Data Availability Statement
All data used in this study is made available in this article and its supporting information. All geochemical data processed in this study will be submitted to the EarthChem Database.
References
Ahm, A.S.C., Bjerrum, C.J., Blättler, C.L., Swart, P.K., and Higgins, J.A., 2018, Quantifying early marine diagenesis in shallow-water carbonate sediments: Geochimica et Cosmochimica Acta, v. 236, p. 140–159, doi:10.1016/j.gca.2018.02.042.
Bartlett, R., Elrick, M., Wheeley, J.R., Polyak, V., Desrochers, A., and Asmerom, Y., 2018, Abrupt global-ocean anoxia during the Late Ordovician – early Silurian detected using uranium isotopes of marine carbonates: Proceedings of the National Academy of Sciences, v. 115, p. 5896–5901, doi:10.1073/pnas.1802438115.
Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003, High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass: Geological Society of America Bulletin, v. 115, p. 89–104, doi:10.1130/0016-7606(2003)115<0089.
Brenchley, P.J., Marshall, J.D., and Underwood, C.J., 2001, Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician: Geological Journal, v. 36, p. 329–340, doi:10.1002/gj.880.
Burke, A. et al., 2018, Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle: Earth and Planetary Science Letters, v. 496, p. 168–177, doi:10.1016/j.epsl.2018.05.022.
Desrochers, A., Farley, C., Achab, A., Asselin, E., and Riva, J.F., 2010, A far-field record of the end Ordovician glaciation : The Ellis Bay Formation , Anticosti Island , Eastern Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 296, p. 248–263, doi:10.1016/j.palaeo.2010.02.017.
Finnegan, S., Bergmann, K., Eiler, J.M., Jones, D.S., Fike, D.A., Eisenman, I., Hughes, N.C., Tripati, A.K., and Fischer, W.W., 2011, The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation: Science, v. 331, p. 903–906, doi:10.1126/science.1200803.
Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R.L., Jacobson, S.R., Québec, C.G. De, Canada, G. V, and Noble, P.J., 1999, Late Ordovician mass extinction : A new perspective from stratigraphic sections in central Nevada: Geology, p. 215–218.
Finney, S.C., Cooper, J.D., and Berry, W.B.N., 1997, Late Ordovician Mass Extinction: Sedimentologic, Cyclostratigraphic, and Biostratigraphic Records from Platform and Basin Successions, Central Nevada: Brigham Young University Geology Studies, v. 42, p. 79–103.
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., and Hartman, B., 1978, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic : suhoxic diagenesis: Geochimica et Cosmochimica Acta, v. 43, p. 1075–1090.
Ghienne, J.F. et al., 2014, A Cenozoic-style scenario for the end-ordovician glaciation: Nature Communications, v. 5, doi:10.1038/ncomms5485.
Gill, B.C., Lyons, T.W., and Frank, T.D., 2008, Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy: Geochimica et Cosmochimica Acta, v. 72, p. 4699–4711, doi:10.1016/j.gca.2008.07.001.
Goldman, D., Sadler, P.M., and Leslie, S.A., 2020, Chapter 20 – The Ordovician Period: BV, 489–523 p., doi:10.1016/B978-0-444-63798-7.00020-3.
Gomes, M.L., and Hurtgen, M.T., 2015, Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate-sulfide isotope records: Geochimica et Cosmochimica Acta, v. 157, p. 39–55, doi:10.1016/j.gca.2015.02.031.
Hammarlund, E.U., Dahl, T.W., Harper, D.A.T., Bond, D.P.G., Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A., and Canfield, D.E., 2012, A sulfidic driver for the end-Ordovician mass extinction: Earth and Planetary Science Letters, v. 331–332, p. 128–139, doi:10.1016/j.epsl.2012.02.024.
Haq, B.U., and Schutter, S.R., 2008, A Chronology of Paleozoic Sea-Level Changes: Science, v. 322, p. 64–68, doi:10.1126/science.1161648.
Hardisty, D.S. et al., 2017, Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate: Earth and Planetary Science Letters, v. 463, p. 159–170, doi:10.1016/j.epsl.2017.01.032.
Hardisty, D.S., Horner, T.J., Evans, N., Moriyasu, R., Babbin, A.R., Wankel, S.D., Moffett, J.W., and Nielsen, S.G., 2020, Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone: Earth and Planetary Science Letters, v. 554, p. 116676, doi:10.1016/j.epsl.2020.116676.
Hardisty, D.S., Lu, Z., Planavsky, N.J., Bekker, A., Philippot, P., Zhou, X., and Lyons, T.W., 2014, An iodine record of Paleoproterozoic surface ocean oxygenation: Geology, v. 42, p. 619–622, doi:10.1130/G35439.1.
Hardisty, D.S., Lyons, T.W., Riedinger, N., Isson, T.T., Owens, J.D., Aller, R.C., Rye, D.M., Planavsky, N.J., Asael, D.A.N., and Johnston, D.T., 2018, An Evaluation of Sedimentary Molybdenum and Iron as Proxies for Pore Fluid Paleoredox Conditions: American Journal of Science, v. 318, p. 527–556, doi:10.2475/05.2018.04.
Harper, D.A.T., Hammarlund, E.U., and Rasmussen, C.M.Ø., 2014, End Ordovician extinctions: A coincidence of causes: Gondwana Research, v. 25, p. 1294–1307, doi:10.1016/j.gr.2012.12.021.
Horita, J., Zimmermann, H., and Holland, H.D., 2002, Chemical evolution of seawater during the Phanerozoic: Geochimica et Cosmochimica Acta, v. 66, p. 3733–3756, doi:10.1016/S0016-7037(01)00884-5.
Hu, D., Zhang, X., Zhou, L., Finney, S.C., and Liu, Y., 2017, 87 Sr / 86 Sr evidence from the epeiric Martin Ridge Basin for enhanced carbonate weathering during the Hirnantian: Scientific Reports, p. 1–7, doi:10.1038/s41598-017-11619-w.
Jones, D.S., Brothers, R.W., Ahm, A.C., Slater, N., Higgins, J.A., and Fike, D.A., 2020, Sea level, carbonate mineralogy, and early diagenesis controlled δ 13C records in Upper Ordovician carbonates: Geology, v. 48, p. 1–6, doi:10.1130/G46861.1/4902172/g46861.pdf.
Jones, D.S., Creel, R.C., and Rios, B.A., 2016, Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone , eastern Great Basin , USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 458, p. 85–101, doi:10.1016/j.palaeo.2016.01.036.
Jones, D.S., and Fike, D.A., 2013, Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S: Earth and Planetary Science Letters, v. 363, p. 144–155, doi:10.1016/j.epsl.2012.12.015.
Jones, D.S., Fike, D.A., Finnegan, S., Fischer, W.W., Schrag, D.P., and McCay, D., 2011, Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Quebec, Canada): Geological Society of America Bulletin, v. 123, p. 1645–1664, doi:10.1130/B30323.1.
Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T., and Nõlvak, J., 2011, Katian prelude to the Hirnantian (Late Ordovician) mass extinction: A Baltic perspective: Geological Journal, v. 46, p. 464–477, doi:10.1002/gj.1301.
Kaljo, D., Hints, L., Martma, T., and Nõlvak, J., 2001, Carbon isotope stratigraphy in the latest Ordovician of Estonia: Chemical Geology, v. 175, p. 49–59, doi:10.1016/S0009-2541(00)00363-6.
Kiipli, E., and Kiipli, T., 2020, Hirnantian sea-level changes in the Baltoscandian Basin, a review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 540, p. 109524, doi:10.1016/j.palaeo.2019.109524.
Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S., and Sheehan, P.M., 1999, A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 152, p. 173–187, doi:10.1016/S0031-0182(99)00046-2.
Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., and Paytan, A., 2003, Early Cenozoic decoupling of the global carbon and sulfur cycles: Paleoceanography, v. 18, doi:10.1029/2003PA000908.
Lang, X., Tang, W., Ma, H., and Shen, B., 2020, Local environmental variation obscures the interpretation of pyrite sulfur isotope records: Earth and Planetary Science Letters, v. 533, p. 1–7, doi:10.1016/j.epsl.2019.116056.
LaPorte, D.F., Holmden, C., Patterson, W.P., Loxton, J.D., Melchin, M.J., Mitchell, C.E., Finney, S.C., and Sheets, H.D., 2009, Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 276, p. 182–195, doi:10.1016/j.palaeo.2009.03.009.
Lu, W. et al., 2018, Late inception of a resiliently oxygenated upper ocean: Science, v. 177, p. 174–177, doi:10.1126/science.aar5372.
Lu, Z., Jenkyns, H.C., and Rickaby, R.E.M., 2010, Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events: Geology, v. 38, p. 1107–1110, doi:10.1130/G31145.1.
Melchin, M.J., Mitchell, C.E., Holmden, C., and Štorch, P., 2013, Environmental changes in the late ordovician-early silurian: Review and new insights from black shales and nitrogen isotopes: Bulletin of the Geological Society of America, v. 125, p. 1635–1670, doi:10.1130/B30812.1.
Murphy, M.A., Dunham, J.B., Berry, W.B.N., and Matti, J.C., 1979, Late Llandovery Unconformity in Central Nevada: Brigham Young University Geology Studies, v. 26, p. 21–36.
Neretin, L.N., Volkov, I.I., Böttcher, M.E., and Grinenko, V.A., 2001, A sulfur budget for the Black Sea anoxic zone: Deep-sea Research I, v. 48, p. 2569–2593.
Pasquier, V., Bryant, R.N., Fike, D.A., and Halevy, I., 2021, Strong local, not global, controls on marine pyrite sulfur isotopes: Science Advances, v. 7, p. 1–11.
Pope, M.C., and Steffen, J.B., 2003, Widespread, prolonges late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology, v. 31, p. 63–66, doi:10.1130/0091-7613-31.1.e28.
Present, T.M., Paris, G., Burke, A., Fischer, W.W., and Adkins, J.F., 2015, Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata: Earth and Planetary Science Letters, v. 432, p. 187–198, doi:10.1016/j.epsl.2015.10.005.
Rasmussen, C.M.Ø., and Harper, D.A.T., 2011, Did the amalgamation of continents drive the end Ordovician mass extinctions ? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 311, p. 48–62, doi:10.1016/j.palaeo.2011.07.029.
Rasmussen, C.M.Ø., Kröger, B., Nielsen, M.L., and Colmenar, J., 2019, Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions: Proceedings of the National Academy of Sciences, p. 1–7, doi:10.1073/pnas.1821123116.
Reinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill, B.C., Lalonde, S. V., Bekker, A., Konhauser, K.O., and Lyons, T.W., 2013, Proterozoic ocean redox and biogeochemical stasis: Proceedings of the National Academy of Sciences, v. 110, p. 5357–5362, doi:10.1073/pnas.1208622110.
Rue, E.L., Smith, G.J., and Bruland, K.W., 1997, The response of trace element redox couples to suboxic conditions in the water column: Deep-sea Research I, v. 44, p. 113–134.
Sim, M.S., 2019, Effect of sulfate limitation on sulfur isotope fractionation in batch cultures of sulfate reducing bacteria: Geosciences Journal, v. 23, p. 687–694.
Stockey, R.G., Cole, D.B., Planavsky, N.J., Loydell, D.K., Frýda, J., and Sperling, E.A., 2020, Persistent global marine euxinia in the early Silurian: Nature Communications, v. 11, p. 1804, doi:10.1038/s41467-020-15400-y.
Swart, P.K., and Oehlert, A.M., 2018, Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis: Sedimentary Geology, v. 364, p. 14–23, doi:10.1016/j.sedgeo.2017.12.005.
Toyama, K., Paytan, A., Sawada, K., and Hasegawa, T., 2020, Sulfur isotope ratios in co-occurring barite and carbonate from Eocene sediments : A comparison study: Chemical Geology, v. 535, p. 119454, doi:10.1016/j.chemgeo.2019.119454.
Trotter, J.A., Williams, I.S., Barnes, C.R., Lécuyer, C., and Nicoll, R.S., 2008, Did Cooling Oceans Trigger Orovician Biodiversification? Evidence from Conodont Thermometry: Science, v. 321, p. 550–554, doi:10.1126/science.1155814.
Yao, W., Paytan, A., Griffith, E.M., Martínez-ruiz, F., Markovic, S., and Wortmann, U.G., 2020, A revised seawater sulfate S-isotope curve for the Eocene: Chemical Geology, v. 532, p. 119382, doi:10.1016/j.chemgeo.2019.119382.
Young, S.A., Saltzman, M.R., Ausich, W.I., Desrochers, A., and Kaljo, D., 2010, Did changes in atmospheric CO2 coincide with latest Ordovician glacial–interglacial cycles? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 296, p. 376–388, doi:10.1016/j.palaeo.2010.02.033.
Zhou, L., Algeo, T.J., Shen, J., Hu, Z.F., Gong, H., Xie, S., Huang, J.H., and Gao, S., 2015, Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 420, p. 223–234, doi:10.1016/j.palaeo.2014.12.012.
Zou, C., Qiu, Z., Poulton, S.W., Dong, D., Wang, H., Chen, D., Lu, B., Shi, Z., and Tao, H., 2018, Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction: Geology, v. 46, p. 535–538, doi:10.1130/G40121.1.