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Introduction  

 This supporting material provides additional information on the deep learning 

workflow, the location strategy and uncertainty analysis, and the b-value calculation.  
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Text S1. 

Construction of the training set. The training set for the CERP model consists of 

positive and negative samples that is of roughly the same size: the CNN for event detection 

uses both positive and negative samples, and the RNN only uses the positive samples. The 

positive samples, i.e. earthquakes, are sliced randomly within a time range from tp-

win_len/2 to tp+win_len, where tp is the P arrival time, and win_len is the window length 

of each sample (Figure S6). The negative samples, i.e. noises, are sliced randomly with a 

time range from ts to ts+2*win_len, where ts is the S arrival time. Note the for very intense 

sequences, our code also provides another choice, which is to slice negative samples 

relative to tp. Such strategy will generate negative samples containing both tail waves and 

random noises, so that the CNN only detect windows with both P & S arrivals covered.  

However, in the case of preseismic Ridgecrest-Coso, we need special treats on the 

data glitches (Figure S3), since they takes a large portion (Figure S6). We detect the data 

glitches by applying forward and backward STA/LTA, and a glitch is defined as both 

STA/LTA values larger than 50 within 1 s (Figure S6). If a station-date pair has more than 

100 such glitch detections, we define it as a “glitch station-date”, whose distribution is 

shown in Figure S3. We merge glitches into the negative set by slicing 50 samples 

randomly in the glitch station-date pairs, which finally gives 270,601 glitch samples. 

Besides, we exclude the PAL detections in station-date pairs from the positive set. 

For the training of RNN, considering that the 1-channel data takes a great amount 

of volume, whose S picks are not as accurate as that of the 3-channel data, we only use 

the 3-channel picks to construct the training set for RNN. Specifically, using those picks 

on 3-channel data, we randomly choose 50% of them with only Z-channel (i.e. [Z,Z,Z]), and 

the remaining half the original shape (i.e. [E,N,Z]).  

Finally, the samples are randomly divided into two groups: the training set and 

validation set. In our case, we group 90% of the samples for training, and 10% for validation.  
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Text S2. 

 More details on the CERP parameters. The CERP parameters include the parameters 

that determine the neural network architecture, that controlling the training process, and 

that controlling the picking behavior in applying to continuous data.  

 The users first need to determine the window length, which should be large 

enough to cover both P & S arrivals for stations within a target epicentral distance, but not 

too large to give reasonable data weight for signals. Note that the window length will also 

determine the complexity of neural networks. For CNN, the neural network architecture 

consists of the depth, kernel size, and the number of convolutional layers. For the case in 

Ridgecrest, since we have more than 400,000 training samples, we adopt 8 CNN layers, 

and each layer is composed of 32 size-3 kernels. For RNN, we adopt 2 forward-backward 

RNN layers, and each layer contains GRU unit with size 32. The RNN first divide the event 

window into multiple time steps, and we slice 0.8-s steps with 0.2-s striding. See Zhou et 

al. (2019) for more details on the algorithm.  

 The training of CERP is in a mini-batch manner. For both CNN and RNN, we feed 

128 samples in each iteration, and a learning rate of 10-4 to adjust the learnable parameters. 

We train the CNN & RNN by at most 14 epochs, and use the early stop strategy to avoid 

over fitting (Figure S9). Usually, the training and validation of RNN will keep decreasing, 

and we only need to select the check point for the CNN.  

 In applying CERP to continuous data, we first need to select the step for the sliding 

windows, which should be ranging from ¼  to ½  of the window length, empirically. The 

same picks from different sliding windows are merged when the time differences are 

within 2 s. A modification of our new implementation of CERP is the repick process with 

PAL picker (Zhou et al., 2021), which further improve the picking precision of the sequence 

labelling-based RNN method (previously know as DetNet & PpkNet, Mousavi et al., 2020). 

We apply PAL picker within a time range of -1~1s relative to the original pick, considering 

the maximum picking uncertainty of RNN.  
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Text S3. 

 The details of ph2dt_cc algorithm. The ph2dt_cc is a modulus that convert phase 

file (ph) into high-resolution travel time differences (dt) with cross-correlation (CC). It first 

find all possible event pairs by comparing the location differences and common station 

picks. For each event, in our case, we select candidates from a lateral difference of 3 km 

and a vertical difference of 4 km, and there need to be at least 4 stations shared by the 

two events. To control the quality of dt measurement, we only use stations within an 

epicentral distance of 80 km, and events with M<0 cannot be linked to each other (but 

can be linked to M>0 events). To avoid too many measurements, we also limit the 

maximum number of stations to be 15 for each event pair (if exceed, select from the 

nearest ones), and each event can only be linked to up to 200 neighbors, as in the ph2dt 

strategy (Waldhauser, 2001).  

 The calculation of dt is based on 3-channel waveforms with 100 Hz sampling rate 

and filtered to 2-20 Hz. The dt_p is measured on Z channel, and dt_s on all three channels 

based on average CC traces. Specially, in our case, if one of the stations in an event pair is 

1-channel data, we also measure dt_s on Z channel and lowers down the weighting in 

hypoDD to 0.352, instead of CC2 as for other pairs. The window for P wave correlation is 

2.5-s long starting from 0.5 s before P arrival, and that for S wave is 4-s long starting from 

0.2 s before S arrival. After the calculation, we further select the dt measurements by 

dropping that with dt_p>0.5 s or dt_s>0.8 s, or if the CC value is below 0.35. Finally, only 

event pairs with at least 4 stations fulfilling those criteria are linked, and output to dt.cc.  

  



 

 

5 

 

Text S4. 

 The weighting scheme in the (re)location process and the location uncertainty. The 

relocation process of CERP detection experiences absolution location from hypoInverse, 

double-difference relocation with hypoDD (sequentially with dt.ct and dt.cc data).  

 In the hypoInverse process, the weighting for each phase is determined by its 

epicentral distance, travel time residual, and the type of phase (P or S), and the product of 

these three factors are the final; weight. We give full weight for stations within 30 km, and 

0 beyond 90 km, and a cosine taper is applied in between. Similarly, for time residual, we 

assign full weight for <0.25-s residual, 0 for >0.75-s residual, and cosine taper for 0.25-

0.75-s residual. We assign 1 & 0.6 for P and S picks, respectively, and 0.3 for S picks from 

1-channel stations. We run hypoInverse with a velocity model adjusted from the SCSN 

model (Table S1), which avoid steep velocity change by adding two more layers. Finally, 

within the study region, 98,479 out of 104,335 events (94%) are well constraint, among 

which 4%, 41%, 47%, and 8% belongs to A, B, C, and D quality location, according to the 

criteria of hypoInverse (Klein, 2002). The average location error along lateral and vertical 

direction is 1.22 & 2.60 km.  

 In the hypoDD process, we first utilize the dt.ct to constrain cluster-to-cluster 

location. We calculate dt for event pairs within a hypocentral distance of 10 km (i.e. 

WDCT=10), and requires at least 8 phases to link a pair. To account for 1 & 3-channel 

difference, we weight the P & S in 3-channel and S in 1-channel data as 1, 0.5, and 0.25, 

respectively. We perform 1 set of 4 iterations of inverse. Finally, the dt.ct relocation gives 

an uncertainty of 110 & 190 m in lateral and vertical direction. In the dt.cc relocation 

process, we calculate dt.cc following the procedure in Text S3, which gives 19,187,060 dt 

measurements. We utilize CC to refine the relative location within a 4-km separation (i.e. 

WDCC=4), and run 4 iterations of iterations. The final CC-relocated catalog has a location 

uncertainty of 60 & 80 m in the lateral and vertical direction, based on the least-square 

criteria.  
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Text S5. 

 The b-value calculation and its uncertainties. The b-value calculation is based on 

maximum-likelihood method (Aki, 1965): 

𝑏 =
log10 𝑒

�̅� − 𝑀𝐶 +
∆𝑀

2

 , (𝑆1) 

where �̅� , 𝑀𝐶 , and ∆𝑀  is the mean magnitude, lower cut-off magnitude, and the 

magnitude bin, respectively. The b-value uncertainty is estimated with Shi and Bolt (1982):  

𝛿𝑏 = 2.3 × 𝑏2 ∑
(𝑀𝑖 − �̅�)2

𝑛(𝑛 − 1)

𝑛

𝑖=1
 , (𝑆2) 

where 𝑛  is the number of events. In mapping the b-value distribution, we test two 

strategies: adopting a uniform MC (Figure S10 & S12) and calculating MC on each grid 

(Figure S11). We prefer the result with uniform MC, since the b-value estimation tend to 

increase with the MC (Zhou et al., 2018). However, whatever mapping strategy and slicing 

radius adopted, the basic patterns are the same.   
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Figure S1. Distribution of selected stations for the (a) preseismic and (b) aftershock 

period. The blue triangles are broad-band and short-period seismometers, and yellow 

triangles are temporary stations deployed after the 2019 Ridgecrest earthquake 

(Hauksson et al., 2020).  
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Figure S1. Data continuity for the aftershock period.  The station-date pairs with data 

available are marked by rectangles.  
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Figure S2. Data continuity for the preseismic period.  The station-date pairs with data 

available are marked by “+”. 



 

 

10 

 

 

Figure S3. Distribution of data glitches.  The station-date pairs with data available are 

marked by “+”. 
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Figure S4. Distribution of single-channel data.  The station-date pairs with data available 

are marked by “+”. 
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Figure S5. Example data gap and filling method.   
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Figure S6. Example data glitch and detection method.  Waveform is band-pass filtered 

to 1-20 Hz.  
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Figure S7. Demonstration of training data slicing strategy.  The red and blue horizontal 

line mark the time range of randomly sliced positive / negative samples. 
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Figure S8. Demonstration of differential travel time measurement with cross-correlation. 

The two events are named as “detection” and “template”, travel time and differential 

travel time are abbreviated as “tt” and “dt”, respectively.  
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Figure S9. Training curve and selected check point. (a-b) and (c-d) is the training curve 

for the CNN and RNN, respectively. (a) and (b) plot the training and validation accuracy 

for positive and negative samples, respectively. The vertical red line marks the selected 

checkpoint using the early stop strategy. (c) plots the sequence accuracy which is defined 

as the correctly classified time step over the total number of time step. (d) is the 

converted effective picking uncertainty.  
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Figure S10. B-value distribution with fixed Mc (that in the main text). 
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Figure S11. B-value distribution with Mc calculated on each grid. Other parameters are 

the same with the main text.  
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Figure S12. B-value distribution with slicing radius set to 0.1°.  
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Figure S13. Example frequency-magnitude distribution. Three regions with contrasting 

b-values are compared. The dots and triangles mark the cumulative and non-cumulative 

distribution, respectively.  
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Figure S14. Clear version of Ridgecrest profile, with different profile widths.  
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Figure S15. Spatiotemporal seismicity pattern on the Garlock fault. Starts mark the 

M>3.5 events.  
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Table S1. Velocity model used for location, modified from Hutton et al. (2010).   

Top of layer (km) P-wave velocity (km/s) 

0 5.5 

4 5.9 

7 6.3 

16 6.7 

32 7.8 

Note: Vp/Vs = 1.73; depth relative to ground elevation (1500 m) 

 

Data Set S1. Seismic catalog for the Ridgecrest-Coso region during the preseismic 

period (20080101-20190703).  

Data Set S2. Early aftershock catalog for the 2019 Ridgecrest sequence (20190704-

20190724).  
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