate active microseismicity, but at larger depths (Figure 4a). 262 

Interestingly, the b-value is quite different on the west and east of CGF (Figure 4c, S13), which 263 
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may be the result of different fault orientations or is related to heat flow, and further investigations 264 

are needed.  265 

 Furthermore, we examine the temporal correlation between the seismicity rate, b-value, 266 

and the geothermal production (Figure 5c-d). Results show that the seismicity rate and b-value are 267 

highly variable during 2008-2019, and they have no correlation with the production data. This 268 

negative result is consistent with previous statistics in CGF using the SCSN catalog, where the 269 

correlation between seismicity rate and production volume only exists in the initial stage of 270 

geothermal production (i.e. before 1990, Trugman et al., 2016). It indicates that the dominant 271 

factor controlling microseismic activity in CGF is not geothermal production, but tectonic 272 

processes, such as fault creep and earthquake-induced stress transfer. For example, Trugman et al. 273 

(2016) find that the b-value in CGF decrease significantly following a prominent seismic swarm 274 

on the west of CGF in 2001, which causes an steep increase in seismicity rate and decrease in b-275 

value. Moreover, we only find a weak correlation between the seismicity rate and b-value during 276 

2008-2019, which may imply that the CGF is less sensitive to stress triggering than around 2000. 277 

Such behavior is consistent with the fact that aftershocks are not triggered in CGF by the 278 

Ridgecrest earthquake (Im et al., 2021), remote dynamic triggering is less prominent in CGF than 279 

the surrounding area (Zhang et al., 2017),  and that most area of CGF is not modulated by tidal 280 

stress (Wang et al., 2022).  281 

4 Conclusions 282 

 In this paper, we present a new workflow to build long-term catalog using deep learning, 283 

which is based on the idea of training model on local data to avoid the generalizability problem. 284 

By applying it on the preseismic period (2008-2019) of Ridgecrest-Coso region, we find that this 285 

TDP workflow realize comparable detectability as the matched filter, but is much more 286 

computationally efficient and temporally stable. We characterize the preseismic fault behavior 287 

with our new AI catalog. Our main conclusions are: 288 

(1) The Ridgecrest area has the shear deformation distributed over a band of ~20-km wide 289 

that comprises multiple subparallel faults. This generates a diffused and infrequent seismicity. The 290 

2019-ruptured asperity is persistent, since the pre-earthquake seismicity distributes in the same 291 

pattern as the aftershocks, complementing the coseismic slip.  292 
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(2) The western end of central Garlock fault is a rupture barrier, because of the geometric 293 

complexity and low fault coupling. The middle segment of central Garlock fault is probably of low 294 

stress level but is frictionally locked.  295 

(3) The seismicity in Coso geothermal field during 2008-2019 is mainly controlled by 296 

tectonic processes, since the seismicity rate and b-value does not correlate with geothermal 297 

production. The seismicity rate is not strongly correlated with the b-value as well, implying that 298 

CGF is not sensitive to stress triggering.  299 
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