6 References
- A.A. Amsden, H.M. Ruppel, C.W. Hirt, Sale: A Simplified ALE Computer
Program For Fluid Flow At All Speeds, Los Alamos Scientific Lab., Nm
(Usa), 1980.Https://Doi.Org/10.2172/5176006.
- M.J. Burchell, N.G. Mackay, Crater Ellipticity In Hypervelocity
Impacts On Metals, J. Geophys. Res. 103 (1998) 22761–22774.Https://Doi.Org/10.1029/98je02143.
- G.S. Collins, H.J. Melosh, K. Wünnemann, Improvements To The Ɛ-α
Porous Compaction Model For Simulating Impacts Into High-porosity
Solar System Objects, International Journal Of Impact Engineering. 38
(2011) 434–439.Https://Doi.Org/10.1016/J.Ijimpeng.2010.10.013.
- G.S. Collins, H.J. Melosh, B.A. Ivanov, Modeling Damage And
Deformation In Impact Simulations, Meteoritics & Planetary Science.
39 (2004) 217–231.Https://Doi.Org/10.1111/J.1945-5100.2004.Tb00337.X.
- Daly, R.T., & Schultz, P.H., Projectile Preservation During Oblique
Hypervelocity Impacts, Meteoritics & Planetary Science. 53 (2018)
1364–1390.Https://Doi.Org/Doi:
10.1111/Maps.13081.
- T.M. Davison, G.S. Collins, D. Elbeshausen, K. Wünnemann, A. Kearsley,
Numerical Modeling Of Oblique Hypervelocity Impacts On Strong Ductile
Targets: Oblique Hypervelocity Impacts On Ductile Targets, Meteoritics
& Planetary Science. 46 (2011) 1510–1524.Https://Doi.Org/10.1111/J.1945-5100.2011.01246.X.
- L.T. Elkins-tanton, E. Asphaug, J.F.B. Iii, H. Bercovici, B. Bills, R.
Binzel, W.F. Bottke, S. Dibb, D.J. Lawrence, S. Marchi, T.J. Mccoy, R.
Oran, R.S. Park, P.N. Peplowski, T.H. Prettyman, C.T. Russell, L.
Schaefer, B.P. Weiss, M.A. Wieczorek, M.T. Zuber, Composition And
Formation Of (16) Psyche, (N.D.) 41.
- M. Ferrais, P. Vernazza, L. Jorda, N. Rambaux, J. Hanuš, B. Carry, F.
Marchis, M. Marsset, M. Viikinkoski, M. Brož, R. Fetick, A. Drouard,
T. Fusco, M. Birlan, E. Podlewska-gaca, E. Jehin, P. Bartczak, J.
Berthier, J. Castillo-rogez, F. Cipriani, F. Colas, G. Dudziński, C.
Dumas, J. Ďurech, M. Kaasalainen, A. Kryszczynska, P. Lamy, H. Le
Coroller, A. Marciniak, T. Michalowski, P. Michel, T. Santana-ros, P.
Tanga, F. Vachier, A. Vigan, O. Witasse, B. Yang, Asteroid (16)
Psyche’s Primordial Shape: A Possible Jacobi Ellipsoid, A&A. 638
(2020) L15.Https://Doi.Org/10.1051/0004-6361/202038100.
- R.B. Gordon, Mechanical Properties Of Iron Meteorites And The
Structure Of Their Parent Planets, J. Geophys. Res. 75 (1970)
439–447.Https://Doi.Org/10.1029/Jb075i002p00439.
- Hernandez, V. S., Murr, L. E.. & Anchondo I. A., Experimental
Observations And Computer Simulations For Metallic Projectile
Fragmentation And Impact Crater Development In Thick Metal Targets,
International Journal Of Impact Engineering . 32 (2006) 1981-1999.
- F. Horz, M.J. Cintala, R.P. Bernhard, F. Cardenas, W.E. Davidson, G.
Haynes, T.H. See, J.L. Winkler, Penetration Experiments In Aluminum
1100 Targets Using Soda-lime Glass Projectiles, Nasa Sti/Recon
Technical Report N. 96 (1995).Http://Adsabs.Harvard.Edu/Abs/1995stin…9615990h(Accessed May 20, 2021).
- G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for
Metals Subjected to Large Strains, High Strain Rates and High
Temperatures,” Proceedings of the Seventh International Symposium on
Ballistics, The Hague, The Netherlands, April 1983
- A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes,
S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars High Resolution Gravity
Fields From MRO, Mars Seasonal Gravity, And Other Dynamical
Parameters, Icarus. 211 (2011) 401–428.Https://Doi.Org/10.1016/J.Icarus.2010.10.004.
- G. Libourel, A.M. Nakamura, P. Beck, S. Potin, C. Ganino, S. Jacomet,
R. Ogawa, S. Hasegawa, P. Michel, Hypervelocity Impacts As A Source Of
Deceiving Surface Signatures On Iron-rich Asteroids, Sci. Adv. 5
(2019) Eaav3971.Https://Doi.Org/10.1126/Sciadv.Aav3971.
- S. Marchi, D.D. Durda, C.A. Polanskey, E. Asphaug, W.F. Bottke, L.T.
Elkins‐tanton, L.A.J. Garvie, S. Ray, S. Chocron, D.A. Williams,
Hypervelocity Impact Experiments In Iron‐nickel Ingots And Iron
Meteorites: Implications For The Nasa Psyche Mission, J. Geophys. Res.
Planets. (2020).Https://Onlinelibrary.Wiley.Com/Doi/Abs/10.1029/2019je005927.
- A. Matter, M. Delbo, B. Carry, S. Ligori, Evidence Of A Metal-rich
Surface For The Asteroid (16) Psyche From Interferometric Observations
In The Thermal Infrared, Icarus. 226 (2013) 419–427.Https://Doi.Org/10.1016/J.Icarus.2013.06.004.
- J.M. Mcglaun, S.L. Thompson, M.G. Elrick, Cth: A Three-dimensional
Shock Wave Physics Code, International Journal Of Impact Engineering.
10 (1990) 351–360.Https://Doi.Org/10.1016/0734-743x(90)90071-3.
- H.J. Melosh, E.V. Ryan, E. Asphaug, Dynamic Fragmentation In Impacts:
Hydrocode Simulation Of Laboratory Impacts, Journal Of Geophysical
Research: Planets. 97 (1992) 14735–14759.Https://Doi.Org/10.1029/92je01632.
- R. Ogawa, A.M. Nakamura, A.I. Suzuki, S. Hasegawa, Crater Shape As A
Possible Record Of The Impact Environment Of Metallic Bodies: Effects
Of Temperature, Impact Velocity And Impactor Density, Icarus. 362
(2021) 114410.Https://Doi.Org/10.1016/J.Icarus.2021.114410.
- M. Ohnaka, A Shear Failure Strength Law Of Rock In The Brittle-plastic
Transition Regime, Geophysical Research Letters. 22 (1995) 25–28.Https://Doi.Org/10.1029/94gl02791.
- E. Pierazzo, A.M. Vickery, H.J. Melosh, A Reevaluation Of Impact Melt
Production, Icarus. 127 (1997) 408–423.Https://Doi.Org/10.1006/Icar.1997.5713.
- S.D. Raducan, T.M. Davison, G.S. Collins, Morphological Diversity Of
Impact Craters On Asteroid (16) Psyche: Insight From Numerical Models,
J. Geophys. Res. Planets. 125 (2020).Https://Doi.Org/10.1029/2020je006466.
- F.S. Schwartzberg, Cryogenic Materials Data Handbook, Volume I,
Technical Documentary Report, Afml-tdr-64-280, Revised 1970, Air Force
Materials Laboratory
- M.K. Shepard, J. Richardson, P.A. Taylor, L.A. Rodriguez-ford, A.
Conrad, I. De Pater, M. Adamkovics, K. De Kleer, J.R. Males, K.M.
Morzinski, L.M. Close, M. Kaasalainen, M. Viikinkoski, B. Timerson, V.
Reddy, C. Magri, M.C. Nolan, E.S. Howell, L.A.M. Benner, J.D.
Giorgini, B.D. Warner, A.W. Harris, Radar Observations And Shape Model
Of Asteroid 16 Psyche, Icarus. 281 (2017) 388–403.Https://Doi.Org/10.1016/J.Icarus.2016.08.011.
- J.H. Tillotson, Metallic Equations Of State For Hypervelocity Impact,
General Dynamics San Diego Ca General Atomic Div, 1962.Https://Apps.Dtic.Mil/Docs/Citations/Ad0486711(Accessed January 29, 2020).
- K. Wünnemann, G.S. Collins, H.J. Melosh, A Strain-based Porosity Model
For Use In Hydrocode Simulations Of Impacts And Implications For
Transient Crater Growth In Porous Targets, Icarus. 180 (2006)
514–527.Https://Doi.Org/10.1016/J.Icarus.2005.10.013.