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Key Points: 15 

• Direct measurements of event-based δ18O and d-excess in precipitation in the central 16 

Himalayas in the 2015 monsoon season compared to 2014. 17 

• Combination of in-situ isotopic measurements with simulations of evaporation minus 18 

precipitation (E-P) using FLEXPART. 19 

• Isotopic variations in precipitation are associated with changes in moisture supplies along 20 

the transport path.  21 
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Abstract 22 

The impact of moisture transport and sources on precipitation stable isotopes (δ18O and d-excess) 23 

in the central Himalayas are crucial to understanding the climatic archives. However, this is still 24 

unclear due to the lack of in-situ observations. Here we present measurements of stable isotopes 25 

in precipitation at two stations (Yadong and Pali) in the central Himalayas during 2014-2015. 26 

Combined with simulations from the dispersion model FLEXPART, we investigate effects on 27 

precipitation stable isotopes related to changes in moisture sources and convections in the region, 28 

and possible influence by El Niño. Our results suggest that the moisture supplies related to 29 

evaporation over northeastern India and moisture losses related to convective activities over the 30 

Bay of Bengal (BoB) and Bangladesh region play important roles in changes in δ18O and d-31 

excess in precipitation in the Yadong valley. Outgoing longwave radiation and moisture flux 32 

divergence analysis further confirm that the contribution from continental evaporation dominates 33 

the moisture supply in the central Himalayas with a lesser contribution from convection over the 34 

BoB during the 2015 monsoon season compared with 2014. A change in the altitude effect is 35 

observed in 2015, which is more significant than the temperature and precipitation amount effect 36 

during the observation period. These findings provide valuable insights into climatic 37 

interpretations of paleo-isotopic archives with an isotopic response to changes in moisture 38 

transport to the central Himalayas. 39 

Plain Language Summary 40 

Evaporation, convection, temperature, topography, large-scale circulation (Indian summer 41 

monsoon and westerlies), and large-scale modes (e.g., ENSO) all play roles in precipitation 42 

variability in the Himalayas. Influences of processes related to these factors are not well 43 

understood, and therefore difficult to interpret climatic signals in paleo-climate records. Stable 44 

isotopes in precipitation are useful tools to trace different moisture sources and convective 45 

activities along the transport. Therefore, we present measurements of stable isotopes in 46 

precipitation at two stations in the central Himalayas during 2014 and 2015 to estimate changes 47 

in moisture sources and convection. To do so, we also use the dispersion model FLEXPART to 48 

diagnose changes in moisture supplies and losses along transports during 2015 compared to 49 

2014. We found that there is less moisture supply from the BoB in 2015, and more from the 50 

Indian continent with spatiotemporal variations.  51 
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1 Introduction 52 

The Indian summer monsoon (ISM) is an integral component of the Asian monsoon system and 53 

brings heavy rainfall to the southern Tibetan Plateau (TP) from May/June to September (Feng & 54 

Zhou, 2012; Wu et al., 2017; Ya et al., 2013; Yao et al., 2013), which is crucial for water supply 55 

to nearly 1.9 billion people in immediate regions (ICIMOD, 2021). The ISM is driven by the 56 

land-sea thermal gradient (Ananthakrishnan, 1970; Chen et al., 2022; Clark et al., 2000) and the 57 

elevated heat source from the TP during the monsoon season (Hahn & Manabe, 1976; Ding & 58 

Chan, 2005; Hao et al., 2013). Moisture is mainly transported to the southern TP from the Bay of 59 

Bengal (BoB) and the Arabian Sea, with the latter recycled over the Indian continent before 60 

encountering the Himalayas (Chen et al., 2012; Feng & Zhou, 2012; Zhang et al., 2017). The 61 

ISM creates extreme precipitation along the southern Himalayas due to the “barrier effect” 62 

(Hahn & Manabe, 1976; Wang & Chang, 2012), impacting river discharge and glacier melting 63 

(Gao et al., 2019). Large-scale climate variability modes, such as El Niño Southern Oscillation 64 

(ENSO), modulate the ISM in different timescales (Cai et al., 2017; Gao et al., 2018; Kripalani 65 

& Kulkarni, 1997; Srivastava et al., 2019; Torrence & Webster, 1999; Webster, 1995). For 66 

instance, a drier monsoon season over the Indian Peninsula was observed together with a 67 

weakened monsoon circulation during the strong El Niño event of 2015 (Kakatkar et al., 2018; 68 

Mekonnen et al., 2016; Power et al., 2021). However, the impact on precipitation variability in 69 

complex topography like the Himalayas is underrepresented in studies due to the scarcity of 70 

observational data. 71 

 72 

Stable isotopes in precipitation (δ18O and δD) serve as valuable tracers for moisture sources and 73 

transport processes (Araguás-Araguás et al., 2000; Dansgaard, 1964; Gao et al., 2011). During 74 

water phase changes, such as evaporation and condensation, isotopic fractionation leads to the 75 

enrichment or depletion of stable isotopes in each phase (Craig, 1961; Dansgaard, 1964). Long-76 

term monitoring of stable isotopes in precipitation on the TP has revealed a regional complexity 77 

driven by geographical and meteorological factors, including local climatic variables such as 78 

surface air temperature and precipitation amount (Craig, 1961; Dansgaard, 1964; Merlivat & 79 

Jouzel, 1979; Rozanski et al., 1992), and the regional atmospheric circulations related to the 80 

conditions at the moisture source and transports of the precipitated water (Araguás-Araguás et 81 

al., 2000; Rozanski et al., 1993). Local conditions affecting the precipitation can be distinguished 82 
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through the temperature, precipitation amount, and altitude effect. The temperature effect is 83 

caused by an accumulation of 18O due to an increase in evaporation, whereas the precipitation 84 

amount effect is enriched isotopic composition through condensation while the remaining vapor 85 

is depleted of 18O (Dansgaard, 1964; Gat, 1996; Rozanski et al., 1992). In the monsoon region of 86 

the TP (<30°N), the precipitation amount effect dominates at the seasonal scale (Yao et al., 87 

2013). Orographic uplift of air masses, typical of high elevations such as the Himalayas, also 88 

gradually depletes 18O with increasing altitude due to orographic condensation and rainout 89 

(Acharya et al., 2020; Dansgaard, 1964; Ambach et al., 1968; Gonfiantini et al., 2001). 90 

 91 

The second-order stable isotope parameter, deuterium excess (d-excess=δD-8*δ18O), can provide 92 

additional information to evaluate the condition of moisture sources, such as relative humidity, 93 

sea-surface temperature, and wind speed during evaporation (Clark & Fritz, 1997; Dansgaard, 94 

1964; Merlivat & Jouzel, 1979). Evaporation from humid sources will associate with low d-95 

excess in the later precipitated water, and vice versa (Gat, 1996; Merlivat & Jouzel, 1979; 96 

Rozanski et al., 1993). d-excess is also found to increase through continental moisture recycling 97 

and decrease through re-evaporation of droplets during precipitation events (Bershaw, 2018; Gat, 98 

1996; Tian et al., 2001, 2005). More studies suggest that besides the local convection, the 99 

moisture transports and sources driven by large-scale atmospheric circulation, such as the 100 

westerlies and ISM, also play important roles in variations of precipitation stable isotopes around 101 

the southern TP (Acharya et al., 2020; Adhikari et al., 2020; Dai et al., 2021; Ren et al., 2017). 102 

Precipitation stable isotopes are positively correlated to outgoing longwave radiation over the 103 

south of the Himalayas (Adhikari et al., 2020; He et al., 2015) and negatively correlated to high-104 

level cloud cover (Wang et al., 2020), suggesting that convective activity regulates the depletion 105 

of the heavier isotopes.  106 

 107 

A strong El Niño event was identified in 2015, which resulted in a drier monsoon season over the 108 

Indian Peninsula together with a weakened monsoon circulation (Kakatkar et al., 2018; 109 

Mekonnen et al., 2016; Power et al., 2021). Thus, we suppose that this event could impact 110 

precipitation and stable isotopes in precipitation in the central Himalayas. Here we present event-111 

based precipitation stable isotope measurements from Yadong and Pali stations in the central 112 

Himalayas during 2014-2015. Using the FLEXPART model we aim to understand changes in 113 
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moisture sources and convection, as well as their impacts, on precipitation stable isotopes in the 114 

region. We first provide an overview of the in-situ observations and the FLEXPART model. We 115 

then present the spatiotemporal changes of the observed stable isotopes in precipitation at 116 

Yadong and Pali in 2014 and 2015, along with the possible controls of precipitation stable 117 

isotopes by local climates. In subsequent sections, we examine variations of moisture source 118 

origins and convective activities associated with variations in stable isotopes in precipitation in 119 

Yadong Valley before and during the strong El Niño event in 2015. Finally, we conclude our 120 

study. 121 

2 Data and Methods 122 

2.1 Study area and measurements of precipitation stable isotopes 123 

Yadong and Pali stations are located within Yadong Valley in the central part of the Himalayas 124 

(Fig. 1a), with an altitude difference of 1355 m.a.s.l.. Southwesterly winds dominate from June 125 

to September, which transports high-humidity air from the BoB and Arabian Sea to the north, 126 

resulting in the majority of the annual precipitation (Feng & Zhou, 2012; Wu et al., 2017; Ya et 127 

al., 2013; Yao et al., 2013). Specific humidity increases with altitude at 500 hPa but decreases at 128 

850 hPa (Fig. 1b and 1c). Temperature increases through spring and summer, with Yadong 129 

experiencing higher temperatures than Pali due to its lower altitude (Fig. 2).  The two stations 130 

differ in annual temperature and total precipitation amount by 6.3°C and 343 mm, respectively, 131 

during the sampling period. In this study, 125 samples have been utilized from Yadong and 130 132 

from Pali, obtained from the Tibetan Network for Isotopes in Precipitation (TNIP) between 13 133 

March 2014 and 23 July 2015 (Tab. 1).  134 
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Tibetan Environment Change and Land Surface Processes, CAS, using a cavity ring-down 152 

spectroscopy (Picarro-2130i Liquid Water Isotope Analyzer) with a precision of ±0.1‰ for δ18O 153 

and ±0.4‰ for δD. Oxygen isotope composition is usually reported in the δ-notation as 154 

𝛿 𝑂 = × 1000 ‰ ,  (1) 155 

against the Vienna Standard Mean Ocean Water (V-SMOW, Dansgaard, 1964; Kendall and 156 

Caldwell, 1998). The Indian summer monsoon season is defined as June to September (JJAS), 157 

following previous studies (Gao et al., 2015, 2016; Yao et al., 2013), and other months are 158 

presented either as non-monsoon (October-May) or pre-monsoon (March-May) seasons. 159 

2.2 Reanalysis data 160 

ERA-interim data have been widely used to diagnose changes in moisture over the TP (Gao et 161 

al., 2014), and have proven to perform well in the Himalayas (Nogueira, 2020). We used zonal 162 

wind regimes (u and v), specific humidity (q), and the vertical integral of the divergence of 163 

moisture flux at 500 and 850 hPa (Dee et al., 2011). The data was retrieved with 0.75° × 0.75° 164 

resolution during 1986-2015 and JJAS 2014 as well as 2015. A climatology was provided during 165 

JJAS 1986-2015. 166 

 167 

Satellite-based measurements of outgoing longwave radiation (OLR) provide a valuable proxy 168 

for deep atmospheric convection conditions in the tropics (Evans & Webster, 2014; Krishnan et 169 

al., 2000; Risi et al., 2008; Zhang, 1993). We use daily interpolated OLR data with the horizontal 170 

resolution of 1°×1° provided by NOAA/OAR/ESRL PSL (Liebmann & Smith, 1996) during 171 

1986-2015, JJAS 2014 and 2015. Anomalies are calculated relative to the 1986-2015 172 

climatology using averaged daily measurements. 173 

2.3 FLEXPART model 174 

We use the FLEXible PARTicle dispersion model (FLEXPART), a Lagrangian dispersion model 175 

(Pisso et al., 2019; Stohl et al., 1998; Stohl & James, 2004, 2005) to calculate back trajectories of 176 

air parcels to determine the surface moisture flux through evaporation (E) minus precipitation 177 

(P) before and during the monsoon seasons of 2014 and 2015. This model is widely applied to 178 

estimate long-distance and mesoscale dispersion of air pollutants and chemicals (Stohl et al., 179 
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1998), and analyze the global and regional moisture flux (Drumond et al., 2011; Gimeno et al., 180 

2010; Sodemann & Stohl, 2013; Stohl et al., 2008; Stohl & James, 2004, 2005; Sun & Wang, 181 

2014). Furthermore, by adding a criterion for precipitation threshold (-0.5 mm 3 h-1), particles 182 

contributing to a precipitation event can be traced back, relying on wind fields calculated by 183 

horizontal and vertical wind components, air temperature, and specific humidity (Pisso et al., 184 

2019). 185 

 186 

For diagnostics on the surface moisture flux divergence over an area (A), E-P for the total 187 

particles residing over A is given by 188 𝐸 − 𝑃 ≈ ∑    (2) 189 

where K is the number of N particles that resides over A, and e-p is the rate of moisture change 190 

along the trajectory (Stohl & James, 2004). With instantaneous rates of evaporation (Ei = E - P 191 

when E - P > 0) and precipitation (Pi = P - E when E - P < 0), E - P can be diagnosed for every 192 

evaluation interval (Stohl & James, 2004; Trenberth et al., 2003). 193 

 194 

In this study, the air mass is divided homogeneously between dispersed particles. The particles 195 

are advected by the wind fields retrieved from ERA-interim, as well as turbulent and convective 196 

motions, with 6-hourly analyses (at 00.00, 06.00, 12.00, and 18.00 UTC), and 3-hourly forecasts 197 

at intermediate times (at 0300, 0900, 1500, and 2100 UTC), with 1° × 1° spatial resolution 198 

covering 60 vertical levels from 0.1 to 1012 hPa (Dee et al., 2011). For each day with a 199 

precipitation event at either Yadong or Pali station, the particles are backtracked for 8 days. The 200 

release grid is set around Yadong and Pali stations at latitudes 27-28° and longitudes 88.5-89.5°. 201 

To better evaluate the evaporation component, we used the method of Michel et al. (2021) and 202 

considered only particles in the planetary boundary layer (PBL) for moisture uptake. 203 
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June and July 2015, the average temperature is approximately 0.7°C lower compared to 2014. 216 

Precipitation amount at Yadong shows a decrease during the pre-monsoon and monsoon seasons 217 

in 2015 compared to 2014 (Fig 2d). The stable isotopes in precipitation at Yadong shows 218 

significant daily fluctuations and seasonal variations during the observation period (Fig. 2). A 219 

pronounced decrease of δ18O and d-excess at both stations appears from June to August, which 220 

corresponds to the maturing of the monsoon (Yao et al., 2013).  221 

 222 

The average δ18O value at Yadong is -0.62‰ during the pre-monsoon season (March to May 223 

2014), whereas the average drops significantly to -7.59‰ during the monsoon season. There are 224 

two notable low points during the monsoon season, with δ18O values of -19.92‰ on 22 June and 225 

-19.76‰ on26 July. These low points align closely with days of heavier precipitation. It is 226 

observed that the δ18O range in 2015 (-16.66 to -5.61‰) is smaller than in 2014 (-19.92 to 227 

2.35‰). The average δ18O value during the overlapping months is 3.76‰ lower in 2015. The d-228 

excess values exhibit similar seasonal characteristics, with higher values during the pre-monsoon 229 

and lower values during the monsoon season (Fig. 2b). In 2014, the mean d-excess at Yadong is 230 

13.13‰ during pre-monsoon and 7.56‰ during the monsoon season. The minimum d-excess 231 

value of -12.04‰ occurs in May, while the maximum value of 22.68‰ occurs in April. It is 232 

worth noting that the relationship between low δ18O and higher d-excess is more pronounced 233 

during the monsoon season in 2014 compared to 2015 (Fig. 2 and 3c, d). These variations in d-234 

excess and δ18O indicate that different moisture sources contribute to precipitation at Yadong 235 

during the pre-monsoon and monsoon seasons. Such seasonal variations are related with the 236 

changes to the dominant moisture transport that is discussed in section 3.3. 237 

 238 

The stable isotopes in precipitation at Pali show similar seasonal characteristics to those at 239 

Yadong in 2014 (Fig. 2a, b). However, the range of d-excess is larger at Pali in the 2015 240 

monsoon season compared to 2014. It is noticed that lower values of δ18O and d-excess are 241 

observed at Pali, and there are three extremely low values of δ18O observed from 26 to 28 May 242 

2014, which align with the low values at Yadong. This suggests the presence of an altitude effect 243 

and indicates that the same rainfall process is occurring at both stations.  244 
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 245 

Figure 3. Relationships between event-based δ18O and δD at Yadong (a) and Pali (b). The local 246 

meteoric water line is displayed in red for both stations, while the GMWL (green line), 247 

Kathmandu LMWL (orange line, (Adhikari et al., 2020)) and Tingri LMWL (grey line, (Yu et 248 

al., 2016)) are presented as reference lines. The δ18O-d-excess-relationship is shown for Yadong 249 

(c) and Pali (d). Linear regression (lines) and precipitation stable isotopes (filled circles) are 250 

displayed for JJAS 2014 (light blue) and JJAS 2015 (black). 251 

Table 2. Local meteoric water line (LMWL) for Yadong and Pali, including coefficient of 252 

determination (R2) and p-value. The LMWL is calculated for the entire sampling period and the 253 

events corresponding to the monsoon season of 2014 and 2015. 254 

Station Period LMWL R2 p 
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Yadong All events δD = 8.4 × δ18O + 12.02 0.99 <0.01 

 2014 June-August δD = 8.4 × δ18O + 10.66 0.99 <0.01 

 2015 June-July δD = 8.6 × δ18O + 14.22 0.99 <0.01 

Pali All events δD = 7.96 × δ18O + 4.76 0.97 <0.01 

 2014 June-August δD = 7.4 × δ18O – 4.14 0.98 <0.01 

 2015 June-July δD = 8.4 × δ18O + 8.04 0.98 <0.01 

 255 

The local meteoric water line (LMWL) is defined by the linear relationship between δ18O and δD 256 

in precipitation at local or regional scales relative to the global meteoric water line (GMWL) 257 

(Clark & Fritz, 1997; Dansgaard, 1964; Gao et al., 2011; Ren et al., 2017). In Yadong, the slopes 258 

and intercepts of the LMWL during the observational period and monsoon seasons are slightly 259 

higher than those of the GMWL (Fig. 3a and Tab. 3). This suggests similar moisture source 260 

characteristics in 2014 and 2015 (Craig, 1961). In the 2014 monsoon season at Pali, the LMWL 261 

exhibits the lowest slope (7.4) and intercept (-4.14), deviating significantly from the GMWL and 262 

LMWLs at Yadong (Tab. 3). This indicates the influence of more humid moisture sources and 263 

sub-cloud evaporation of raindrops at Pali (Merlivat & Jouzel, 1979). Contrarily, the LMWL at 264 

Pali during the 2015 monsoon season reflects similar moisture source conditions to those at 265 

Yadong (Tab 3). It is noticed that the LMWLs at Yadong and Pali during the observation period 266 

closely resemble the LMWL at Kathmandu (Nepal), which is located west of Yadong Valley at 267 

an elevation of 1400 m.a.s.l. and has an average annual temperature of 18.8°C (Yu et al., 2016). 268 

However, they differ significantly from the LMWL at Tingri (Tibet), situated northwest of 269 

Yadong Valley at an elevation of 4322 m.a.s.l., with an average annual temperature of 3.3°C (Yu 270 

et al., 2016) (Fig. 3a, b). This indicates similar moisture sources but with distinct local kinetic 271 

effects. 272 

 273 

The linear correlation between δ18O and d-excess during the monsoon seasons is shown in Fig. 274 

3c and d. Yadong has significantly positive slopes in both 2014 and 2015 (Fig. 3c). The slope at 275 

Pali in 2015 is similar to that at Yadong, despite a 1355-meter difference in altitude between the 276 

two stations (Fig. 3d). This suggests that there was a higher proportion of mixing at both stations 277 

in 2015. These observations may be linked to changes in convection activities, as discussed in 278 

section 3.3. 279 
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3.2 Influences of local and regional processes 280 

An altitude effect between Yadong and Pali is observed during the sampling period. The increase 281 

in altitude of 1355 meters leads to a lower monsoonal δ18O at Pali by -1.10‰ during overlapping 282 

sampling months of June-July, resulting in an altitudinal lapse rate of -0.08‰/100m. In the 2014 283 

monsoon season, the lapse rate is found to be -0.22‰/100m, whereas in 2015 it is 0.14‰/100m. 284 

The 2014 values are more consistent with those reported by Acharya et al. (2020) in Nepal (-285 

0.19‰/100m) than the combined 2014-2015 or 2015 lapse rates. Moisture transported by either 286 

ISM or westerlies first reaches Yadong and is subsequently uplifted to Pali, leading to 287 

modifications in δ18O due to kinetic fractionation (Cai et al., 2017). During 2015, precipitation 288 

δ18O at Pali tends to be higher with larger positive anomalies, which is consistent with findings 289 

by Wang et al. (2020) and Cai et al. (2017) in El Niño years. Furthermore, the higher 290 

temperature and d-excess at Yadong indicate stronger local evaporation than at Pali.  291 

 292 

The altitude effect is relevant to changes in local temperature and precipitation amount. 293 

Significant negative correlations between δ18O and temperature are observed during the sampling 294 

period at both stations (Yadong: R= -0.48, Pali: R= -0.28). However, this relationship is weaker 295 

at Pali and is not observed in separate monsoon seasons for either station. Similar findings have 296 

been confirmed in Kathmandu and Tingri, where only the daily events (Adhikari et al., 2020) or 297 

the winter season showed a relationship to temperature (Chhetri et al., 2014; Yu et al., 2016). On 298 

a daily scale, weak but significant negative correlations exist between precipitation amount and 299 

δ18O at both stations (Yadong: R= -0.28, Pali: R= -0.37), with particularly strong correlations 300 

observed at Pali during the 2014 (R = -0.51) and 2015 (R = -0.52) monsoon seasons.  301 

 302 

Thus, we suggest that local effects related to temperature and precipitation amount are not the 303 

main drivers of changes in precipitation stable isotopes in the Yadong Valley during 2014 and 304 

2015. The differences in the relationships between isotopes and local processes during the 305 

monsoon seasons of those years may indicate the influence of ENSO-related moisture transport 306 

on precipitation stable isotopes in Yadong Valley at the regional scale.  307 
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3.3 Temporal variations of moisture flux and convective activities  308 

To investigate the impact of moisture transport on precipitation stable isotopes in Yadong 309 

Valley, we calculated net moisture flux divergence (E-P) over Yadong Valley (27-28°N, 88.5-310 

89.5°E) during days with measured precipitation using FLEXPART. Due to the coarser 311 

resolution of the reanalysis data (1°) and the short distance between the two stations, we analyze 312 

the back trajectories from the same initiating grid for both stations. Positive values indicate a net 313 

moisture supply, while negative values indicate moisture loss from the air mass. We analyzed 314 

days that correspond to δ18O and d-excess values ≤25 percentile or ≥75 percentile of their 315 

distributions (Tab. 4) in June-August 2014 and 2015. The observed values at Yadong and Pali 316 

suggest that different moisture sources modulate the precipitation stable isotopes in Yadong 317 

Valley, especially in 2015. The diagnosed E-P corresponds similarly to δ18O and d-excess for the 318 

same quartiles, thus, we only present results of d-excess, which efficiently reflects source 319 

conditions (Fig. 4). 320 

 321 

Table 3. Lower and upper quartiles of δ18O and d-excess distributions during June-August in 322 

2014 and 2015, and the number of events in each quartile (n).  323 

  2014 2015 

  ≤25 pc (n) ≥75 pc (n) ≤25 pc (n) ≥75 pc (n) 

δ18O Yadong -10.81‰ (13) -1.64‰ (12) -13.79‰ (6) -7.88‰ (6) 

 Pali -15.06‰ (9) -5.66‰ (9) -12.80‰ (9) -5.74‰ (9) 

d-excess Yadong 4.72‰ (13) 12.52‰ (12) 5.60‰ (6) 11.83‰ (6) 

 Pali -2.42‰ (10) 8.55‰ (9) 0.74‰ (9) 8.42‰ (9) 

 324 
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 325 

Figure 4. E-P as mm per 24 hours, diagnosed from 8-day back-trajectories based on residence 326 

within the PBL for sampled precipitation events. Events are analyzed based on extremes in d-327 

excess (e.g., ≤25 and ≥75 percentile) for each station and year, where n is number of extreme 328 

events identified and simulated. 329 

 330 

The E-P results reveal variable contributions of moisture originating from the western Arabian 331 

Sea, the eastern Indian Peninsula, the Himalayas, and the western BoB in 2014 and 2015 (Fig. 332 

4). E-P over Bangladesh and western and northern India exhibit negative values, indicating 333 

moisture loss during transport towards Yadong Valley. In 2015, the moisture source and loss 334 

regions differ between low d-excess events (≤25 percentile of d-excess distributions) and high 335 

d-excess events (≥75 percentile of d-excess distributions) at Yadong (Fig. 4e, g). The latter 336 

receives more moisture from northern and central India as well as the southern TP, and less from 337 

the Arabian Sea, compared with the former. This suggests that the direct contributions of 338 

recycling over the Indian continent prior to the central Himalayas precipitation event cannot be 339 

ignored. Meanwhile, further negative E-P in Bangladesh and over the BoB are identified.  340 

 341 

Similar characteristics are found at Pali. In 2015, significantly less moisture supply over eastern 342 

India and southern TP to Pali together with stronger moisture supply from the Arabian Sea are 343 

observed for all extreme d-excess events compared to 2014 (Fig 4b, d, f, h). Additional negative 344 

E-P in Bangladesh is also diagnosed in 2015. These changes correspond with depleted δ18O and 345 
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d-excess at Yadong and Pali, which are consistent for stable isotopes in precipitation undergoing 346 

long-distance transport and increased contribution from wet sources (Gao et al., 2013). 347 

 348 

 349 

Figure 5. Monthly E-P as millimeters, diagnosed from 8-day back-trajectories based on 350 

residence within the PBL for sampled precipitation events at either of the stations in March-July 351 

(a-e) 2014, and (f-j) 2015. The target domain (27-28°N, 88.5-89.5°E) is marked as a black box 352 

covering both Yadong and Pali stations. 353 

 354 

To examine the impacts of upstream convective activities before moisture is transported to the 355 

Yadong Valley, we grouped the measured precipitation events into months for 2014 and 2015 356 

and calculated E-P (Fig. 5). At a monthly scale, a clear shift in moisture sources between 2014 357 
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and 2015 is evident based on E-P along moisture transport paths. From March to May, less 358 

moisture from northern India, the Arabian Sea, and the BoB contribute to precipitation events in 359 

the Yadong Valley in 2015, while more positive E-P is found over the Indian continent, 360 

compared to 2014. It is noticed that the negative E-P over eastern India observed in June 2015 361 

turns to positive in 2014 (Fig. 5d, i). However, it shifts to a strong moisture supply (positive E-P) 362 

in July 2015, which is associated with enriched δ18O and d-excess at Yadong and Pali (Fig. 2a). 363 

Reanalysis data over Bhutan confirms the temporal and spatial variability of ISM precipitation 364 

amount during July 2015 (Power et al., 2021). 365 

 366 

To better understand the variations of monsoon moisture transport to Yadong Valley during 2015 367 

compared to 2014, we analyzed the vertically integrated moisture flux divergence and zonal 368 

wind at 850 hPa. Figure 6 displays the anomalies in 2014 and 2015 zonal winds at 850 hPa and 369 

vertically integrated moisture flux divergence, relative to the climatology of 1986-2015. We 370 

observed strong zonal winds and a moisture divergence in the western Indian Ocean, 371 

accompanied by moisture convergence along the west coastline of India, the BoB, and the 372 

southern margin of the TP (Fig 6a).  373 

 374 
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Similar to the differences in E-P between 2014 and 2015 (Fig. 4 and 5), the spatial patterns of 381 

both moisture flux and zonal wind in JJAS 2014 differ from those in 2015 (Fig. 6d, e). An 382 

anomalous anticyclone pattern is found in central India in 2014, relative to JJAS 1986-2015, 383 

while 2015 experienced less change in the wind over the Indian continent. Opposite flux patterns 384 

appear over the BoB and Bangladesh between JJAS 2014 and 2015, indicating changes in 385 

moisture supplies along the moisture transport path to the southern TP. The wind anomalies in 386 

2015 suggest a weakened monsoon over the western Indian Ocean, highlighted by the anomalous 387 

divergence over the west coast of India, and less convergence along the TP and the Himalayas.  388 

 389 

Satellite-based measurements of OLR (Fig. 6f-j), a valuable proxy for deep atmospheric 390 

convection in the tropics (Evans & Webster, 2014; Krishnan et al., 2000; Zhang, 1993), relate to 391 

variations in precipitation stable isotopes (Risi et al., 2008). Figure 6f shows the OLR 392 

climatology (1986-2015), with the lowest values of <180 W/m2 found in the eastern BoB, and 393 

the highest values of >300 W/m2 over the Arabian Peninsula. Consistent with the convergence, 394 

and the threshold of 200 W/m2 for deep convection in monsoon regions (Evans & Webster, 395 

2014), substantial moisture uplift is evident in east India, Bangladesh, and the BoB (Fig. 6a, f). 396 

Negative OLR anomalies in 2015 appear in east India and Bangladesh, indicating stronger 397 

convection in these regions, while weaker convection over the BoB, South China Sea, and 398 

around Indonesia, may prevent moisture from reaching Yadong valley (Fig. 6j). Positive 399 

anomalies in the southern TP also reflect weaker convection than the climatology, which may 400 

cause increased evaporation resulting in enriched isotopes in vapor and precipitation. Lee et al. 401 

(2015) found that reduced convection in the eastern Indian Ocean results in enriched water vapor 402 
18O during El Niño. During El Niño events, the rising branch over the western Pacific weakens 403 

(Trenberth, 1997; Walker, 1925), which affects the BoB convection through teleconnections 404 

mediated by the Madden-Julian Oscillation (MJO, Madden & Julian, 1971; Zhang, 2005). The 405 

MJO enhances convection over the western Pacific and triggers the development of a high-406 

pressure system, which can lead to a low-pressure system and drier conditions in the BoB 407 

(Anandh et al., 2018). El Niño events, alone or in conjunction with other climate patterns such as 408 

a positive Indian Ocean Dipole, can exacerbate the impacts on the BoB by enhancing the active 409 

phase of the MJO (Zhang et al., 2021). The influence of ENSO on precipitation stable isotopes in 410 

the southern TP was also identified in the 2005-2007 El Niño and La Niña years through changes 411 
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in convective activities and changes to the moisture transport (Gao et al., 2018; Lee et al., 2015; 412 

Cai & Tian, 2016). Our results further suggest that El Niño modulated the evaporation and 413 

convective activities over the BoB and Indian Peninsula, resulting in changes in moisture 414 

supplies along the transport paths to the central Himalayas and Yadong Valley.  415 

4 Conclusions 416 

In this study, we presented event-based precipitation stable isotope measurements from Yadong 417 

and Pali stations in the central Himalayas during 2014-2015 and simulations of moisture 418 

transport using the FLEXPART model. The spatiotemporal variations of E-P from north-eastern 419 

India, the Arabian Sea, and Bangladesh associated with depleted/increased δ18O and d-excess in 420 

precipitation in the Yadong valley in 2015, highlight the importance of changes to evaporation 421 

and convective activities along the moisture transport paths for monthly variations in the 422 

precipitation stable isotopes. Our findings suggest that the 2015 El Niño event may have 423 

contributed to these changes by transferring moisture supplies into losses in eastern India and 424 

weakening the convective activities over the BoB. In addition, the typical negative lapse rate in 425 

δ18O reversed in 2015, while the local temperature and precipitation amount effects were 426 

minimal.  427 

 428 

Although limited by a short sampling period, our results provide valuable insights into the 429 

moisture supplies and losses along the transport paths from the Arabian Sea and the BoB to the 430 

central Himalayas. We also caution against relying solely on precipitation stable isotope archives 431 

to infer past temperature or precipitation variability in this region, given the potential influence 432 

of the El Niño effect on the isotopic composition of precipitation. Further investigations are 433 

needed to better understand the mechanisms driving the observed changes in precipitation stable 434 

isotopes at inter-annual to decadal scale.  435 
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