Data Availability Statement
All data used in this study is made available in this article and its
supporting information. All geochemical data processed in this study
will be submitted to the EarthChem Database.
References
Ahm, A.S.C., Bjerrum, C.J., Blättler, C.L., Swart, P.K., and Higgins,
J.A., 2018, Quantifying early marine diagenesis in shallow-water
carbonate sediments: Geochimica et Cosmochimica Acta, v. 236, p.
140–159, doi:10.1016/j.gca.2018.02.042.
Bartlett, R., Elrick, M., Wheeley, J.R., Polyak, V., Desrochers, A., and
Asmerom, Y., 2018, Abrupt global-ocean anoxia during the Late Ordovician
– early Silurian detected using uranium isotopes of marine carbonates:
Proceedings of the National Academy of Sciences, v. 115, p. 5896–5901,
doi:10.1073/pnas.1802438115.
Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D.,
Martma, T., Meidla, T., and Nõlvak, J., 2003, High-resolution stable
isotope stratigraphy of Upper Ordovician sequences: Constraints on the
timing of bioevents and environmental changes associated with mass:
Geological Society of America Bulletin, v. 115, p. 89–104,
doi:10.1130/0016-7606(2003)115<0089.
Brenchley, P.J., Marshall, J.D., and Underwood, C.J., 2001, Do all mass
extinctions represent an ecological crisis? Evidence from the Late
Ordovician: Geological Journal, v. 36, p. 329–340, doi:10.1002/gj.880.
Burke, A. et al., 2018, Sulfur isotopes in rivers: Insights into global
weathering budgets, pyrite oxidation, and the modern sulfur cycle: Earth
and Planetary Science Letters, v. 496, p. 168–177,
doi:10.1016/j.epsl.2018.05.022.
Desrochers, A., Farley, C., Achab, A., Asselin, E., and Riva, J.F.,
2010, A far-field record of the end Ordovician glaciation : The Ellis
Bay Formation , Anticosti Island , Eastern Canada: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 296, p. 248–263,
doi:10.1016/j.palaeo.2010.02.017.
Finnegan, S., Bergmann, K., Eiler, J.M., Jones, D.S., Fike, D.A.,
Eisenman, I., Hughes, N.C., Tripati, A.K., and Fischer, W.W., 2011, The
Magnitude and Duration of Late Ordovician-Early Silurian Glaciation:
Science, v. 331, p. 903–906, doi:10.1126/science.1200803.
Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R.L., Jacobson,
S.R., Québec, C.G. De, Canada, G. V, and Noble, P.J., 1999, Late
Ordovician mass extinction : A new perspective from stratigraphic
sections in central Nevada: Geology, p. 215–218.
Finney, S.C., Cooper, J.D., and Berry, W.B.N., 1997, Late Ordovician
Mass Extinction: Sedimentologic, Cyclostratigraphic, and
Biostratigraphic Records from Platform and Basin Successions, Central
Nevada: Brigham Young University Geology Studies, v. 42, p. 79–103.
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath,
G.R., Cullen, D., Dauphin, P., Hammond, D., and Hartman, B., 1978, Early
oxidation of organic matter in pelagic sediments of the eastern
equatorial Atlantic : suhoxic diagenesis: Geochimica et Cosmochimica
Acta, v. 43, p. 1075–1090.
Ghienne, J.F. et al., 2014, A Cenozoic-style scenario for the
end-ordovician glaciation: Nature Communications, v. 5,
doi:10.1038/ncomms5485.
Gill, B.C., Lyons, T.W., and Frank, T.D., 2008, Behavior of
carbonate-associated sulfate during meteoric diagenesis and implications
for the sulfur isotope paleoproxy: Geochimica et Cosmochimica Acta, v.
72, p. 4699–4711, doi:10.1016/j.gca.2008.07.001.
Goldman, D., Sadler, P.M., and Leslie, S.A., 2020, Chapter 20 – The
Ordovician Period: BV, 489–523 p.,
doi:10.1016/B978-0-444-63798-7.00020-3.
Gomes, M.L., and Hurtgen, M.T., 2015, Sulfur isotope fractionation in
modern euxinic systems: Implications for paleoenvironmental
reconstructions of paired sulfate-sulfide isotope records: Geochimica et
Cosmochimica Acta, v. 157, p. 39–55, doi:10.1016/j.gca.2015.02.031.
Hammarlund, E.U., Dahl, T.W., Harper, D.A.T., Bond, D.P.G., Nielsen,
A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A.,
and Canfield, D.E., 2012, A sulfidic driver for the end-Ordovician mass
extinction: Earth and Planetary Science Letters, v. 331–332, p.
128–139, doi:10.1016/j.epsl.2012.02.024.
Haq, B.U., and Schutter, S.R., 2008, A Chronology of Paleozoic Sea-Level
Changes: Science, v. 322, p. 64–68, doi:10.1126/science.1161648.
Hardisty, D.S. et al., 2017, Perspectives on Proterozoic surface ocean
redox from iodine contents in ancient and recent carbonate: Earth and
Planetary Science Letters, v. 463, p. 159–170,
doi:10.1016/j.epsl.2017.01.032.
Hardisty, D.S., Horner, T.J., Evans, N., Moriyasu, R., Babbin, A.R.,
Wankel, S.D., Moffett, J.W., and Nielsen, S.G., 2020, Limited iodate
reduction in shipboard seawater incubations from the Eastern Tropical
North Pacific oxygen deficient zone: Earth and Planetary Science
Letters, v. 554, p. 116676, doi:10.1016/j.epsl.2020.116676.
Hardisty, D.S., Lu, Z., Planavsky, N.J., Bekker, A., Philippot, P.,
Zhou, X., and Lyons, T.W., 2014, An iodine record of Paleoproterozoic
surface ocean oxygenation: Geology, v. 42, p. 619–622,
doi:10.1130/G35439.1.
Hardisty, D.S., Lyons, T.W., Riedinger, N., Isson, T.T., Owens, J.D.,
Aller, R.C., Rye, D.M., Planavsky, N.J., Asael, D.A.N., and Johnston,
D.T., 2018, An Evaluation of Sedimentary Molybdenum and Iron as Proxies
for Pore Fluid Paleoredox Conditions: American Journal of Science, v.
318, p. 527–556, doi:10.2475/05.2018.04.
Harper, D.A.T., Hammarlund, E.U., and Rasmussen, C.M.Ø., 2014, End
Ordovician extinctions: A coincidence of causes: Gondwana Research, v.
25, p. 1294–1307, doi:10.1016/j.gr.2012.12.021.
Horita, J., Zimmermann, H., and Holland, H.D., 2002, Chemical evolution
of seawater during the Phanerozoic: Geochimica et Cosmochimica Acta, v.
66, p. 3733–3756, doi:10.1016/S0016-7037(01)00884-5.
Hu, D., Zhang, X., Zhou, L., Finney, S.C., and Liu, Y., 2017, 87 Sr / 86
Sr evidence from the epeiric Martin Ridge Basin for enhanced carbonate
weathering during the Hirnantian: Scientific Reports, p. 1–7,
doi:10.1038/s41598-017-11619-w.
Jones, D.S., Brothers, R.W., Ahm, A.C., Slater, N., Higgins, J.A., and
Fike, D.A., 2020, Sea level, carbonate mineralogy, and early diagenesis
controlled δ 13C records in Upper Ordovician carbonates: Geology, v. 48,
p. 1–6, doi:10.1130/G46861.1/4902172/g46861.pdf.
Jones, D.S., Creel, R.C., and Rios, B.A., 2016, Carbon isotope
stratigraphy and correlation of depositional sequences in the Upper
Ordovician Ely Springs Dolostone , eastern Great Basin , USA:
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 458, p. 85–101,
doi:10.1016/j.palaeo.2016.01.036.
Jones, D.S., and Fike, D.A., 2013, Dynamic sulfur and carbon cycling
through the end-Ordovician extinction revealed by paired sulfate–pyrite
δ34S: Earth and Planetary Science Letters, v. 363, p. 144–155,
doi:10.1016/j.epsl.2012.12.015.
Jones, D.S., Fike, D.A., Finnegan, S., Fischer, W.W., Schrag, D.P., and
McCay, D., 2011, Terminal Ordovician carbon isotope stratigraphy and
glacioeustatic sea-level change across Anticosti Island (Quebec,
Canada): Geological Society of America Bulletin, v. 123, p. 1645–1664,
doi:10.1130/B30323.1.
Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T., and Nõlvak, J.,
2011, Katian prelude to the Hirnantian (Late Ordovician) mass
extinction: A Baltic perspective: Geological Journal, v. 46, p.
464–477, doi:10.1002/gj.1301.
Kaljo, D., Hints, L., Martma, T., and Nõlvak, J., 2001, Carbon isotope
stratigraphy in the latest Ordovician of Estonia: Chemical Geology, v.
175, p. 49–59, doi:10.1016/S0009-2541(00)00363-6.
Kiipli, E., and Kiipli, T., 2020, Hirnantian sea-level changes in the
Baltoscandian Basin, a review: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 540, p. 109524, doi:10.1016/j.palaeo.2019.109524.
Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S.,
and Sheehan, P.M., 1999, A weathering hypothesis for glaciation at high
atmospheric pCO2 during the Late Ordovician: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 152, p. 173–187,
doi:10.1016/S0031-0182(99)00046-2.
Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., and Paytan, A.,
2003, Early Cenozoic decoupling of the global carbon and sulfur cycles:
Paleoceanography, v. 18, doi:10.1029/2003PA000908.
Lang, X., Tang, W., Ma, H., and Shen, B., 2020, Local environmental
variation obscures the interpretation of pyrite sulfur isotope records:
Earth and Planetary Science Letters, v. 533, p. 1–7,
doi:10.1016/j.epsl.2019.116056.
LaPorte, D.F., Holmden, C., Patterson, W.P., Loxton, J.D., Melchin,
M.J., Mitchell, C.E., Finney, S.C., and Sheets, H.D., 2009, Local and
global perspectives on carbon and nitrogen cycling during the Hirnantian
glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 276,
p. 182–195, doi:10.1016/j.palaeo.2009.03.009.
Lu, W. et al., 2018, Late inception of a resiliently oxygenated upper
ocean: Science, v. 177, p. 174–177, doi:10.1126/science.aar5372.
Lu, Z., Jenkyns, H.C., and Rickaby, R.E.M., 2010, Iodine to calcium
ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic
events: Geology, v. 38, p. 1107–1110, doi:10.1130/G31145.1.
Melchin, M.J., Mitchell, C.E., Holmden, C., and Štorch, P., 2013,
Environmental changes in the late ordovician-early silurian: Review and
new insights from black shales and nitrogen isotopes: Bulletin of the
Geological Society of America, v. 125, p. 1635–1670,
doi:10.1130/B30812.1.
Murphy, M.A., Dunham, J.B., Berry, W.B.N., and Matti, J.C., 1979, Late
Llandovery Unconformity in Central Nevada: Brigham Young University
Geology Studies, v. 26, p. 21–36.
Neretin, L.N., Volkov, I.I., Böttcher, M.E., and Grinenko, V.A., 2001, A
sulfur budget for the Black Sea anoxic zone: Deep-sea Research I, v. 48,
p. 2569–2593.
Pasquier, V., Bryant, R.N., Fike, D.A., and Halevy, I., 2021, Strong
local, not global, controls on marine pyrite sulfur isotopes: Science
Advances, v. 7, p. 1–11.
Pope, M.C., and Steffen, J.B., 2003, Widespread, prolonges late Middle
to Late Ordovician upwelling in North America: a proxy record of
glaciation? Geology, v. 31, p. 63–66, doi:10.1130/0091-7613-31.1.e28.
Present, T.M., Paris, G., Burke, A., Fischer, W.W., and Adkins, J.F.,
2015, Large Carbonate Associated Sulfate isotopic variability between
brachiopods, micrite, and other sedimentary components in Late
Ordovician strata: Earth and Planetary Science Letters, v. 432, p.
187–198, doi:10.1016/j.epsl.2015.10.005.
Rasmussen, C.M.Ø., and Harper, D.A.T., 2011, Did the amalgamation of
continents drive the end Ordovician mass extinctions ? Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 311, p. 48–62,
doi:10.1016/j.palaeo.2011.07.029.
Rasmussen, C.M.Ø., Kröger, B., Nielsen, M.L., and Colmenar, J., 2019,
Cascading trend of Early Paleozoic marine radiations paused by Late
Ordovician extinctions: Proceedings of the National Academy of Sciences,
p. 1–7, doi:10.1073/pnas.1821123116.
Reinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill,
B.C., Lalonde, S. V., Bekker, A., Konhauser, K.O., and Lyons, T.W.,
2013, Proterozoic ocean redox and biogeochemical stasis: Proceedings of
the National Academy of Sciences, v. 110, p. 5357–5362,
doi:10.1073/pnas.1208622110.
Rue, E.L., Smith, G.J., and Bruland, K.W., 1997, The response of trace
element redox couples to suboxic conditions in the water column:
Deep-sea Research I, v. 44, p. 113–134.
Sim, M.S., 2019, Effect of sulfate limitation on sulfur isotope
fractionation in batch cultures of sulfate reducing bacteria:
Geosciences Journal, v. 23, p. 687–694.
Stockey, R.G., Cole, D.B., Planavsky, N.J., Loydell, D.K., Frýda, J.,
and Sperling, E.A., 2020, Persistent global marine euxinia in the early
Silurian: Nature Communications, v. 11, p. 1804,
doi:10.1038/s41467-020-15400-y.
Swart, P.K., and Oehlert, A.M., 2018, Revised interpretations of stable
C and O patterns in carbonate rocks resulting from meteoric diagenesis:
Sedimentary Geology, v. 364, p. 14–23,
doi:10.1016/j.sedgeo.2017.12.005.
Toyama, K., Paytan, A., Sawada, K., and Hasegawa, T., 2020, Sulfur
isotope ratios in co-occurring barite and carbonate from Eocene
sediments : A comparison study: Chemical Geology, v. 535, p. 119454,
doi:10.1016/j.chemgeo.2019.119454.
Trotter, J.A., Williams, I.S., Barnes, C.R., Lécuyer, C., and Nicoll,
R.S., 2008, Did Cooling Oceans Trigger Orovician Biodiversification?
Evidence from Conodont Thermometry: Science, v. 321, p. 550–554,
doi:10.1126/science.1155814.
Yao, W., Paytan, A., Griffith, E.M., Martínez-ruiz, F., Markovic, S.,
and Wortmann, U.G., 2020, A revised seawater sulfate S-isotope curve for
the Eocene: Chemical Geology, v. 532, p. 119382,
doi:10.1016/j.chemgeo.2019.119382.
Young, S.A., Saltzman, M.R., Ausich, W.I., Desrochers, A., and Kaljo,
D., 2010, Did changes in atmospheric CO2 coincide with latest Ordovician
glacial–interglacial cycles? Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 296, p. 376–388, doi:10.1016/j.palaeo.2010.02.033.
Zhou, L., Algeo, T.J., Shen, J., Hu, Z.F., Gong, H., Xie, S., Huang,
J.H., and Gao, S., 2015, Changes in marine productivity and redox
conditions during the Late Ordovician Hirnantian glaciation:
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 420, p. 223–234,
doi:10.1016/j.palaeo.2014.12.012.
Zou, C., Qiu, Z., Poulton, S.W., Dong, D., Wang, H., Chen, D., Lu, B.,
Shi, Z., and Tao, H., 2018, Ocean euxinia and climate change “double
whammy” drove the Late Ordovician mass extinction: Geology, v. 46, p.
535–538, doi:10.1130/G40121.1.