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e Stereotomography (slope tomography) (Lambaré,
2008), a velocity macro-model building method, ex-
ploits the horizontal component of the slowness vec-
tor at source and receiver positions. The two slopes
associated with the two-way traveltimes define a lo-
cally coherent event in the data volume associated
with a scatterer in the image domain.
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Figure 1: A locally coherent event picked in the data.

e We address the issue of the ill-famed velocity-
position coupling inherently present in reflection
tomography. The strategy presented in this con-
text draws perspectives to the analogous localiza-
tion problem in earthquake seismology.

e We opt for the matrix-free formulation of slope
tomography (AST) (TavakoliE. et al., 2017) based on
the adjoint-state method (vs. Fréchet derivatives) for
the gradient computation. The forward problem is
performed with eikonal solvers (vs. ray tracing).

e Commonly, the chosen optimization strategy aims
at fitting all objective measures (two-way traveltime
and both slopes) per scatterer, in search of the
velocity field and the scattering position jointly.

e We propose a parsimonious formulation (PAST)
that reduces the problem to fitting one slope in seek
of the velocity field through a variational approach.

e How? An identified event in the data volume can
be mapped in the image domain through a kine-

matic migration by means of the focusing equations
(Chauris et al., 2002).

e So what? We elaborate on this relationship and
how it is implemented in the form of enforced
physical constraints under AST’s framework and its
implications on the velocity-position coupling.

In the proposed parsimonious approach we aim to

solve the following minimization problem:
Ns Np Ny’
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where Ny / N[ / N, , denotes the number of shots,
receivers and events for a source/receiver pair (s, 7).
The symbol * denotes the observed data. The pre-
dicted slope ps. . . (m) depends on the model pa-
rameters through a nonlinear forward problem oper-
ator F which gathers the eikonal equation, the finite-
difference approximation of slopes and the focusing

equations @ and @ (figure below).
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Figure 2: Focusing equations sketch superimposing a
sensitivity kernel for a single scattering event.

win J(m) =min 33 > o, (m)-p,, I

We proceed under the reduced-space approach of the
adjoint-state method (Plessix, 2006) for the gradient

computation: L(m,u,u) = J(u) — <1_1,f(11,m)>,

where (.,.) denotes the inner product, u gathers the
state variables, u the adjoint-state variables.

The projection of the scatterer position x,,, , out of
the model space using the focusing equations implies
a transmission of the positioning effect into the
slope ps,n, . sensitivity with respect to m. The link
is established while zeroing the derivative of the

augmented functional with respect to x,,_ ,.:
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Figure 3: Three terms of 0L /0%, ,. with related colors.
Added magenta arrow is the sum of blue and red arrows.

eMarmousi case : Tomography setup — 6708
scattering events, streamer acquisition, multi-scale
approach. FWI setup — fixed-spread acquisition,

frequencies [4, 6, 8,10,12,14 and 16 Hz].
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Figure 4: AST and PAST inversion results and their FWI.

v Good velocity reconstruction in the reservoir.
v/ Improved convergence with respect to AST.

eReal data application : Broadband streamer acqui-
sition, 50000 scattering events, multi-scale approach,
passive anisotropy (TTI) parameters.
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Figure 5: PAST inversion results after 169 iterations.

v/ Velocity model validated with well logs.
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Figure 6: Comparative logs with respect to well data (red).
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Figure 7: Image obtained through TTI Kirchhoff migration.

v/ Well focused image and coherent result with
respect to previous studies.
v/ Flat events in the Common Image Gathers.
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Figure 8: Common Image Gathers (CIG)

We present a strategy to tackle the velocity-position
coupling in the context of slope tomography. An
induced consistency between the scatterers posi-
tion and the background velocity field is achieved
through a variational projection approach. We bench-
mark our method and validate it on a real data case.
The results exhibit an improvement under this for-
mulation with respect to a joint inversion.

A similar approach could be employed in other con-
texts like the hypocenter-velocity problem.
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