6 References
  1. A.A. Amsden, H.M. Ruppel, C.W. Hirt, Sale: A Simplified ALE Computer Program For Fluid Flow At All Speeds, Los Alamos Scientific Lab., Nm (Usa), 1980.Https://Doi.Org/10.2172/5176006.
  2. M.J. Burchell, N.G. Mackay, Crater Ellipticity In Hypervelocity Impacts On Metals, J. Geophys. Res. 103 (1998) 22761–22774.Https://Doi.Org/10.1029/98je02143.
  3. G.S. Collins, H.J. Melosh, K. Wünnemann, Improvements To The Ɛ-α Porous Compaction Model For Simulating Impacts Into High-porosity Solar System Objects, International Journal Of Impact Engineering. 38 (2011) 434–439.Https://Doi.Org/10.1016/J.Ijimpeng.2010.10.013.
  4. G.S. Collins, H.J. Melosh, B.A. Ivanov, Modeling Damage And Deformation In Impact Simulations, Meteoritics & Planetary Science. 39 (2004) 217–231.Https://Doi.Org/10.1111/J.1945-5100.2004.Tb00337.X.
  5. Daly, R.T., & Schultz, P.H., Projectile Preservation During Oblique Hypervelocity Impacts, Meteoritics & Planetary Science. 53 (2018) 1364–1390.Https://Doi.Org/Doi: 10.1111/Maps.13081.
  6. T.M. Davison, G.S. Collins, D. Elbeshausen, K. Wünnemann, A. Kearsley, Numerical Modeling Of Oblique Hypervelocity Impacts On Strong Ductile Targets: Oblique Hypervelocity Impacts On Ductile Targets, Meteoritics & Planetary Science. 46 (2011) 1510–1524.Https://Doi.Org/10.1111/J.1945-5100.2011.01246.X.
  7. L.T. Elkins-tanton, E. Asphaug, J.F.B. Iii, H. Bercovici, B. Bills, R. Binzel, W.F. Bottke, S. Dibb, D.J. Lawrence, S. Marchi, T.J. Mccoy, R. Oran, R.S. Park, P.N. Peplowski, T.H. Prettyman, C.T. Russell, L. Schaefer, B.P. Weiss, M.A. Wieczorek, M.T. Zuber, Composition And Formation Of (16) Psyche, (N.D.) 41.
  8. M. Ferrais, P. Vernazza, L. Jorda, N. Rambaux, J. Hanuš, B. Carry, F. Marchis, M. Marsset, M. Viikinkoski, M. Brož, R. Fetick, A. Drouard, T. Fusco, M. Birlan, E. Podlewska-gaca, E. Jehin, P. Bartczak, J. Berthier, J. Castillo-rogez, F. Cipriani, F. Colas, G. Dudziński, C. Dumas, J. Ďurech, M. Kaasalainen, A. Kryszczynska, P. Lamy, H. Le Coroller, A. Marciniak, T. Michalowski, P. Michel, T. Santana-ros, P. Tanga, F. Vachier, A. Vigan, O. Witasse, B. Yang, Asteroid (16) Psyche’s Primordial Shape: A Possible Jacobi Ellipsoid, A&A. 638 (2020) L15.Https://Doi.Org/10.1051/0004-6361/202038100.
  9. R.B. Gordon, Mechanical Properties Of Iron Meteorites And The Structure Of Their Parent Planets, J. Geophys. Res. 75 (1970) 439–447.Https://Doi.Org/10.1029/Jb075i002p00439.
  10. Hernandez, V. S., Murr, L. E.. & Anchondo I. A., Experimental Observations And Computer Simulations For Metallic Projectile Fragmentation And Impact Crater Development In Thick Metal Targets, International Journal Of Impact Engineering . 32 (2006) 1981-1999.
  11. F. Horz, M.J. Cintala, R.P. Bernhard, F. Cardenas, W.E. Davidson, G. Haynes, T.H. See, J.L. Winkler, Penetration Experiments In Aluminum 1100 Targets Using Soda-lime Glass Projectiles, Nasa Sti/Recon Technical Report N. 96 (1995).Http://Adsabs.Harvard.Edu/Abs/1995stin…9615990h(Accessed May 20, 2021).
  12. G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, April 1983
  13. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars High Resolution Gravity Fields From MRO, Mars Seasonal Gravity, And Other Dynamical Parameters, Icarus. 211 (2011) 401–428.Https://Doi.Org/10.1016/J.Icarus.2010.10.004.
  14. G. Libourel, A.M. Nakamura, P. Beck, S. Potin, C. Ganino, S. Jacomet, R. Ogawa, S. Hasegawa, P. Michel, Hypervelocity Impacts As A Source Of Deceiving Surface Signatures On Iron-rich Asteroids, Sci. Adv. 5 (2019) Eaav3971.Https://Doi.Org/10.1126/Sciadv.Aav3971.
  15. S. Marchi, D.D. Durda, C.A. Polanskey, E. Asphaug, W.F. Bottke, L.T. Elkins‐tanton, L.A.J. Garvie, S. Ray, S. Chocron, D.A. Williams, Hypervelocity Impact Experiments In Iron‐nickel Ingots And Iron Meteorites: Implications For The Nasa Psyche Mission, J. Geophys. Res. Planets. (2020).Https://Onlinelibrary.Wiley.Com/Doi/Abs/10.1029/2019je005927.
  16. A. Matter, M. Delbo, B. Carry, S. Ligori, Evidence Of A Metal-rich Surface For The Asteroid (16) Psyche From Interferometric Observations In The Thermal Infrared, Icarus. 226 (2013) 419–427.Https://Doi.Org/10.1016/J.Icarus.2013.06.004.
  17. J.M. Mcglaun, S.L. Thompson, M.G. Elrick, Cth: A Three-dimensional Shock Wave Physics Code, International Journal Of Impact Engineering. 10 (1990) 351–360.Https://Doi.Org/10.1016/0734-743x(90)90071-3.
  18. H.J. Melosh, E.V. Ryan, E. Asphaug, Dynamic Fragmentation In Impacts: Hydrocode Simulation Of Laboratory Impacts, Journal Of Geophysical Research: Planets. 97 (1992) 14735–14759.Https://Doi.Org/10.1029/92je01632.
  19. R. Ogawa, A.M. Nakamura, A.I. Suzuki, S. Hasegawa, Crater Shape As A Possible Record Of The Impact Environment Of Metallic Bodies: Effects Of Temperature, Impact Velocity And Impactor Density, Icarus. 362 (2021) 114410.Https://Doi.Org/10.1016/J.Icarus.2021.114410.
  20. M. Ohnaka, A Shear Failure Strength Law Of Rock In The Brittle-plastic Transition Regime, Geophysical Research Letters. 22 (1995) 25–28.Https://Doi.Org/10.1029/94gl02791.
  21. E. Pierazzo, A.M. Vickery, H.J. Melosh, A Reevaluation Of Impact Melt Production, Icarus. 127 (1997) 408–423.Https://Doi.Org/10.1006/Icar.1997.5713.
  22. S.D. Raducan, T.M. Davison, G.S. Collins, Morphological Diversity Of Impact Craters On Asteroid (16) Psyche: Insight From Numerical Models, J. Geophys. Res. Planets. 125 (2020).Https://Doi.Org/10.1029/2020je006466.
  23. F.S. Schwartzberg, Cryogenic Materials Data Handbook, Volume I, Technical Documentary Report, Afml-tdr-64-280, Revised 1970, Air Force Materials Laboratory
  24. M.K. Shepard, J. Richardson, P.A. Taylor, L.A. Rodriguez-ford, A. Conrad, I. De Pater, M. Adamkovics, K. De Kleer, J.R. Males, K.M. Morzinski, L.M. Close, M. Kaasalainen, M. Viikinkoski, B. Timerson, V. Reddy, C. Magri, M.C. Nolan, E.S. Howell, L.A.M. Benner, J.D. Giorgini, B.D. Warner, A.W. Harris, Radar Observations And Shape Model Of Asteroid 16 Psyche, Icarus. 281 (2017) 388–403.Https://Doi.Org/10.1016/J.Icarus.2016.08.011.
  25. J.H. Tillotson, Metallic Equations Of State For Hypervelocity Impact, General Dynamics San Diego Ca General Atomic Div, 1962.Https://Apps.Dtic.Mil/Docs/Citations/Ad0486711(Accessed January 29, 2020).
  26. K. Wünnemann, G.S. Collins, H.J. Melosh, A Strain-based Porosity Model For Use In Hydrocode Simulations Of Impacts And Implications For Transient Crater Growth In Porous Targets, Icarus. 180 (2006) 514–527.Https://Doi.Org/10.1016/J.Icarus.2005.10.013.