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  36 

Plain Language Summary: 37 

Many important processes in the ocean are strongly influenced by mixing, which helps to move 38 

material throughout the ocean and can also act like friction by slowing down the movement of 39 

ocean water. Mixing is the result of turbulence, a random or chaotic motion, which is in turn the 40 

result of changes in water speed below the surface.  This study focuses on a specific type of 41 

ocean turbulence known as stratified-shear turbulence.  Most attempts to predict the intensity of 42 

this kind of mixing rely only on changes in water speed and related changes in temperature or 43 

salinity.  The thickness of the layer, where these changes occur, which can range from a few 44 

centimeters to 100s of meters, has rarely been taken into account.  By comparing laboratory and 45 

ocean measurements, this study identifies, for the first time, that this layer thickness may play a 46 

crucial role in accurately predicting mixing.  Surprisingly, thicker ocean layers result in 47 

relatively less intense mixing than thinner laboratory layers.   Laboratory and computer 48 

simulations are often used to help us learn and make predictions about the ocean and the 49 

atmosphere; all of which could be substantially improved with this new insight.  50 



3 

Abstract 51 

Advances in understanding of stratified-shear turbulence have been made over the last several 52 

decades through ocean measurements, which typically quantify net turbulent quantities, and 53 

through laboratory and direct numerical simulations (DNS), which have sufficient resolution to 54 

investigate the internal dynamics of individual instabilities.  Stratified shear layer thicknesses in 55 

these environments can range from cms for laboratory and DNS studies to 100s of m in ocean 56 

environments, complicating extrapolation of results between environments.  This study provides 57 

a direct comparison of field measurements from oceanic stratified shear environments with 58 

laboratory flows, demonstrating that non-dimensional turbulent quantities at ocean scales can fall 59 

several orders of magnitude below laboratory values for similar bulk Richardson numbers, RiB, 60 

suggesting that scale plays a critical role.  Here, the dependence of the non-dimensional 61 

turbulence intensity, expressed as 𝑎" = $∗
∆$

, on a layer Reynolds number, Re, is evaluated via a 62 

ratio of the shear layer thickness, h, to the Kolmogorov turbulence length scale,h.  Using a 63 

mechanistically driven, empirical approach a parameterization for turbulence is defined in RiB – 64 

&
'
 parameter space, and by extension, RiB - Re parameter space.  The mechanisms invoke a 65 

“building block” approach to initiation of stratified shear turbulence, which explains the presence 66 

of turbulence RiB values exceeding the critical value of the gradient Richardson number, Rig, and 67 

increases in 𝑎" at low Re. The results describe a new “turbulent geography” in the RiB – Re plane 68 

that can build intuition about stratified shear turbulence and facilitate interpretation of ocean 69 

measurements in comparison to laboratory experiments and modeling.  70 
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1. Stratified Shear Turbulence 71 

Stratified-shear layers occur in nature across a wide range of vertical scales.  Laboratory 72 

experiments (e.g. Ellison and Turner 1959; Yuan and Horner-Devine 2013) are often performed 73 

with stratified-shear layers centimeters thick, while salt marsh – tidal flat exchange (e.g. Carr et 74 

al 2018) can form stratified shear layers tens of cm thick, and many estuarine and river plume 75 

stratified-shear layers (e.g., MacDonald et al 2007; Kilcher et al 2012) are on the order of meters.  76 

Deep ocean flows, such as the Mediterranean outflow (e.g., Barringer and Price 1997) or Faroes 77 

Bank overflow (Fer et al 2010), can create stratified-shear layers 100s of meters or more in 78 

thickness.  Despite their vast differences in thickness, these flows tend to generate turbulence 79 

that is qualitatively, and often quantitatively, similar in terms of structure, and the differences in 80 

scale are often overlooked.  Localized ratios of density and velocity gradients, in the form of a 81 

Richardson number, are typically utilized to describe the generation and intensity of stratified-82 

shear turbulence, while the overall layer thickness is assumed of secondary importance, at best.   83 

In practice, measurements of turbulence in the ocean necessarily represent averages of turbulent 84 

quantities across some spatial and/or temporal domain, as even modern measurement techniques 85 

are incapable of isolating and resolving the evolution of individual turbulent events (e.g., Kelvin-86 

Helmholz billows).  This is sufficient for most oceanographic applications where understanding 87 

large scale water mass modification and/or energy dissipation is typically the goal.  In contrast, 88 

laboratory experiments and direct numerical simulation (DNS) can analyze individual turbulent 89 

events, but only for shear layer thicknesses much smaller than ocean scales (e.g. Shih et al 2000; 90 

Smyth et al 2001; Mashayek et al 2017a).  Although significant advances in understanding 91 

turbulence have been made through both observational and laboratory/DNS studies, efforts to 92 

synthesize these differing views of turbulence are sometimes problematic.  An example is that of 93 
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mixing efficiency, where recent advances in DNS have allowed predictions of mixing 94 

efficiencies that greatly exceed the canonical value of 0.2 during certain phases of the life cycle 95 

of a Kelvin-Helmholz billow (e.g., Sahelipour and Peltier 2019).  However, estimates of mixing 96 

efficiencies derived from observational data (e.g., Gregg et al 2018) necessarily tend toward an 97 

average (or “effective”) value, consistent with the canonical value of 0.2.  Without a framework 98 

for understanding field observations of turbulence comparatively with their smaller scale 99 

laboratory and DNS counterparts, relating these approaches will continue to be a challenging 100 

endeavour, compromising the use of DNS and laboratory experiments to inform understanding 101 

of turbulence at oceanic or atmospheric scales (e.g. Mashayek and Peltier, 2011; Odier et al 102 

2009).  103 

In this study, we seek an effective mechanism for explaining observed differences between ocean 104 

scale and laboratory/DNS scale turbulence, and propose a mechanistically based empirical 105 

framework for predicting turbulent quantities as a function of both the Richardson number and a 106 

layer Reynolds number, which encapsulates the effect of scale.  The focus of the effort is on the 107 

net effect of turbulent activity, rather than the internal dynamics of individual turbulent events 108 

and may prove most valuable in the interpretation of field scale measurements and their relation 109 

to laboratory/DNS studies.    110 

1.1 Length and velocity scales 111 

Turbulence in unbounded stratified-shear environments is characterized by the presence of 112 

gradients in both density and velocity, generating competing influences towards stability and 113 

instability, respectively.  This imbalance is typically characterized by a gradient Richardson 114 

number: 115 
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𝑅𝑖* = − *
,"

-,
-.
/-$
-.
0
12

     (1) 116 

where g represents gravitational acceleration, r is density (with  a representative value), and u 117 

represents the horizontal velocity.  Note that u and r in (1) are intended to be instantaneous, 118 

highly resolved representations of the local velocity and density fields.  As noted by Miles 119 

(1961) and Howard (1961), a value of Rig less than or equal to 0.25 is a necessary condition for 120 

the generation of instabilities and turbulence.  Turbulence in stratified shear environments can be 121 

initiated by the development of vortices, such as Kelvin-Helmholtz billows (Thorpe 1969), or 122 

Holmboe instabilities (e.g., Smyth and Peltier 1989; Lawrence et al 2013, Salehipour et al 123 

2016a), which subsequently decay to turbulence, as shown in figure 1.  Here, the fluids at the top 124 

and bottom are of constant velocity and density, and are separated by the stratified-shear layer, of 125 

order h in vertical extent.  The entire flow structure is distant from any boundaries which could 126 

impose a boundary layer across the region.  In many ocean environments the extent of the shear 127 

and density gradient layers do not exactly overlap.  In these cases, an approximation of h can be 128 

generated considering the flux of density anomalies relative to each layer.  129 

The outer, or overturning, scale of the Kelvin-Helmholtz process (e.g., figure 1) is related to the 130 

Ozmidov scale (e.g. Gregg 1987), 𝐿4 = (𝜀𝑁18)
#
$, where e represents the dissipation rate of 131 

turbulent kinetic energy (TKE) and   𝑁 = [−(𝑔 𝜌=⁄ )(𝜕𝜌 𝜕𝑧⁄ )]
#
$ is the buoyancy frequency.  The 132 

ratio of the overturning scale to the Ozmidov scale is a function of the turbulence age (e.g. 133 

Smyth et al 2001), but is typically of order one (Ferron et al 1998, MacDonald et al 2013), 134 

particularly in the aggregate for stratified shear turbulence.  Although Geyer et al (2010) 135 

observed overturn-like structures at scales an order of magnitude or more larger than the 136 

ρo
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Ozmidov scale in estuarine stratified shear flows using acoustic techniques, actual mixing 137 

processes in that study appeared to be associated with the order Lo overturns embedded in the 138 

braids of the larger structure.  At the other end of the turbulent spectra, the smallest scales are 139 

constrained by the transfer of TKE to heat by the fluid viscosity, and characterized by the 140 

Kolmogorov scale, 𝜂 = (𝜈8𝜖1E)
#
%, where n is the kinematic viscosity.  Similar dissipative 141 

processes for scalars (e.g., heat and/or salinity) occur at the related Bachelor scales. For ocean 142 

turbulence, 𝐿4 ≫ 𝜂, and both scales may be fundamentally different than the shear layer 143 

thickness, h, as illustrated in figure 1.   144 

Similarly, key velocity scales can be defined, including (1) the bulk velocity scale, Du, which 145 

represents the velocity difference between the upper and lower layers, (2) the turbulent velocity 146 

scale, 𝑢′, representative of the outer scale turbulent velocity, and here assumed equivalent to the 147 

turbulent shear velocity (i.e., 𝑢I~𝑢∗ = /L
,
0
#
$, where 𝜏 represents a turbulent interfacial stress), 148 

and (3) an entrainment velocity, 𝑤O, which represents the one-way entrainment of fluid across 149 

isopycnals (e.g., MacDonald and Geyer 2004). In many cases, researchers have assumed that the 150 

entrainment velocity scales with the turbulent velocity such that 𝑢′~𝑤O (e.g. Wells et al 2010; 151 

Strang and Fernando 2001), as entrainment and turbulence are related processes.  However, the 152 

entrainment process represents one-way transport of fluid across the shear layer, while the 153 

turbulent velocity scale represents a balanced exchange of fluid (MacDonald and Geyer 2004), 154 

and thus, these two parameters may differ substantially, as expressed by their ratio, 𝑎∗ =
$∗
P&

 155 

(Christodoulo 1986).  Likewise, we define a second velocity scale ratio 156 

  𝑎" = $∗
∆$

  (2A) 157 
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which represents the ratio of the turbulent to bulk velocity scales, and can be particularly useful 158 

for interpretation of field observations.  Note that 𝑎"2 is functionally equivalent to an interfacial 159 

drag coefficient, 𝐶RS, and also to a non-dimensional form of the eddy viscosity, T'
&∆$

.   160 

In our effort to parameterize turbulence as a function of bulk scale variables (e.g., those easily 161 

obtained from standard oceanographic measurements), the ratio 𝑎" represents a fundamental 162 

linkage between scales. It should be noted that combining 𝑎" and 𝑎∗ yields the entrainment ratio, 163 

𝐸 = P&
∆$
= V"

V∗
, often used to characterize turbulent intensity, particularly in early laboratory 164 

studies.   165 

1.2 Richardson number dependence 166 

Because of difficulties in measuring the gradients in (1) precisely, a practical approach is to 167 

consider a bulk Richardson number: 168 

      𝑅𝑖W = 𝑔′ℎ(∆𝑢)12    (2) 169 

where 𝑔I = 𝑔 ∆,
,"

 is a reduced gravity, representative of a broader portion of the water column. In 170 

this case, a higher critical value (often RiB on the order of 0.5 - 1) is typically considered (e.g., 171 

Fong and Geyer 2001; Pollard et al 1973; Price et al 1986), indicative of the fact that the local 172 

Rig value is likely to meet the critical condition of 1/4 in isolated regions when the higher bulk 173 

threshold is met.  Despite the utility of this approach, there is no general agreement on a critical 174 

value of RiB.  Turbulence has also long been characterized by the Reynolds number, defined in 175 

this context as 𝑹𝒆 = ℎ∆𝑢 𝜈⁄ , which represents the ratio of inertial to viscous forces. Despite the 176 

importance of Re in defining the transition from laminar to turbulent flow, it is generally 177 
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considered of second order importance in predicting important quantities such as the turbulent 178 

eddy viscosity, or turbulent velocity scales (expressed here in non-dimensional form as 𝑎" or E), 179 

once a critical threshold has been surpassed (e.g., Avila et al 2011). 180 

The use of RiB as a key diagnostic in the prediction of turbulence remains central to the  181 

turbulence closure schemes employed in ocean models (e.g. Large et al, 1994, Umlauf and 182 

Burchard 2003; Venayagamorthy et al 2003; Canuto et al 2010), and studies of entrainment also 183 

echo the dependence on RiB, or the related interfacial Froude number, 𝐹𝑟= = ∆𝑢(𝑔Iℎ)
#
$ = 𝑅𝑖W

1#$ 184 

(e.g., Wells et al 2010).  Frequently, turbulent quantities are also related to parameters such as 185 

𝑅𝑒^ =
_`
a

, 𝐹𝑟 = _
b`

, and 𝑅𝑒W =
c

ab$
  (e.g., Ivey et al 2008; Bouffard and Boegman 2013; 186 

Salehipour et al 2016b; Mashayek et al 2017b), which are fundamental ratios based on turbulent 187 

length, 𝑙, and velocity, 𝑞, scales, or the TKE dissipation rate itself.  These parameters typically 188 

involve some knowledge of the turbulence field a priori, so their utility in a purely prognostic 189 

sense is limited.   190 

Relationships based primarily on RiB have also been explored relative to recent DNS studies of 191 

stratified shear turbulence (e.g., Shih et al 2000; Smyth et al 2001; Smyth et al 2005; Mashayek 192 

and Peltier 2012), which are typically used to simulate relatively low Re flows (i.e. Re ~ 103-193 

104).  However, the utility of these results, or similar laboratory studies, to higher Reynolds 194 

number flows is unclear, and application to larger scales is often performed without the benefit 195 

of any existing guidance (e.g. Hetland 2010; Mashayek et al 2017b).   196 

Most measurements of turbulence in ocean and coastal environments (i.e. Re ~ 106-108)  have 197 

been undertaken directly using microstructure techniques (e.g., Lueck et al 2002, Nash et al 198 

2012; Stahr and Sanford 1999; Moum and Osborn 1986; Gargett 1978, Nash et al 2009; 199 
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MacDonald et al 2007), or inferred using control volume analyses(e.g. Horner-Devine et al 2013; 200 

Kilcher et al 2012; McCabe et al 2008; MacDonald and Geyer 2004; Kay and Jay 2003), or 201 

observations of overturn scales (e.g. Orton and Jay 2005; Ferron et al 1998; Dillon 1982), and 202 

typically focus on constraining terms in the turbulent kinetic energy (TKE) budget, or estimates 203 

of turbulent stress.  Ocean measurements typically rely on large ensembles of measurements 204 

(MacDonald et al 2013), and cannot provide the detailed mechanistic understanding available 205 

from laboratory experiments and DNS modelling.  Few attempts have been made to reconcile 206 

measurements of turbulence across these extreme ends of the Re spectrum.     207 

Christodoulo (1986) provides an excellent summary of early efforts to understand and 208 

parameterize interfacial mixing as a function of RiB, including Ellison and Turner (1959), Kato 209 

and Phillips (1969), Chu and Vanvari (1976), Pedersen (1980), and others, most of which 210 

represent laboratory studies of entrainment processes.  More recent laboratory investigations 211 

(e.g., Yuan and Horner-Devine 2013; Strang and Fernando 2001) have proven consistent with 212 

these earlier efforts.  However, it is likely that the data used to form these empirical relationships 213 

was influenced by other parameters in addition to RiB.  In particular, data from studies of 214 

stratified fjords (Buch 1980; with related data in Buch 1981; Buch 1982) was included in the 215 

Christodoulo (1986) assessment, which represent Re values an order of magnitude higher than 216 

the laboratory data. 217 

Following Imberger and Ivey (1991), and MacDonald and Geyer (2004), MacDonald and Chen 218 

(2012) proposed a non-dimensional mixing parameter , defined as: 219 

 𝜉 = W
*Ig$

  (3) 220 

 ξ
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Utilizing the flux Richardson number, 𝑅𝑖h =
W
i
, where	𝐵 = − *

,"
𝑤′𝜌′llllll represents the buoyancy 221 

flux, or conversion of TKE to potential energy through mixing, and 𝑃 = −𝑢I𝑤Illllll -$
-.

 is the shear 222 

production of TKE (Tennekes and Lumley 1972), this parameter can be rewritten in terms of E, 223 

or 𝑎", as: 224 

 𝜉 = nS(
nS)

𝑎∗2𝐸2 =
nS(
nS)

𝑎"2  (4) 225 

Equation (4) provides a means of directly comparing measurements of E (typically laboratory 226 

studies) with measurements of TKE quantities expressed as x (typically field measurements), 227 

and/or expressing both in terms of the ratio 𝑎".  A relationship for 𝑎∗ based on RiB(e.g. 228 

Christodoulo 1986; Kato and Philips 1969; Pollard, Rhines and Thompson 1973; and Price 229 

1979): 230 

 𝑎∗ = 𝑐E𝑅𝑖W														𝑅𝑖W > ~101E (5) 231 

 𝑎∗ = 𝑐2𝑅𝑖W
#
$ 														𝑅𝑖W < ~101E 232 

Independent estimates of both E and x are reported for the Fraser River near field plume in 233 

MacDonald and Geyer (2004).  These two observed values are consistent with the relationships 234 

shown in Equations (4) and (5).  Additionally, unlike 𝑎" and E, 𝑎∗ is a ratio of two turbulent 235 

scales, and does not reflect any bulk flow scales.  Thus, we hypothesize that (5) adequately 236 

expresses the empirical variability in 𝑎∗, suggesting that (5) is consistent across large ranges of 237 

Re. 238 

Rif is often assumed constant at a value of approximately 0.18 to 0.2 (Gregg et al 2018) for 239 

stratified shear flows, particularly in the analysis of field observations.  Alternatively, DNS 240 

evidence suggests that Rif varies substantially throughout the evolution and decay of a single 241 
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Kelvin Helmholtz billow (Smyth et al 2001; Salehipour and Peltier 2019).  The assumption of a 242 

constant value of Rif for analysing field observations illustrates the inherent issues with 243 

extrapolating DNS or laboratory experiments, often focused on an individual overturning event, 244 

to the field scale, where water mass modifications are driven by the net impact of many 245 

individual events.   246 

Here, we follow Gregg et al (2018) and focus on the integrated effects of many billows resulting 247 

in net mixing in the ocean environment.  However, a decreasing value of Rif under conditions of 248 

very low stratification, and thus decreasing RiB, must be accounted for (e.g., Balmforth et al 249 

1998; Peltier and Caulfield 2003; Venayagamoorthy and Koseff 2016), as stratification is 250 

necessary for the conversion of TKE to potential energy.  In the analyses that follow, these two 251 

observations are represented empirically as:  252 

     𝑅𝑖h = 0.18(1 + 0.01𝑅𝑖W12)1E    (6) 253 

as shown in figure 2.  This approximation is restricted to naturally occurring turbulence in 254 

stratified shear flows generated through KH instabilities, where the ratio  w"
w'

 is of order one.  The 255 

exact nature of Rif variability, particularly at the single overturn scale, remains a subject of open 256 

scientific debate (e.g. Lozovatsky and Fernando 2012), and may ultimately depend on the 257 

organization of locally critical turbulent patches within the larger flow structure (e.g., Salehipour 258 

et al 2018; Smyth et al 2019).  However, given the focus of the present analysis on net mixing 259 

processes, the parameterization in (6) provides an effective means of addressing the issue of 260 

mixing efficiency.       261 
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1.3 The effect of scale 262 

Unlike 𝑎∗, the ratio 𝑎" does not appear to be consistent across scales, a characteristic also 263 

extended to related variables x and E.  The plot in figure 3 shows turbulence data from a variety 264 

of sources, including both laboratory and field data, reduced to 𝑎" and plotted as a function of 265 

RiB.  Data represented includes the compiled data utilized by Christodoulo (1986), as well as 266 

dashed lines approximating his proposed power law relationships, transformed to 𝑎" using 𝐸 = V"
V∗

, 267 

and (5).  Additional data has been drawn from field studies referenced in Wells et al (2010) and 268 

Cenedese and Adduce (2010), with certain studies (e.g., Girton and Sanford 2003; Peters and 269 

Johns 2005; Arneborg et al 2007) removed due to the influence of bottom boundary layers.  270 

Likewise, the laboratory data of Cenedese and Adduce (2008) has not been included due to the 271 

potential for bottom boundary layer influence.  However, recent data from a range of unbounded 272 

shear stratified flows, including several recent river plume studies (e.g., MacDonald et al 2007; 273 

Kilcher et al 2012), and recent laboratory data from Yuan and Horner-Devine (2013) have been 274 

added.   275 

Small scale stratified shear layers are represented in Figure 3 exclusively by laboratory 276 

data. DNS studies, which cover a similar parameter space to laboratory studies often focus 277 

primarily on the internal dynamics of KH billows or similar instabilities, and rarely report mean, 278 

or net, turbulent quantities.  DNS results can also be highly sensitive to initial and boundary 279 

conditions (Palma 2018), and thus may not always be directly comparable to naturally occurring 280 

flows.  For example, arbitrary domain lengths for DNS simulations can alter the natural 281 

wavelength of KH instabilities and ultimately affect their energetics.  Because laboratory 282 

experiments result in non-constrained billow evolution, they are used here to represent small 283 
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scale stratified shear flows.  However, carefully initialized and bounded DNS experiments will 284 

undoubtedly play an important future role in refining the proposed parameterizations.  285 

Note that the majority of the field data in figure 3 falls one to two orders of magnitude 286 

below laboratory data at similar values of RiB, but that a continuum of 𝑎" values exists spanning 287 

the range from approximately 3x10-3 to 4x10-1.		Clearly, the observed variability cannot be 288 

attributed solely to RiB, with Re a logical parameter to explore further, as a representation of 289 

scale.  In fact, a dimensional analysis for the dependence of unbounded stratified shear 290 

turbulence on bulk flow variables and fluid properties (i.e., h, ∆𝑢, 𝑔′, and 𝜈) results in only two 291 

independent non-dimensional parameters, RiB and Re.		Although Re, which varies for the data 292 

shown in figure 3 from 102 to 108, can provide some segregation of the data, no clear relationship 293 

is apparent.   294 

The empirical relation proposed by Cenedese and Adduce (2010) suggests a positive 295 

correlation between Re and E, such that higher Re flows are generally associated with higher 296 

entrainment, although this dependence collapses for low values of RiB. This stands in contrast to 297 

the values of 𝑎" (equivalent to 𝑎∗𝐸) plotted in figure 3.  However, the data set explored in 298 

Cenedese and Adduce (2010) contained a limited amount of field data at high Re, including 299 

several experiments which appear to have significant bottom boundary layer influence.  300 

Furthermore, the represented field data is biased towards higher values of RiB, with no 301 

observations of ocean scale flows at subcritical RiB values.  Thus, the decrease in turbulence 302 

observed by Cenedese and Adduce (2010) for geophysical scale observations, which they 303 

attributed to supercritical RiB values (or subcritical Froude numbers) in their parameterization, 304 

may, in fact, be attributable to the high Re values associated with these flows. 305 
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The distribution of data in figure 3 clearly demonstrates the need for a multi-dimensional 306 

parameterization for stratified shear turbulence.  Salehipour et al (2016b) describe a multi-307 

dimensional parameterization for the turbulent mixing efficiency in terms of Rig and ReB, 308 

similar in some respects to the effort undertaken here, but their parameterization does not address 309 

overall scale of the stratified shear layer.  Here, the overall layer thickness, h, is considered a key 310 

parameter in setting the turbulence intensity, as described by 𝑎".  The remainder of this 311 

manuscript discusses a new approach to parameterizing 𝑎" as a function of both RiB and Re, using 312 

an approach that correlates Re to a ratio of length scales, &
'
.  The connection between Re and &

'
  is 313 

defined in Section 2 along with an overview of the quasi-empirical approach employed to 314 

investigate the proposed relationships.  Section 3 proposes specific physical mechanisms linking 315 

the length scale ratio to the magnitude of 𝑎", while Section 4 defines the new relationship in terms 316 

of a new “Turbulent Geography” that represents the value of 𝑎" in the two-dimensional, RiB – Re 317 

plane.  A summary is provided in Section 5.   318 

  2. The Case for Re Parameterization 319 

As discussed above, the data distribution in figure 3 emphasizes the need for a multi-dimensional 320 

parameterization for stratified shear turbulence, and dimensional analysis suggests that RiB and 321 

Re may be the only relevant bulk scale parameters.  Although a multivariate regression could be 322 

utilized to predict the value of 𝑎" as a function of RiB and Re using the data shown in figure 3, it 323 

would lack any valid physical interpretation.  Additionally, there are significant gaps of data 324 

within the RiB – Re parameter space, such that any attempt at a purely statistical regression of the 325 

figure 3 data would be poorly constrained.  Instead of focusing strictly on the inertial/viscous 326 
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force comparison inherent in Re, ratios of the shear layer thickness, h, to fundamental turbulent 327 

length scales are explored.   328 

2.1 The 𝒉
𝜼
 ratio 329 

In an attempt to compare a turbulent length scale to the layer thickness, h, use of the 330 

Ozmidov scale as a representative turbulent length scale might appear to be the logical choice.  331 

However, utilizing the definition of the Ozmidov scale, 𝐿4 = (𝜀𝑁18)
#
$, and Equation (4), the 332 

ratio of these two scales can be shown to vary as &
w"
= 𝑅𝑖W

,
% }1 − 𝑅𝑖h~

1#$𝑎"1E, which would provide 333 

no additional value in the prediction of 𝑎" beyond RiB alone.  Instead, we focus on the ratio &
'
, 334 

which, following a similar derivation, can be related to Re as: 335 

	 	 	 	 &
'
= }1 − 𝑅𝑖h~

#
%𝑎"

#
$𝑅𝑒

,
%		 	 	 (7)	336 

The dependence of this ratio on Re can provide an alternative mechanism for observed 337 

variability in 𝑎".  Note that in practice, assuming a functionality of Rif as described by equation 338 

(6), the value of the }1 − 𝑅𝑖h~
#
% term in equation (7) varies from 0.95 to 1, so that it can 339 

effectively be considered negligible.   340 

The Buoyancy Reynolds Number, 𝑅𝑒� =
c

ab$
, and a related ratio, 𝐼 = w-

'
≈ 𝑎"

,
$ / nO

nS)
0
,
% =341 

𝑅𝑒�
%
,, have been used similarly to represent the separation between the smallest and largest 342 

turbulent overturns.  Bluteau et al (2013) found I to be moderately effective at predicting mixing 343 

efficiencies, and, ultimately turbulent diffusivities, utilizing the models of Shih et al (2005) and 344 
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Osborn (1980).  This approach, however, lacked skill compared to more direct representations of 345 

this scale separation, such as ReT.  Here we focus on the ratio &
'
, with its more direct correlation 346 

to Re, as a means of understanding the separation between turbulent and environmental scales.  347 

In this context note that (7) can be rewritten as &
'
= 𝑅𝑒

,
% / c&

∆$,
0
#
%, where the quantity in parentheses 348 

represents the ratio of TKE dissipation to a ratio reminiscent of the inertial scaling of Taylor (e.g. 349 

Taylor 1935; Vassilicos 2015).  However, in this case, h does not necessarily represent the outer 350 

scale of the turbulence, l, but the environmental scale of the shear layer.   351 

In figure 4, the data from figure 3 is plotted in RiB - &
'
 space.  The two panels of figure 5 352 

show more clearly the distribution of the data in the RiB - &
'
 plane, and the value of 𝑎" as a 353 

function of  &
'
.  In figure 6, 𝑎" is plotted against RiB for both low and high values of  &

'
. It should 354 

be noted that Re has been approximated for most of the “legacy data” (i.e., Ellison and Turner 355 

1959; Chu and Vanvari 1976; Pedersen 1980; Buch 1980) based on estimates of length and 356 

velocity scales that could be inferred from the original manuscripts based on the size of the 357 

experimental apparatus or observational context.  In these cases, a single representative value has 358 

been assigned for each data set.  While these estimates are only representative, the likely error in 359 

this approach is small compared to the Re parameter space spanning more than five orders of 360 

magnitude.    361 

The behaviour of 𝑎" in RiB -  &
'
 parameter space can be characterized by the following 362 

observations gleaned from inspection of figures 3 through 6: 363 
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a) 𝑎" decays for RiB values below ~ 0.1 (figure 3 and consistent with Christodoulo, 364 

1986). 365 

b) 𝑎" decays for increasing values of RiB, for turbulence at low values of &
'
, but 366 

remains relatively constant with increasing RiB for high values of &
'
 (figure 6). 367 

c) 𝑎" is amplified for low values of  &
'
 (figure 5). 368 

These observations can be explained by utilizing a “building block” theory, based on a 369 

turbulent generation length scale.  In the following sections, this theory is explained, proposed 370 

mechanisms are highlighted, and a mechanistically driven empirical approach is used to define 371 

the behaviour of 𝑎" in RiB -  &
'
  parameter space. 372 

2.2 Turbulent generation length scale theory 373 

A stratified shear flow with a given shear layer thickness, h, will become unstable and 374 

generate turbulence if the gradient Richardson number, Rig, becomes subcritical at some point 375 

within the shear layer.  The length scale across which Rig must be subcritical is not defined, but it 376 

is clear that it can be less than h (Garg et al 2000), and likely also less than Lo, given the 377 

effective use of smaller scale velocity perturbations to excite turbulence in DNS simulations (e.g. 378 

Smyth et al 2001), and the fact that a classic two-layer flow can spawn overturns significantly 379 

larger than the shear layer thickness (e.g., Thorpe 1969).  Once initiated, a single turbulent event 380 

may grow in scale up to or even exceeding the Lo limit, in the process forcing subcritical Rig 381 

values in adjacent regions of the shear layer, and thereby perpetuating the growth of the turbulent 382 

field. Thus, turbulence in a stratified shear flow can be conceptualized as constructed of turbulent 383 

“building blocks” or “cells”, with a turbulent generation length scale independent of both h and 384 
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Lo.  Assuming that this “building block” scale is sufficiently small that viscosity, 𝜈, is important, 385 

and utilizing 𝜀 as a proxy for available TKE in the system, dimensional analysis can only return 386 

the Kolmogorov scale, 𝜂, as an appropriate “building block” scaling.  Thus, the ratio &
'
 must be 387 

directly proportional to the number of “building blocks” contained within the shear layer.  This 388 

suggests that the smallest perturbations possible (anything smaller than this scale would be 389 

absorbed by internal friction) are responsible for the excitation of turbulence, which grows in 390 

size before retreating to a similar scale at the dissipative end of the turbulent cycle. 391 

Consideration of the &
'
 ratio allows for the proposal of mechanisms specific to each of the 392 

observations identified above.  To accelerate understanding of the overall relationship between 393 

𝑎", RiB, and &
'
, an empirical function, Φ� is defined based on each proposed mechanism, such that 394 

𝑎" can then be predicted as: 395 

     𝑎" = 𝑎"=ΦWΦwΦ�      (8)  396 

where ΦW, Φw, and Φ�  represent functions associated with specific proposed mechanisms which 397 

are discussed further in Section 3.  Each empirical function is constrained by several coefficients, 398 

the values of which are determined by a global least squares fit to the available data.  By using a 399 

mechanistically driven empirical approach, the functionality of 𝑎" can be explored, while 400 

developing a road map for more focused physical analysis of each relationship. 401 
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  3. The Turbulent Generation Mechanisms 402 

3.1 The base 𝒂� vs. RiB relationship 403 

Figure 6 (a) shows 𝑎" as a function of RiB for data with high values of  &
'
  only (i.e., &

'
>404 

600), representing turbulence that is generally unconstrained by the shear layer boundaries.  This 405 

plot suggests a relatively constant value of  𝑎" for RiB > ~1, and 𝑎" decreasing with decreasing RiB, 406 

for RiB < ~1, consistent with observation (a) in Section 2.1.  This form is consistent with the 407 

hypotheses of Christodoulo (1986), as shown by the dashed line in Figure 3.    408 

A decrease in 𝑎" at low RiB is expected due to the decreased importance of stratification in 409 

these environments (Forryan et al 2013).  Although unstratified, or minimally stratified, fluids 410 

are easily mixed, it is this relative ease of mixing that can result in the potentially 411 

counterintuitive result of decreased turbulence.  Relatively rapid homogenization of the fluid will 412 

eliminate the velocity shear necessary to generate turbulence, unless the shear is forced by a 413 

boundary layer such as an imposed wind stress, or a no-slip condition along a bottom boundary.     414 

Additionally, turbulence in the limit of low stratification may be substantially less energetic 415 

because it does not have to overcome the potential energy constraints of the density gradient.   416 

The bold line superimposed on figure 6 (a) is an approximation of the form of the 417 

empirical function, ΦW, designated to represent the observed trends in the base 𝑎" vs. RiB 418 

relationship: 419 

     Φ� = �1 + E
�#nS)

.#�
1E

     (9)  420 
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Here, m1, which controls the RiB value associated with the roll off of 𝑎", and n1, which controls 421 

the slope of 𝑎" decay for low RiB, are coefficients for which best fit values are determined in 422 

Section 4.   423 

3.2 Decay of 𝒂� For Large RiB 424 

The second key observation reported in Section 2.1 is the decay of 𝑎" for increasing RiB at 425 

low values of  &
'
, as illustrated by the data plotted in figure 6 (b).  As discussed in Section 2.2, we 426 

hypothesize that turbulence is initiated across length scales consistent with the building block 427 

scale when local values of Rig become subcritical.  The definition of RiB in Equation (2) 428 

essentially represents a larger scale perspective of Rig, or a ratio of the mean gradients, across the 429 

entire shear layer thickness, h.  However, due to natural fluctuations and perturbations related to 430 

layering, secondary interfaces, and residual turbulence, the value of Rig everywhere is not 431 

expected to equal RiB.  Riley and de Bruyn Kops (2003) have discussed the importance of 432 

subcritical Rig values at some point within the larger structure of a stratified flow in generating 433 

turbulence.  Thus, the mechanism proposed for this behaviour is statistically based, representing 434 

the likelihood that any subset of building blocks within the shear layer meets the critical 435 

condition criteria (i.e., a local value of 𝑅𝑖* <
E
�
).  As the thickness of the shear layer increases 436 

relative to the building block scale (i.e., larger values of &
'
), the likelihood that a critical condition 437 

occurs somewhere in the layer would also increase, as shown in Figure 7(a).  Conversely, as the 438 

value of RiB increases, it becomes less likely that isolated regions of Rig will fall below the 439 

critical value.   440 
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Once a local instability has been triggered within the shear layer, turbulent processes will 441 

work towards homogenizing the fluid across a patch with a vertical length scale consistent with 442 

Lo, resulting in decreased shear and stratification, and generally increasing local values of Rig 443 

within the patch.  However, at the top and bottom edges of this patch, gradients must increase, 444 

with a corresponding decrease in local Rig, in order to match the existing density and velocity 445 

profiles above and below the patch (as shown in Figure 7(b)), potentially forcing them into a 446 

subcritical condition, and resulting in the spread of turbulence throughout the shear layer.  In this 447 

manner, turbulence from a single instability may spread, similar to a single spark ultimately 448 

leading to a large inferno.  However, this spread of turbulence is likely to be damped for larger 449 

values of RiB if the gradients at the patch edges are not sufficiently increased to reach the critical 450 

condition, leading to the observed roll off behaviour.   451 

In order to capture this mechanism empirically, there are two dependencies to consider.  452 

First, the value of  𝑎" must roll off for increasing values of RiB.  Second, the value of RiB which 453 

triggers the roll off must vary with &
'
, such that no roll off occurs at sufficiently high values of &

'
.  454 

To accomplish this, two empirical functions are used.  Φw describes the “likelihood” mechanism 455 

that controls the decay of 𝑎" as a function of RiB:   456 

     Φ� =
E

}E��$�/0nS)
.$~

     (10)  457 

Similar to Equation (9), coefficients m2 and n2 control the rolloff location and slope, respectively.  458 

Note that m2 is modified by Φw�, which defines the scale dependence of the “likelihood” 459 

mechanism by adjusting the rolloff location as a function of &
'
: 460 
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     Φ�� =
E

�E��,/
1
20
.,
�
     (10)  461 

  An example of Φw� is shown in figure 8.  This function also exhibits a roll off and is 462 

equal to one for values of  &
'
 below a certain threshold.  This functionality is essential to limit the 463 

decay in 𝑎" from occurring for cases where RiB is less than the critical value of Rig.  Here, m3 and 464 

n3 similarly control rolloff location and slope. 465 

An example of Φw is illustrated by the dashed line in figure 6 (b).  This function 466 

effectively captures the decay of 𝑎" at large RiB, but asymptotes to one for low RiB.  Combining 467 

Φw with ΦW yields the relationship shown by the dash-dot line in figure 6 (b).   468 

3.3 Amplification of 𝒂� at small  𝒉
𝜼
 469 

    The last observation noted in Section 2.1 was the amplification of 𝑎" at low values of  &
'
, 470 

as seen in figure 5(b).  Despite the variability in 𝑎" for values of &
'
 > 600, which is also affected by 471 

RiB variability, we assume that  𝑎" is essentially constant with &
'
 within this portion of parameter 472 

space, such that the variability observed is a function of RiB.  As &
'
 decreases, however, a marked 473 

increase in 𝑎" is observed.  In interpreting figure 5(b), recall that Re has been estimated for 474 

several “legacy” studies, and that substantial variability is also described by RiB.  475 

Here, we invoke a mechanism based on recent efforts to quantify the difference between 476 

DNS and geophysical scale turbulence as the result of continuous (in the geophysical case) vs. 477 

intermittent (in the DNS case) forcing mechanisms (e.g.,  Holleman et al 2016; Zhou et al 2017). 478 
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Consider growing instabilities in a low &
'
 environment, which are subjected to a temporally 479 

varying stress profile as they expand beyond the limits of the stratified shear region, as opposed 480 

to instabilities which are wholly embedded in a uniform shear layer, and thus subject to a more 481 

continuous forcing profile.  This essentially results in an “energy compression” mechanism for 482 

low &
'
 regions.   In these cases, growth of turbulent billows into the unstratified regions above and 483 

below the stratified shear layer is not opposed by a background density gradient, so that most of 484 

the energy in the billow collapses back into the shear layer, resulting in an increased energy 485 

density within the shear layer.  In regions of high &
'
, the growing billows are not influenced by 486 

the stratified shear layer boundaries, and the energy is distributed more broadly, as shown in 487 

figure 9 (a).     488 

 Φ�	is the empirical function used to capture the variability of this energy compression 489 

mechanism: 490 

     Φ� = 1 + E

�%/
1
20
.%    (11)  491 

where m4 and n4 similarly describe the upturn location and slope, respectively.  An example of 492 

Φ�  is superimposed as the solid line on the data in figure 9(b).  Again, the spread of the data is 493 

not intended to be wholly described by the solid line representing Φ� , as much of the variability 494 

is the result of the other mechanisms described above, as well as an artifact of the assumption of 495 

constant Re for certain legacy data sets. 496 

   497 
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4. New Turbulent Regime Diagrams 498 

Combining the effects of the base relationship, the likelihood mechanism, and the energy 499 

compression mechanism following Eq. (8), the empirical functions presented in Section 3 can be 500 

combined to produce a predictive relationship for 𝑎".  This expression leaves a total of nine 501 

unresolved coefficients (m1 – m4, n1 – n4, and 𝑎"=), which are determined using a best fit approach 502 

with the existing data set.  This was accomplished through an iterative multivariate process with 503 

steps of increasing resolution, carried out until the calculated root mean square error 504 

asymptotically approached a minimum value.  The outcome of this effort yielded the coefficients 505 

presented in Table 1, with an R2 value of 0.85.  Despite the wide range of coefficient values, the 506 

range of the three key empirical functions (ΦW,Φw,Φ�) in Equation (8)  indicate comparable 507 

impacts on the value of  𝑎" across reasonable representative ranges of RiB and &
'
, as shown in 508 

Table 2.  509 

A plot of predicted 𝑎" values vs. measured values is shown in figure 10, indicating that almost all 510 

predicted data falls within a half order of magnitude of the measured values, which is robust 511 

given the accuracy expected of most measurements of turbulence in the ocean environment, as 512 

well as the necessity of approximating Re values for “legacy” data sets.  The fact that a strong fit 513 

is achieved is not surprising, given the large number of free coefficients in the empirical function 514 

analysis.  However, the intent of the exercise is not necessarily to provide a function capable of 515 

accurate predictions of 𝑎", but rather to explore the shape of the 𝑎" surface in the RiB - &
'
, or RiB – 516 

Re, plane, and its relationship to proposed mechanisms.  In this regard, the resulting relationship 517 

is sufficient to build intuition about the functionality of 𝑎".  However, the consistency of the 518 

coefficients, and the shape of the Φ� functions, lends further credibility to the analysis.  519 
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4.1 The 𝒂� surface in the RiB -  𝒉
𝜼
 plane 520 

Figure 11 shows contours of the 𝑎" surface, using the regression coefficients in Table 1, 521 

on the RiB – &
'
 plane, with the location of data from figure 3 superimposed.  Much like a 522 

topographic map, this and subsequent figures can be used to interpret the “geography” of 523 

turbulence in this wider parameter space.  Several interesting regions are immediately 524 

recognized.  The peak in 𝑎" near 𝑅𝑖W ≈ 0.25 and &
'
≈ 300, labeled as Region I in figure 11, is the 525 

focus of most laboratory and DNS experiments.  This region represents an optimal balance of 526 

stratification and shear, coupled with a sufficiently amplifying value of  &
'
, to achieve maximal 527 

turbulent energetics.   528 

At higher values of  &
'
 (~ 3x103 to 106) we observe the majority of the field-based data 529 

clustered near the top of a steep slope (Region II in figure 11), which falls off to low 𝑎" values for 530 

low values of RiB.  Along this slope, we see that the data is distributed with more coastal and 531 

estuarine field sites, including the MeRMADE (e.g. MacDonald et al 2007) and RISE (e.g. 532 

Kilcher et al 2012) plume studies as well as saline lake underflows (Dallimore et al 2001), lying 533 

at the low end of this &
'
 range and larger scale deep ocean overflows, including the Mediterranean 534 

(Johnson et al 1994; Barringer and Price 1997) and Faroes (Mauritzen 2005; Fer et al 2010) 535 

overflows, occupying the higher end.  Note that above a value of  &
'
≈ 3000,  𝑎" becomes 536 

primarily a function of RiB, as has been long reflected in turbulence closures (e.g. Burchard and 537 

Baumert 1995; Umlauf and Burchard 2005; Canuto et al 2010) for ocean models.  This region is 538 

reflective of the conditions across most of the unbounded stratified shear flows within the 539 
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world’s oceans, where RiB values cluster near ¼ due to inherent feedback mechanisms 540 

controlling turbulent evolution, and shear layers are thick enough that turbulent processes are 541 

unconstrained by shear layer thickness.  The feedback processes driving RiB to near a value of ¼ 542 

have been recently described in the context of marginal instability (Thorpe and Liu 2009; Smyth 543 

and Moum 2013; Howland et al 2018), an equilibrium between forcing mechanisms driving 544 

increased velocities (and lower RiB), and turbulence, which reduces velocity gradients and drives 545 

RiB values higher.  546 

Above this slope, the analysis suggests a broad plateau (Region III in figure 11), where 547 

high RiB values dominate across thick shear layers, but turbulence persists due to initiation by 548 

localized regions of subcritical Rig.  This region is characterized by a scarcity of data, with the 549 

exception of Fjord data (Buch 1980), and the upper limits of the ocean overflow data at the very 550 

top of Region II. 551 

At the far left of the turbulent landscape shown in figure 11 (i.e., &
'
≤ 10), a steep 552 

increase in 𝑎" is observed for very thin stratified shear layers.  Although the contours at this limit 553 

should be viewed with extreme caution, due to the lack of data in the region, a dichotomy of 554 

flows in this region might be expected.  The region with low &
'
 and high RiB would be 555 

characterized primarily by a small velocity gradient and a small to mid-range layer thickness.  In 556 

this region, stability, and a lack of turbulence, would be expected.  Conversely, the region with 557 

low &
'
 and low RiB would generally represent conventional two-layer flows, where the boundary 558 

between the two water masses is exceedingly narrow, and the influence of the “energy 559 

compression” mechanism is maximal.  Flows in this actively turbulent region would be 560 

necessarily transient, however, with rapid mixing thickening the gradient zone, and forcing the 561 
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flow to migrate across the turbulent landscape towards equilibrium conditions as suggested by 562 

the preponderance of data near Region I and the top of Region II.  In this regard, it should be 563 

noted that any flow may be migratory, as the effects of mixing modify the environment and thus 564 

alter both RiB and &
'
.  In many cases, the natural environment and forcing mechanisms may result 565 

in the flow converging towards one of the equilibrium zones in Regions I, II, or III, and ultimate 566 

maintenance of a “marginal instability” environment.  In others, initial stratification may be 567 

erased by mixing, resulting in a migration of the flow down the Region II slope towards 568 

vanishingly small values of RiB, where the water column becomes homogenized and stratified 569 

shear turbulence is not supported.       570 

4.2 Other views of the turbulent landscape 571 

 Given the ineffectiveness of the &
'
 ratio as a predictive tool, due to its inherent 572 

dependence on 𝑎" as well as Re, it is useful to recast the empirical equation strictly in terms of 573 

RiB and Re, which can easily be done by resorting to the definition of 	&
'
 in Equation 7, resulting 574 

in the plot of 𝑎" in the RiB – Re plane shown in figure 12.  As expected, this surface is similar to 575 

that shown in figure 11, with the same general regions as described in Section 4.1.  Although 576 

there is a lack of representative data in this region, it is interesting to note that the valley of low 𝑎" 577 

values at high RiB values and Re values on the order of 104 is separated from Region III by a 578 

steep wall, suggesting a very narrow transition between turbulence suppression and initiation for 579 

otherwise “stable” flows at mid-range Reynolds numbers.  Of course, without data in this region, 580 

this observation is purely speculative, but suggests an interesting region for further study. 581 
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 The surface in figure 12 is also superimposed with contours of the Buoyancy Reynolds 582 

Number, 𝑅𝑒� =
c

ab$
, which is frequently invoked as an indicator of fully three-dimensional 583 

turbulence, and an important parameter for scaling stratified shear turbulence (e.g. Maffiolli and 584 

Davidson 2016; Bartello and Tobias 2013; Smyth and Moum 2000).  An inspection of these 585 

contours shows some interesting alignment with the 𝑎" contours, particularly near the steep wall 586 

at the low Re boundary of Region III, but in general suggest little predictive capacity with 587 

regards to 𝑎".  This is likely a reflection of the fact that the values of Reb calculated here are based 588 

on bulk values of dissipation and buoyancy frequency across the entire stratified shear layer, 589 

rather than localized across turbulent events, which is the mode commonly employed for 590 

interpretation of Reb.  In the bulk sense, the value of Reb may lose meaning given the 591 

relationship of the overall layer to the turbulent generation length scale as characterized by the 592 

“likelihood mechanism” of figure 7. 593 

 Figure 13 shows the surface of x, derived from 𝑎" using Equations (4) and (6) in the RiB – 594 

Re plane.  While many regions remain similar to 𝑎", the most notable exception is the decay of x 595 

with increasing RiB across Region III.  This occurs because of the influence of RiB, representing 596 

the strength of the density gradient, in Equation (4).  In essence, flow environments which 597 

populate Region III are effective at producing TKE (and thus high values of 𝑎"), but the scale of 598 

the turbulence is inefficient to accomplish significant mixing due to the relative thickness of the 599 

layer and the resulting density gradient resulting low values of B, and ξ.  Hence, the turbulent 600 

energy is dissipated without substantially altering the overall structure of the flow.  601 
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5. Summary 602 

The effort presented here provides a new proposed regime diagram for turbulence in the RiB – Re 603 

plane and presents a mechanistic explanation for the observed phenomena.  Much like 16th 604 

century maps of the New World, this new geography is likely a crude representation of the actual 605 

landscape, however it provides the basis for further exploration.  Furthermore, rather than 606 

focusing on a bottom up approach to understanding turbulence by exploring phenomena at the 607 

smallest scales, it emphasizes the value of a top down approach based on bulk variables to 608 

provide effective parameterization of turbulence in unbounded stratified shear environments.  609 

Ultimately, this is in alignment with turbulence closure techniques which, by definition, must 610 

predict turbulent parameters at small scales from larger scale flow variables.  It should also be 611 

noted that the analysis discussed here is focused primarily on oceanic turbulence, although the 612 

basic principles should also apply to atmospheric turbulence (e.g. Lozovatsky and Fernando).    613 

An understanding of the new regimes presented here may lead to improved parameterizations 614 

and closures at smaller scales, particularly the laboratory and transitional scales below Re ~ 105 - 615 

106.  As computational power increases, allowing models of increasing resolution to simulate 616 

flows in complicated coastal bathymetries, such closures may be essential to provide accurate 617 

simulations.  Furthermore, an understanding of the new regimes will help to bridge the gap 618 

between DNS models, which are rarely run at Re values higher than ~104, and real ocean flows.     619 

The new regimes presented here, and the proposed mechanisms upon which they are based, may 620 

ultimately help to provide new answers to old turbulence questions.   621 
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• How is turbulence generated and maintained at high values of RiB?  The “likelihood 622 

mechanism” of figure 7, built on the idea of a fundamental length scale responsible for 623 

the generation of turbulence, provides a starting point.   624 

• What is the most meaningful scale to calculate Rig?  When this scale is consistent with 625 

the overall layer thickness, the likelihood of generating turbulence within the layer at 626 

values of RiB above ¼ should fall off dramatically.  Based on figure 11, a value on the 627 

order of &
'
~102 might best represent this range, suggesting that the appropriate Rig length 628 

scale might be on the order of 100𝜂.  Presumably this scale is also representative of the 629 

turbulent generation length scale.  Assuming representative TKE dissipation rates on the 630 

order of 10-4 W/Kg at the laboratory scale (e.g. Yuan and Horner-Devine 2013), 10-3 631 

W/Kg in a near field river plume (e.g., MacDonald et al 2007), and 10-6 W/Kg in a large 632 

scale ocean overflow (e.g., Mauritzen et al 2005), the appropriate length scales for 633 

calculating Rig would then be on the order of 3 cm, 2 cm, and 10 cm, respectively.  634 

Although these values appear reasonable, this issue would clearly benefit from further 635 

study.   636 

• What is a critical value for RiB?  Clearly, this depends on scale.  A reasonable starting 637 

point may be the line following the top of the steep wall that bounds Region III, as 638 

illustrated by the bold dashed line in figure 12. This line suggests a critical value of RiB 639 

on the order of 1 to 10 for laboratory scales and approaching 100 or higher at geophysical 640 

scales. Note that this line does not extend beyond the point where the layer thickness, h, 641 

is on the order of the turbulent generation length scale (i.e., &
'
~102), as discussed above.   642 
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In summary, the mechanistically based empirical analysis described here has provided insight 643 

into the continuum of stratified shear turbulence from laboratory to geophysical scales.  644 

Further efforts to refine these relationships may prove worthwhile.    645 
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Coefficient Value Description 

𝒂�𝒐 1.40 x 10-2 Base 𝑎4 value 

m1 4.83 x 100 Rolloff control for Φ6 

m2 1.95 x 104 Rolloff control for Φ7 

m3 1.92 x 10-8 Rolloff control for Φ78 

m4 2.95 x 10-10 Rolloff control for Φ9 

n1 9.67 x 10-1 Slope control for Φ6 

n2 5.59 x 10-1 Slope control for Φ7 

n3 4.50 x 100 Slope control for Φ78 

n4 3.06 x 100 Slope control for Φ9 

 877 
Table 1:  Coefficients for empirical functions derived from iterative least squares analysis. 878 
 879 
 880 
 881 

Function Range 

FB 
5 x 10-2 –  1 x 100 

FL 1 x 10-3 –  1 x 100 

FC 1 x 100 –  3 x 103 

 882 
Table 2:  Range of empirical functions utilizing coefficients shown in Table 1 with 883 
representative ranges of RiB = [10-2 102] and :

;
 = [102 105]. 884 

 885 
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Figure 1:  Progression of Kelvin-Helmholz billow evolution, from sheared flow (top) through (I) 
initial perturbation (II) generation of unstable billows and (III) the collapse to homogeneous 
turbulence, ultimately resulting in a broadening of the mixed layer (bottom) as the turbulence 
subsides.  Relevant length, density, and velocity scales, as described in the text, are illustrated on 
the figure. 
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Figure 2:  Simplified empirical relationships for Rif as a function of RiB, based on Equation (5). 

  



42 

 
 

 
Figure 3:  Plot of 𝑎4 vs. RiB for data from identified sources, representing laboratory, river plume, 
and ocean overflow environments.  Dashed lines are consistent with the slope of the proposed 
power law relationships of Christodoulo (1986), as modified by Equation (4). 
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Figure 4:  Three dimensional plot of 𝑎4 in RiB - 

:
;

 parameter space.  Legend as shown in Figure 3. 
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Figure 5:  (a) Distribution of data in the RiB - :;  plane, and (b) 𝑎4 as a function of  :

;
. Note that Re has 

been estimated for Legacy data, resulting in the uniformity of these data sets along distinct diagonal lines.  
Legend as in Figure 3.  

  

Ri
B

(a)

(b)

10-2

10-1

100

101

102

103

10-3

10-2

10-1

â
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Figure 6:  𝑎4 as a function of RiB for (a) :

;
 > 600 (a) and (b) :

;
 < 600.  Legend as in Figure 3.  Example of 

the general shape of empirical functions Φ6, Φ7, and Φ6Φ7 shown by the solid, dashed, and dash-dot 
lines, respectively. 
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Figure 7:  (a) Cartoon of “likelihood mechanism”.  Thicker layers (i.e., higher &

'
 values) offer 

more opportunities for inconsistencies in the density and velocity profiles to achieve locally 
subcritical values of Rig (as shown by the deviations of the gray dashed profile from the solid 
profile).  Once turbulence is initiated in one “building block”, resulting impacts to the local 
density and velocity profiles will force neighbouring values of Rig subcritical and perpetuate the 
turbulence. (b) Schematic of the spread of turbulence, showing simplified velocity profiles.  A 
critical condition in the profile on the left (identified by the red ellipse) initiates a turbulent event 
which homogenizes a region in the profile on the right, forcing two new critical conditions due to 
the compression of existing gradients.   
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Figure 8:  Example showing form of Φw�.  Note that value asymptotes to 1 (i.e., 100) for low 
values of  &

'
, ensuring that the roll of point cannot impede beyond the critical Rig value. 
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Figure 9: (a) Cartoon of energy compression mechanism.  Large &

'
 ratios (left) result in turbulent 

evolution that is not impacted by the layer thickness, h.  Small &
'
 ratios (right) result in energy 

dissipation and mixing primarily within the gradient layer, which may be smaller than the natural 
KH billow scale.  (b) Data from figure 5(b) with example of Φ�  (solid line) overlaid.  Note that 
Φ�  is not intended to explain all of the variability in the data but to describe the general trend of 
the fraction of variability due to the proposed energy compression mechanism.  
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Figure 10:  Predicted 𝑎4 vs. observed 𝑎4, using Equation 7, and the coefficients in Table 1.  The 
relationship yields a R2 value of 0.8259.  The solid line represents a 1:1 relationship, while the dashed 
lines are offset by a half order of magnitude to each side.  The vast majority of the predicted data falls 
within the half order of magnitude boundaries.  See Figure 3 for data legend. 
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Figure 11: Contours of 𝑎4 in the RiB - 𝒉

𝜼
 plane, calculated using Equation 7, and the coefficients in 

Table 1.  Data from Figure 3 is overlain to indicate distribution of data in the RiB - 𝒉𝜼 plane.  
Rectangular boxes labelled I, II, and III represent specific dynamical regions, as described in the 
text.  See Figure 3 for data legend. 
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Figure 12: Contours of 𝑎	=  (solid) in the RiB - Re plane, calculated using Equation 7, and the 
coefficients in Table 1.  Dashed contours represent the value of 𝑅𝑒W =

c
ab$

 (based on bulk flow 
variables). Data from Figure 3 is overlain to indicate distribution of data in the RiB-Re plane.  
The bold dashed black line represents an approximation of “critical” RiB value as a function of 
scale.  See Figure 3 for data legend. 
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Figure 13: Contours of 𝜉 in the RiB - Re plane, calculated using Equation 7, and the coefficients in 
Table 1.  Data from Figure 3 is overlain.  See Figure 3 for data legend. 
 
 
 


