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I - Context q
• Stereotomography (slope tomography) (Lambaré,
2008), a velocity macro-model building method, ex-
ploits the horizontal component of the slowness vec-
tor at source and receiver positions. The two slopes
associated with the two-way traveltimes define a lo-
cally coherent event in the data volume associated
with a scatterer in the image domain.
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Figure 1: A locally coherent event picked in the data.

• We address the issue of the ill-famed velocity-
position coupling inherently present in reflection
tomography. The strategy presented in this con-
text draws perspectives to the analogous localiza-
tion problem in earthquake seismology.

II - Methodq
• We opt for the matrix-free formulation of slope
tomography (AST) (Tavakoli F. et al., 2017) based on
the adjoint-state method (vs. Fréchet derivatives) for
the gradient computation. The forward problem is
performed with eikonal solvers (vs. ray tracing).

• Commonly, the chosen optimization strategy aims
at fitting all objective measures (two-way traveltime
and both slopes) per scatterer, in search of the
velocity field and the scattering position jointly.

• We propose a parsimonious formulation (PAST)
that reduces the problem to fitting one slope in seek
of the velocity field through a variational approach.

• How? An identified event in the data volume can
be mapped in the image domain through a kine-
matic migration by means of the focusing equations
(Chauris et al., 2002).

• So what? We elaborate on this relationship and
how it is implemented in the form of enforced
physical constraints under AST’s framework and its
implications on the velocity-position coupling.

III - Towards a velocity-position consistent formulation q
In the proposed parsimonious approach we aim to
solve the following minimization problem:

min
m

J(m) = min
m

Ns∑
s=1

Ns
r∑

r=1

Ns,r
n∑

ns,r=1

‖(ps,ns,r (m)−p∗s,ns,r
)‖2,

where Ns / Nr
s / Nns,r denotes the number of shots,

receivers and events for a source/receiver pair (s, r).
The symbol ∗ denotes the observed data. The pre-
dicted slope ps,ns,r (m) depends on the model pa-
rameters through a nonlinear forward problem oper-
ator F which gathers the eikonal equation, the finite-
difference approximation of slopes and the focusing
equations 1 and 2 (figure below).
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Figure 2: Focusing equations sketch superimposing a
sensitivity kernel for a single scattering event.

We proceed under the reduced-space approach of the
adjoint-state method (Plessix, 2006) for the gradient
computation: L(m,u, ū) = J(u) −

〈
ū,F(u,m)

〉
,

where 〈., .〉 denotes the inner product, u gathers the
state variables, ū the adjoint-state variables.

The projection of the scatterer position xns,r out of
the model space using the focusing equations implies
a transmission of the positioning effect into the
slope ps,ns,r sensitivity with respect to m. The link
is established while zeroing the derivative of the
augmented functional with respect to xns,r :

∂L
∂xns,r

= ū1
∂Ts,r,ns,r

∂xns,r
+ ∆ps,ns,r

∂ps,ns,r

∂xns,r
+ ū2

∂pr,ns,r

∂xns,r
.
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Figure 3: Three terms of ∂L/∂xns,r with related colors.
Added magenta arrow is the sum of blue and red arrows.

IV - Synthetic and real data application
•Marmousi case : Tomography setup → 6708
scattering events, streamer acquisition, multi-scale
approach. FWI setup → fixed-spread acquisition,
frequencies [4, 6, 8, 10, 12, 14 and 16 Hz].
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Figure 4: AST and PAST inversion results and their FWI.

3 Good velocity reconstruction in the reservoir.
3 Improved convergence with respect to AST.

•Real data application : Broadband streamer acqui-
sition, 50000 scattering events, multi-scale approach,
passive anisotropy (TTI) parameters.
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Figure 5: PAST inversion results after 169 iterations.

3 Velocity model validated with well logs.

0

1

2

3

4

5

D
ep

th
 (k

m
)

1 2 3 4 5
Velocity (km/s)

X = 10.8 km

0

1

2

3

4

5

D
ep

th
 (k

m
)

1 2 3 4 5
Velocity (km/s)

0

1

2

3

4

5

D
ep

th
 (k

m
)

1 2 3 4 5
Velocity (km/s)

X = 22.6 km X = 33.1 km

Figure 6: Comparative logs with respect to well data (red).
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Figure 7: Image obtained through TTI Kirchhoff migration.

3 Well focused image and coherent result with
respect to previous studies.
3 Flat events in the Common Image Gathers.
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Figure 8: Common Image Gathers (CIG)

Conclusion q
We present a strategy to tackle the velocity-position
coupling in the context of slope tomography. An
induced consistency between the scatterers posi-
tion and the background velocity field is achieved
through a variational projection approach. We bench-
mark our method and validate it on a real data case.
The results exhibit an improvement under this for-
mulation with respect to a joint inversion.
A similar approach could be employed in other con-
texts like the hypocenter-velocity problem.
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