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Abstract: 13 
 14 

Snowfall has important significance in water resources management and disaster prevention 15 

worldwide. Accurate prediction of both mean and extreme snowfall is challenging because of 16 

multiple controlling mechanisms at different spatial and temporal scales. By using a 65 years long 17 

in-situ snowfall observation, we evaluated seven different machine learning algorithms for 18 

predicting monthly snowfall in the Lower Peninsula of Michigan (LPM). The Bayesian Additive 19 

Regression Trees (BART) demonstrates the best fitting (R2 = 0.88) and out-of-sample prediction 20 

skills (R2 = 0.58) for the monthly mean snowfall followed by the Random Forest model. The BART 21 

also demonstrate strong predictive skills for seasonal and the extreme monthly snowfall. Both 22 

machine learning models also demonstrate signals of key physical processes controlling the 23 

snowfall including topography, local/regional environmental factors, and teleconnections. 24 

Particularly, models with the non-parametric framework can incorporate signals from multiple 25 

scales and nonlinear responses from the snowfall to environmental factors and that substantially 26 

improved the model prediction skills. The multiscale machine learning approach provides a 27 

reliable and computationally efficient alternative approach to predict/forecast weather and climate 28 

and has potential to be applied to other extreme weather prediction scenarios. 29 
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1. Introduction 34 
 35 

Snowfall is an important indicator of winter season severity along with low temperatures, 36 

freezing rain, winds, visibility in cold climates (Ford et al., 2021). Snowfall intensity, duration, 37 

and amount could have both beneficial and adverse impacts on society and environment (Kenneth 38 

E. Kunkel et al., 2002), forest ecosystem (Zhou et al., 2021), plant phenology (Bjorkman et al., 39 

2015), and hydrological processes (Kolka et al., 2010). The Lower Peninsula of Michigan (LPM) 40 

in the US Midwest region (Fig. 1) experiences substantial amounts of snowfall during winter 41 

seasons and frequent extreme snowstorms due to the lake-effect. It has been demonstrated that 42 

snowfall variability in the LPM has increased, although long-term averaged snowfall remains 43 

relatively stable since 1970s(Meng & Ma, 2021). Model outputs from the Sixth Coupled Model 44 

Intercomparison Project (CMIP6) suggest that snowfall intensity will increase while the amount 45 

of snowfall might decrease in middle latitudes of North America under future warming(Quante et 46 

al., 2021). Understanding the variability of snowfall will improve its predictability at monthly to 47 

seasonal timescales, providing potential benefits for winter road maintenance budget planning, ski 48 

industry, insurance company, and human health conditions. 49 

Previous studies have discussed different mechanisms influencing winter snowfall 50 

variability in the Great Lakes regions, including both local/regional environmental factors and 51 

teleconnections. Local/regional environmental factors influence snowfall developments in the 52 

Great Lakes regions through their impacts on atmospheric instability, lift, and moisture exchanges 53 

between the Great Lakes and the atmosphere. Similar upward trends in air temperatures (as a proxy 54 

of lake surface water temperatures) and snowfall in the Laurentian Great Lakes were also identified 55 

(K E Kunkel et al., 2009). It was also found that a strong negative correlation existed between 56 

average winter temperatures and lake-effect snowfall in Lake Michigan (Braham & Dungey, 1984). 57 
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Our recent studies (Meng et al., 2021; Meng & Ma, 2021) and other previous research (Clark et 58 

al., 2016) suggest that both the lake-effect snowfall and the seasonal total snowfall variability have 59 

significantly negative correlations with regional average winter temperatures in the LPM. Lake 60 

surface water temperatures and ice covers also have significant impacts on lake-effect snowfall 61 

from lake-atmosphere interactions. For instance, Baijnath-Rodino et al. (Baijnath-Rodino et al., 62 

2018) suggested that that warm lake surface introduces boundary layer instability and facilitate 63 

exchange of moisture and energy, which fuels the lake effect snow. Several regional modeling 64 

studies (Notaro et al., 2013; Shi & Xue, 2019) support the same mechanism and describe the roles 65 

of lake surface temperatures, ice coverage and wind directions in the development of lake-effect 66 

snowfall with more details. 67 

Teleconnections can determine the snowfall in the Great Lakes regions from mechanisms 68 

at global or regional scales. For example, the upper-level trough patterns favorable to the lake-69 

effect snow are often associated with a negative phase of Arctic Oscillation (AO) and North 70 

Atlantic Oscillation (NAO) and/or a positive phase of Pacific North American Pattern (PNA) 71 

(Suriano & Leathers, 2017). Statistical model also shows that inclusion of the PNA, Pacific 72 

Decadal PDO, Northern Hemisphere temperature and the NAO/AO improved the prediction skills 73 

of snowfall in most stations in the United States (Kluver & Leathers, 2015). El Niño–Southern 74 

Oscillation (ENSO) is controlling the snowfall in the Midwest U.S. by modulating the locations 75 

of the jet stream (Smith & O’Brien, 2001). Significantly less snowfall has been observed during 76 

El Niño (the warm phase of ENSO) years (Clark et al., 2016). Sea surface temperature in the Nino 77 

3.4 region (SST3.4) are also negatively correlated with both seasonal total snowfall and lake-effect 78 

snowfall in the LPM (Meng et al., 2021; Meng & Ma, 2021).  79 



 5 

Based on the discussions above, most previous studies treat multiple mechanisms 80 

influencing the regional snow separately, such as regional mechanisms like the lake-effect snow 81 

or large-scale teleconnections such as ENSO. But these multiple atmospheric and environmental 82 

factors are at different spatial and temporal scales and may determine snowfall LPM independently 83 

or collectively. It is still challenging for the Global Circulation Models (GCMs) or Regional 84 

Climate Models (RCMs) to capture all these mechanisms and both are currently computational 85 

expensive (Gutowski et al., 2021). Machine learning approaches provide an alternative approach 86 

to solve those multiscale challenges in weather and climate prediction. In recent years, machine 87 

learning approaches have been more frequently used in parameterization of climate models 88 

(O’Gorman & Dwyer, 2018; Schneider et al., 2017) or directly for regional and global climate 89 

predictions (Ham et al., 2019). It has been reported that machine learning models are able to give 90 

decent prediction skills for general climate variables like temperature and precipitation (Gibson et 91 

al., 2021; Robertson et al., 2015). Those machine learning approaches are also demonstrating 92 

improved ability to predict hydro-climate extremes, such as drought, extreme rainfall (Wei et al., 93 

2022). However, very few studies have used machine learning approaches to predict snowfall. 94 

Non-linear autoregressive networks model was developed to enhance the spatial resolution of 95 

snowfall estimate for the black forest using additional topographic information (Sauter et al., 2010). 96 

The support vector machine (SVM) and multivariate discriminant analysis (MDA) models both 97 

have excellent performance in snow avalanche prediction in the Karaj watershed, northern Iran 98 

(Choubin et al., 2019). No machine learning based study is focused on a region like Michigan, 99 

which is usually prone to extreme snowfall due to the lake-effect. 100 

In this study, we will evaluate snow prediction models based on multiple machine learning 101 

techniques. By doing this work, we will be able to (1) compare different machine learning 102 
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approaches for their fitting and prediction skills for snowfall in the LPM; (2) discover possible 103 

important physical mechanisms that control LPM snowfall; (3) select an optimal model with best 104 

predictive performance that can be used for seasonal/monthly forecast or future climate change 105 

predictions.  106 

 107 

Fig. 1. Locations of all COOP stations with snowfall measurement in LPM. 108 

 109 
2. Data and Methods 110 

2.1 Snowfall and independent variables 111 

 In this study, we use a monthly snowfall dataset from 8 COOP stations that are temporally 112 

homogeneous (K E Kunkel et al., 2009). Only dataset from 1951 to 2015 is used due to constrains 113 

of availability in the corresponding teleconnection indices. Only snowfall observations from the 114 

peak snowfall season (December, January, and February) are included in our machine learning 115 

models.  116 
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All independent variables are listed as Table 1. Vapor pressure deficit is the difference 117 

between the actual water vapor pressure and saturation vapor pressure.  Extreme temperature 118 

(maxT & mint) and vapor pressure deficit (vpdmax & vpdmin) at each COOP station were 119 

obtained from the nearest grid cell in the Precipitation-Elevation Regression on Independent 120 

Slopes Model (PRISM) dataset 53,54 with a 4 km spatial resolution. Extracted from the same data 121 

source, both local and regional averaged temperatures (savgT & avgT) are included in our machine 122 

learning models. uwind and vwind were obtained from the nearest grid cell in ERA5-land monthly 123 

dataset with a 0.25° spatial resolution. The wind direction is calculated from uwind and vwind 124 

values. 125 

 126 

Table. 1. List of variables used in the modeling process 127 

Acronym Full name Description Unit 

maxT Maximum Temperature Local, Dynamic °C 

minT Minimum Temperature Local, Dynamic °C 

savgT Station Averaged Temperature Local, Dynamic °C 

avgT Regional Averaged Temperature Regional, Dynamic °C 

rangeT Range of Temperature Local, Dynamic °C 

uwind Meridional Winds Local, Dynamic m/s 

vwind Zonal winds Local, Dynamic m/s 

direction Direction of the winds Local, Dynamic ° 

vpdmax Maximum Vapor Pressure Deficit Local, Dynamic kPa 

vpdmin Minimum Vapor Pressure Deficit Local, Dynamic kPa 

tsi Tropical Southern Atlantic Index Teleconnections °C 

tni Tropical Southern Atlantic Index Teleconnections °C 

np North Pacific Air Pressure Teleconnections mb 

sst34 Sea Surface Temperature in Nino3.4 Teleconnections °C 

pna Pacific North America Index Teleconnections NA 

nhavgT 
Average Temperature of Northern 

Hemisphere include both land and ocean 
Teleconnections °C 

nao North Atlantic Oscillation Teleconnections NA 
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pdo Pacific Decadal Oscillation Teleconnections NA 

ao Arctic Oscillation Teleconnections NA 

elev Elevation Local, Static meter 

dist2shore 
Shortest Distance to Lake Michigan 

shorelines 
Local, Static Kilometer 

lat Latitude of Station Local, Static ° 

lon Longitude of Station Local, Static ° 

month Month of observation Generic, Dynamic NA 

* All dynamic variables are extracted monthly 128 

 129 

The selection of teleconnection indices used in the models is based on previous literature 130 

showing their controls in snowfall in the U.S. (Clark et al., 2016; Hartnett et al., 2014; Kluver & 131 

Leathers, 2015; Meng et al., 2021; Meng & Ma, 2021; Suriano & Leathers, 2017). All 132 

teleconnection indices including tsi, tni, np, sst34, pna, nhavgT, nao, pdo, and ao were obtained 133 

from NOAA Physical Sciences Laboratory (PSL, https://psl.noaa.gov/data/climateindices/list/). 134 

Latitude, longitude, elevation, and the shortest distance (in km) to Lake Michigan shorelines for 135 

each COOP station were also included in our models and they do not change by time in the model 136 

(static variables). The u and v component of the surface wind were collected from ERA5 data (Bell 137 

et al., 2021). Wind direction is calculated from the corresponding u- and v-winds at each grid cell.  138 

 139 

2.2 Model Overview 140 

We tested 7 different algorithms that cover major categories of machine learning 141 

techniques in this study. The Generalized Linear Model (GLM) are a series of special linear 142 

regression models first formulated by Nelder and Wedderburn (1972). They work for the situation 143 

when the response variable is reacting nonlinearly with predictors by using a link function (such 144 

as logarithm function) to allow variance of each measurement to be a function of its prediction. 145 

The Generalized Additive Model (GAM) is a special kind of GLM where the response variable is 146 

https://psl.noaa.gov/data/climateindices/list/
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linearly dependent on smooth functions of some predictor variables (Sasieni, 1992). An 147 

exponential distribution is specified for the response variable and the predictor variables is linked 148 

with smooth functions such as polynomial, spline or nonparametric functions.  149 

The Bayesian Regularization for Feed-Forward Neural Networks (BRNN) is a two-layer 150 

framework of neural network that uses the Nguyen and Widrow Algorithm (Nguyen & Widrow, 151 

1990) to assign initial weight and Gauss-Newton algorithm to perform the optimization. It has 152 

been applied to predicting complex quantitative genetic traits (Gianola et al., 2011) and is first 153 

applied to climate prediction models in our analysis.  154 

The Supporting Vector Machine (SVM) is a machine learning algorithm that discover an 155 

optimal hyper plane that classifies the data points from a multi-dimensional space (Boser et al., 156 

1992). It already has been applied to climate science, such as prediction of extreme rainfall event 157 

(Nayak & Ghosh, 2013)  and downscaling precipitation from GCMs (Tripathi et al., 2006). Those 158 

predictions both show good agreements with observations so here we include the SVM in our 159 

model comparison.  160 

The Multivariate Adaptive Regression Splines (MARS) is a non-parametric modeling 161 

approach that can model the nonlinearities and interactions in the data without knowing them a 162 

priori (J. H. Friedman, 1991).  This algorithm acts as an expansion of product spline basis functions, 163 

where the number of functions and their parameters are automatically determined by the data. The 164 

MARS has been successively applied to predict monthly runoff in tropical climate (Reddy et al., 165 

2021)  and burn area from wildfire in western boreal North America (Balshi et al., 2009).  166 

The Random Forest (RF) and Bayesian Additive Regression Trees (BART) are both machine 167 

learning algorithms based on ensembles of decision trees. The RF constructs multiple decision 168 
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trees and its mean prediction is given by those trees (Breiman, 2001). This approach is believed to 169 

be able to provide more robust predictions and suffer from less overfitting to the training set as 170 

compared with single decision tree. The BART algorithm is another “sum-of-trees” based model 171 

where each tree starts with constrain as a weak learner, then the fitting and inference are finished 172 

by using iterative Bayesian backfitting MCMC algorithm creating samples from a posterior 173 

(Chipman et al., 2012). The BART adds the Bayesian prior-posterior framework in the ensemble 174 

tree modeling. And its predictive performance is proved better than boosting, the lasso, MARS, 175 

neural nets, and the RF with even less computation resources. We will test both RF and BART for 176 

our snowfall modeling. 177 

2.3 Model evaluation and selection 178 

We start our modeling by splitting our data randomly into 80% training data and 20% 179 

testing data. The classification and regression training (caret) R package (Kuhn, 2008) is used to 180 

select the optimal combination of variables for each model in the model training by using the 181 

included Recursive Feature Elimination (RFE) function. For example, the RFE use stepwise 182 

feature selection for the GLM model and use cross validated recursive variable selection for GAM, 183 

SVM, MARS, RF, and BART. There is no variable selection for BRNN. The RFE test all possible 184 

combinations of variables into the model, evaluate their cross-validation results (RMSE, R2, and 185 

MAE from 10-folds cross validation), and finally select the model with the best results. We will 186 

train those models using the selected variables and compare the model fitting results for all 7 those 187 

algorithms.  188 

 The next step is to use the 20% testing data to execute the out of sample cross validation 189 

to test the models’ sensitivity and robustness to new data. We will use the identical models trained 190 

from the previous step to make predictions for the snowfall observations in the testing data and 191 
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make comparisons. The RMSE, MAE, and R2 will be calculated to gauge different models’ out of 192 

sample prediction skills. We will choose one or two machine learning algorithms with the best 193 

prediction skills for further evaluation, which will be the hold-one-year-out cross validation. The 194 

purpose is to test models’ sensitivity and stability in predicting seasonal snowfall in LPM. We will 195 

iteratively hold out each year’s data and train the model only with other 64 years. Each hold-out 196 

model will be used to predict monthly snowfall at each station for that hold-out year. Monthly 197 

predictions and observations will be both aggregated seasonally (three months) and compared.  198 

 One of the major challenges for all machine learning research is model interpretation 199 

(Molnar et al., 2020). Model interpretation will help identify important variable/physical process 200 

involved in the machine learning model and understand how the dependent variables are 201 

interacting with independent variables. We will be able to calculate the variable importance for 202 

different machine learn approaches used in this study(Grömping, 2009). For example, the t-statistic 203 

for each model parameter is used for GLM. The reduction (addition) to the model performance 204 

(such as residual sums of squares) when a predictor is added to (removed from) the model is 205 

calculated as the importance of each predictor for models including MARS, RF, and BART. For 206 

better comparison purposes, we will calculate the relative variable importance (VI) relative VIs 207 

based on a 0–100 scale for model comparison purposes. Finally, the Partial Dependence Plot (PDP) 208 

is a useful tool to demonstrate the marginal effect from one or two predictors to the predicted 209 

outcome (Jerome H. Friedman, 2001). We will be able tell how snowfall is reacting to one specific 210 

predictor (e.g., linearly or non-linearly) in the model. Combining the VI and PDP calculation, we 211 

expect to reveal important physical mechanisms that control snowfall in the LPM. 212 

 213 
 214 
3. Results 215 
 216 
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3.1 Linear Correlations 217 
 218 
      Linear correlations between all monthly snowfall and environmental/climatological factors 219 

are shown in Table 2. Maximum temperature (maxT) has the highest correlation with the snowfall 220 

in the LPM, followed by the regional averaged temperatures (avgT). Both the maxT and  avgT 221 

have a strong negative correlation with the snowfall. Station’s geographical locations also have an 222 

impact on the amount of snowfall. More snowfall is associated with stations with shorter distance 223 

from the Lake Michigan and locations with higher latitudes tend to have more snowfall. Most of 224 

the teleconnections have weak or no statistically significant correlation with the snowfall. Two 225 

strongest signals are SST 3.4 and North Atlantic Oscillation. 226 

Table 2. Linear correlations between Michigan snowfall and independent variables 227 

month lon lat elev dist2shore ao 

-0.1* -0.004 0.32* -0.25* -0.24* 0.03 

nhavgT np pdo pna sst34 nao 

-0.01 0.04 -0.07 -0.05 -0.14* -0.11* 

avgT tni tsi savgT minT maxT 

-0.36* 0.05 0.08 0.06 -0.26* -0.42* 

rangeT uwind vwind direction vpdmax vpdmin 

-0.09 0.26* -0.19* 0.18* -0.11* -0.03 

* Indicates statistically significant correlation at 99% level  228 

 229 

3.2 Model fitt  230 

The correlation analysis provides information about snowfall’s linear response to individual 231 

predictors. In this section, we will evaluate seven different machine learning algorithms to explore 232 

their combined effect. We used the Recursive Feature Elimination (RFE) algorithm to test all 233 

possible combinations of predictors and chose the optimal combination (statistics shown as SI. 1-234 

5). The number of required variables for the best fitting models varies from 4 to all independent 235 

(24) variables. Significant differences exist in the model fitting accuracy among the seven 236 
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algorithms (Table 2). The R2 varies from 25% (SVM) to 88% (BART). The BART model also has 237 

the lowest mean absolute error (MAE) and Root Mean Square Error (RMSE), followed by the RF 238 

model.  239 

The VI rankings also show differences among seven machine learning algorithms (Table 3). 240 

Similar to the correlation analysis, maxT is the most important controlling variable in GLM, 241 

MARS, SVM, and RF and the third important variable in BART. avgT is another important 242 

variable in many machine learning models (ranked second in GLM, SVM, and RF). Elevation is 243 

an important static variable along with the latitude, which appears in the top 10 VIs of most models 244 

except the SVM. For the BART with the best fitting performance, the top 5 important variables 245 

are vpdmax, dist2shore, maxT, rangeT, and elevation.  246 

 247 

Table 2. The Model fitting result for the 80% training data 248 
 

GLM GAM BRNN SVM MARS RF BART 

Number of Predictors 24 19 24 4 10 17 24 

R2 0.4 0.42 0.45 0.25 0.44 0.58 0.88 

MAE 18.11 18.03 18.03 19.76 17.58 15.29 8.48 

RMSE 23.95 23.52 23.11 26.97 23.01 20.24 11.07 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 
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Table 3. Relative variable importance (VI) for different ML algorithms (only up to 10 most 260 
important variables are shown). 261 

 GLM GAM MARS SVM RF BART 

Rank Var VI Var VI Var VI Var VI Var VI Var VI 

1 
max

T 
100 lat 100 

max

T 
100 

max

T 
100 

max

T 
100 

vpdm

ax 
100 

2 avgt 69 
mont

h 
99 elev 76 avgt 78 avgt 70 

dist2

shore 
97 

3 minT 55 elev 87 
mont

h 
54 minT 55 minT 61 

max

T 
97 

4 lat 54 pdo 86 
dist2

shore 
46 lat 54 

dist2

shore 
42 

range

T 
90 

5 
uwin

d 
32 avgt 74 pdo 40   elev 42 elev 89 

6 
direct

ion 
31 minT 64 tsi 32   lat 27 tsi 88 

7 elev 27 t1 60 
vpdm

ax 
25   vpdm

ax 
25 avgt 85 

8 
dist2

shore 
23 

range

T 
45 np 22   range

T 
24 np 82 

9 
vwin

d 
22 tni 39 pna 16   t 23 lat 73 

10 t 16 np 34 minT 13   np 22 
vwin

d 
72 

 262 

3.3 Cross Validation 263 

Next, we used those trained models to make out-of-sample predictions using the 20% testing 264 

data (Fig. 2). Comparison of model predictions demonstrates that most models are robust and have 265 

stable prediction skills for the new data. BART has the best prediction skills, followed by RF, 266 

BRNN, GAM, GLM, MARS, and SVM, based on their MAE and RMSE statistics. BART has a 267 

R2 = 0.58 with RMSE = 18.4 and MAE = 13.83. The RF Model’s prediction skill is slightly lower 268 

than BART, with R2 = 0.55 and MAE =14.43. Particularly, the BART model has the best prediction 269 

skill for the > 100 cm snowfall. Most other models (GLM, GAM, SVM, MARS, and RF) tend to 270 

have systematic underestimate for this range of extreme snowfall. BRNN (Fig. 2c) have both large 271 

overestimates and underestimates for the > 100 cm snowfall. 272 
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 273 

Fig 2. The model prediction skills for different ML algorithms, calculated from the out-of-274 
sample cross validation using the 20% testing data. Prediction and observation (same 20% 275 

testing data) are compared with the y=x line (red). 276 

 277 

 We further evaluated model performances through the leave-one-year-out-cross validation 278 

for BART and RF because they have the best performance shown by the fitting and out-of-sample 279 

cross-validation tests. Fig. 3 shows that BART model can explain 62% to 92.4% of seasonal 280 

snowfall variance (summed as Dec, Jan and Feb) while RF can explain 15% to 38.6% of seasonal 281 

snowfall variance in the LPM as indicated by their R2. When the snowfall predictions are averaged 282 
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over the 8 stations, there is a significant improvement in model prediction skills and error statistics 283 

(Fig. 3i).  The BART model demonstrates an exceptional high R2 value of 99.8% and low values 284 

of MAE (1.32 cm) and RMSE (1.96 cm) for the station averaged regional snowfall prediction. The 285 

Random Forest model also shows improvement in predicting regional mean snowfall (R2 = 0.5, 286 

MAE = 19.67) as compared with the single station prediction. Besides inter-annual and inter-287 

decadal variability, both RF and BART also capture temporal trends at some locations’ time series 288 

(Such as East Jordan, Battle Creek, and the Regional Mean) 289 

 290 

 291 

 292 

Fig 3. Hold one year out cross validation results for RF and BART models. For each year, 293 
both model (RF and BART) are trained only using data exclusively from other 64 years. 294 
Each hold-out model is used to predict snowfall monthly snowfal at each station and then 295 
they are aggregated into the seasonal snowfall as shown by the time series. 296 

 297 
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3.4 Variable and Model Interpretations 298 

 The partial dependence plots (pdps) can be used to estimate each dependent variable’s 299 

marginal effect on the predicted outcome of a machine learning model (Jerome H. Friedman, 2001). 300 

The pdps for BART (Fig. 4) shows that snowfall generally increases as maxT, minT and avgT 301 

decreases. This agrees with the correlation analysis and previous studies (Meng et al., 2021; Meng 302 

& Ma, 2021) . The air temperature is likely to influence the rate of accretion of ice and 303 

sublimation/deposition of snow as well as the mean size of snow aggregate (Hong et al., 2004). 304 

The snowfall reacts to station mean temperature (savgT) in a more complex way. While the 305 

snowfall generally decreases when the savgT increases in the BART (Fig 4s), the maximum 306 

snowfall happens when the savgT is between 0 and 5 °C. And the RF demonstrate a positive 307 

relationship between snowfall and savgT (Fig. 5i). At a much larger scale, higher north hemisphere 308 

average temperature (nhavgT) generally agree with higher amount of LPM snowfall in both 309 

models (Fig 4o and 5o). This could be related to the breaking down of polar vortex due to the 310 

melting of arctic sea ice (Francis & Vavrus, 2012) or the general warm up of water temperature 311 

that may intensify the lake-effect snow. 312 

 Static variables such as latitudes, dist2shore and elevation also play important roles in both 313 

RF and BART. Snowfall is generally higher at locations nearer to the lakeshore (Fig 4i and 5d) 314 

and locations with higher elevations (Fig 4h). This also agrees with the correlation analysis and 315 

indicates signals from lake-effect snow because the process is directly determined by the 316 

approximity to the great lakes and topography. Snowfall increases as the station’s latitude 317 

increases in both BART (Fig 4e) and RF (Fig 5f). The relationship is also controlled by 318 

temperature’s influence in snowfall.  319 
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 More snowfall amounts in the LPM are associated with the cold phase of ENSO (La Niña). 320 

Previous studies have discussed how ENSO regulates the Pacific jet stream and therefore influence 321 

the storm tracks over the continental U.S.(J. Chen & Kumar, 2002; Trenberth & Guillemot, 1996).  322 

During the cold phase (La Niña), positive precipitation anomalies have been observed in 323 

Washington, Oregon, and southwestern Canada (J. Chen & Kumar, 2002). Such negative 324 

correlation has also been identified by recent studies on winter snowfall in Michigan (Meng et al., 325 

2021; Meng & Ma, 2021). Here both BART (Fig 4q) and RF (Fig 5l) models show ENSO’s 326 

controls in snowfall amount, while more nonlinearity is demonstrated by BART’s relationship. 327 

 328 



 19 

 329 

Fig. 4 The partial dependence plot (pdp) for the BART model developed by 80% training 330 
data 331 

 332 
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 333 

Fig. 5 The partial dependence plot (pdp) for the RF model developed by 80% training data, 334 
the pdp shows how the dependent variable changes with each predictor used in the model. 335 

 336 

 BART’s pdps also demonstrate that the maximum vapor pressure (vpdmax) (Fig 4a) has 337 

a nonlinear relationship with snowfall. More snowfall is generally corresponding to < 14 kPa 338 

vpdmax. The vpd describes the difference between the amount of moisture in the air and the 339 

saturated moisture in the air. It is another measurement of relative humidity and has been applied 340 
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for estimating evapotranspiration (ET) in vegetations (Novick et al., 2016) and predicting the 341 

wildfire (Chiodi et al., 2021). In our case low vapor pressure deficit values (< 14 kPa) 342 

corresponds to high amount of atmospheric water vapor, which is favorable to the nucleation 343 

process in all kinds of precipitation including snowfall. The snowfall remains fluctuated when 344 

vpd > 14 kPa and demonstrates two small peaks when the vpdmax is at ~ 14.5 kPa and ~ 21 kPa 345 

(Fig. 4a). In the RF model, vpdmax relationship has the same direction but with less nonlinearity 346 

(Fig 5g).  Interestingly, the BART model shows that higher snowfall is associated with weak 347 

vwind from the north (negative anomaly) and the wind direction from 250° to 310° 348 

(northwesterly). During the winter, the North American High transports cold air from the north 349 

and interacts with the warm air from the south to form synoptic winter storms. The cold air also 350 

interacts with the warm lake surface to form lake effect snow in Michigan. Theis processe is also 351 

controlled by the ENSO intensity. For example, La Niña winter is associated with displaced 352 

Polar jet to the great plains (Smith & O’Brien, 2001) and cooler/wetter winter in the upper 353 

Midwest U.S. (Budikova et al., 2022). 354 

 Besides the ENSO, several other teleconnection indices also show different inluences on 355 

LPM snowfall in BART and RF models. The North Pacific index (np) is calculated as the area-356 

weighted seal level pressure over the North Pacific (Trenberth & Hurrell, 1994). The np is closely 357 

related to the tropical and subtropical SST through ocean-atmosphere interactions and it also 358 

interacts with the ENSO cycle. We show that snowfall amounts significantly increase when the np 359 

is above 1006 millibars. This agrees with Chen and Song (2018) which shows significant negative 360 

relationships between np and temperature in central Canada and U.S great lakes. The PDO reflects 361 

remote changes of SST in the North Pacific and the sea level pressures over the Aleutian Island 362 

(Mantua et al., 1997; Newman et al., 2016), which has teleconnections with winter temperature 363 



 22 

and precipitation pattern in large portion of Midwest U.S. Both BART and RF pdps demonstrate 364 

that the snowfall generally increases when the PDO anomaly is negative. Previous studies also 365 

indicates that negative phases of PDO are normally associated with above normal winter 366 

precipitation in a large portion of interior U.S. (Mantua et al., 1997; Newman et al., 2016). The 367 

PNA is a changing pattern of SST and sea level pressure in the Pacific associated with ENSO but 368 

also with atmospheric internal variability and SST anomalies (Li et al., 2019). It has strong 369 

influence on precipitation in North American by modifying Polar jet flows and associated storm 370 

tracks. Negative PNA phases are usually more favorable to northern displacement of jet over the 371 

eastern U.S. It frequently causes intruding of maritime tropical air from the Gulf (Budikova et al., 372 

2022; Leathers et al., 1991) and enhancement in local precipitation in the eastern U.S. The pdps 373 

(Fig 4m & Fig 5m) are showing similar patterns, where negative PNA anomalies are generally 374 

associated with more LPM snowfall. The BART’s PNA pdp has more nonlinearity than the RF 375 

with a spike of snowfall increase when the PNA value is between -0.8 and 0.5 (Fig. 4m).   376 

The Tropical Southern Atlantic Index (tsi, Fig 4b) is showing a general positive relationship 377 

with the snowfall and this is a new relationship we have discovered from the model. The tsi is 378 

closed related to the NAO on interannual to decadal time scales (Marshall et al., 2001). Such 379 

relationship might be related to the existing linkage between snowfall and NAO. The NAO and 380 

AO signals are closely related and they both control the upper-level winds and the polar vortex in 381 

the Northern Hemisphere (Budikova et al., 2022). Positive NAO/AO phases are associated with a 382 

stronger polar vortex that locks the cold air in the higher latitude while negative NAO/AO is 383 

usually associated with enhanced meandering of polar jet and outbreaks of colder air into the lower 384 

latitude (Budikova, 2012). This cold air usually introduces extreme low temperature and snowfall 385 

(Ghatak et al., 2010). The NAO/AO only appear in the BART model with minor variable 386 
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importance. Fig 4r shows that higher snowfall is generally associated with negative NAO but its 387 

relationship with AO is more complex (Fig 4x). 388 

 389 

3.5 Extreme snowfall  390 

Our results have clearly shown that BART and RF are the two best models for predicting 391 

snowfall in the LPM. To evaluate their performance in predicting extreme snowfall events and 392 

examine important factors, we selected the upper 30% (> 70th percentile) of the snowfall data to 393 

develop two new BART and RF models. Results (Table 4) show that both extreme models have 394 

decreases in their fitting skills as compared with those general models trained by the 80% randomly 395 

selected sample (Table 3). The R2 for RF has changed from 0.58 to 0.30 (-48%) while the R2 for 396 

BART has changed from 0.88 to 0.63 (-28%). The RF’s RMSE increased from 20.24 to 21.06 397 

(+4%) and MAE increased from 15.29 to 15.93 (+4%), while the BART’s RMSE increased from 398 

11.07 to 15.29 (+38%) and MAE increased from 8.48 to 11.53 (+36%). Therefore, the RF has 399 

larger relative changes in R2 while the BART has larger relative changes in RMSE and MAE. 400 

Meanwhile, the BART model still performs better than the RF model with higher R2, lower MAE 401 

and RMSE.  402 

Table 4. Fitting statistics for RF and BART models based on the upper 70 percentile of 403 
snowfall data (extreme snowfall) 404 

Model RMSE R2 MAE 

RF 21.06 0.30 15.93 

BART 15.29 0.63 11.53 

 405 

In terms of VIs, both RF and BART extreme models show slightly differences from the general 406 

models (Table 5). It is interesting to note that maxT and vpdmax are the two most important 407 

predictors for both extreme models (Table 5). More snowfall is corresponding to lower maxT as 408 
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well as lower vpdmax (Fig 6), which are similar to their relationships shown by the regular models. 409 

Note that fluctuations in snowfall in higher range of vpdmax in Fig 4a disappear in Fig 6b, 410 

indicating a more dominate control of higher atmospheric moisture in generating extreme snowfall 411 

events. Other temperature variables (rangeT, avgT, minT) are also important in both RF and BART 412 

models for the extremes. And they all show negative relationships with the snowfall. The np is the 413 

only teleconnection variable that shows in the top 10 VI list for both RF and BART (Table 5). In 414 

Fig 6 and SI 6, we also find that the np and other teleconnection variables (ENSO, PDO, NAO, 415 

AO, and PNA) follow their relationship with the LPM snowfall in general models (Fig 4&5). The 416 

tsi has a positive relationship with snowfall in pdps for both BART (Fig 6d) and RF (SI 6i).  417 

 Many previous studies have mentioned that climate extremes prediction is challenging 418 

from both Earth System Models and Machine Learning models (Sillmann et al., 2017; Zhu & 419 

Aguilera, 2021; Zwiers et al., 2013). Our result shows that the RF and BART models both have 420 

slight degradations in their fitting skills for modeling extreme snowfall observations. They still 421 

can offer decent amount of explained variance (R2), relatively small error statistics based on the 422 

extreme snowfall observations containing much larger variability and uncertainty. It can be also 423 

referred from the above analysis that the BART model overall does a reasonable job in the 424 

prediction of overall and extreme snowfall events in the LPM. 425 

 426 

Table 5. Relative variable importance (VI) for the 70 percentile models RF and BART 427 

Rank RF BART 

1 maxT 100 maxT 100 

2 vpdmax 93 vpdmax 98 

3 rangeT 85 elev 94 

4 avgT 84 tsi 87 

5 minT 68 rangeT 86 

6 np 67 avgT 83 
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7 elev 64 lat 80 

8 dist2shore 62 dist2shore 76 

9 savgT 62 np 75 

10 lat 52 vwind 73 

 428 

 429 

Fig 6. The partial dependence plot (pdp) for the BART model developed by the 70 430 
percentile data 431 

 432 

 433 
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4. Discussion and conclusion  434 

Our analysis suggests that temperatures are one of the most important predictors in machine 435 

learning techniques predicting snowfall in the LPM. At each station, maximum and minimum 436 

temperatures have a stronger impact on snowfall than the average temperatures. This indicates that 437 

snow formation process in this region is more sensitive to extreme temperatures. Similar results 438 

were found over the Canadian domain of the Great Lakes basin (Baijnath-Rodino et al., 2018). At 439 

the global level, the north hemisphere averaged temperatures demonstrate negative relations with 440 

the LPM snow. Physical mechanisms for this relationship such as polar vortex break or increased 441 

temperature difference between lake surface and air need further investigations (Agee & Hart, 442 

1990; Meng & Ma, 2021).The moisture availability is another important factor in both BART and 443 

RF models and they generally show negative relationships with the snowfall. We need process 444 

based Regional Climate Models (RCM) to understand more details about how the changing 445 

temperature and water vapor in the atmosphere determine the lake-effect snow through lake-land-446 

atmosphere interactions and other synoptic processes. 447 

Our models also demonstrate that latitude, elevation, and distance to shoreline are 448 

important predictors for snowfall. The importance of these variables is possibly associated with 449 

regional physical processes that lead to the development of lake-effect snowfall events. Elevation’s 450 

control in snowfall amounts in the Great Lakes region has been mentioned in previous literatures 451 

(Hill, 1971; Niziol, 1987). RCM simulations also suggest that both annual snowfall and frequency 452 

(days per year) decreases as the downwind distance from the Great Lakes increases (Notaro et al., 453 

2013). Inclusion of these local static variables has greatly improved the prediction skill of our 454 

machine learning models.  455 
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         Seven teleconnection indices, including NP, SST34, PNA, NAO, PDO, TNI, and AO, were 456 

included in our snow prediction models. Machine leaning techniques have no assumption of non-457 

collinearity among independent variables. Therefore, these teleconnections can work together to 458 

improve the model prediction skill. Our results demonstrate several important teleconnection 459 

indices in the snow prediction models, including SST34, PDO, and NP. These indices have non-460 

linear or linear relationships with snowfall in the LPM. Further investigations are needed to 461 

validify the physical process reflected by those relationships shown by the machine learning 462 

models. Particularly, we need to improve understanding the partition of snowfall into lake-effect 463 

and non-lake effect snowfall in the Great Lakes regions because these two different types of 464 

snowfall are produced through different physical mechanisms (Pettersen et al., 2020).  465 

        Our comparison of various machine learning models suggests the BART model can predict 466 

mean and extreme monthly LPM snowfall with high accuracy. The machine learning approach 467 

assimilates  dynamic atmospheric/oceanic signals from multiple scales and static environmental 468 

variables such as topography and distance to shore. It provides a reliable and computational 469 

efficient alternative to current numerical weather/climate predictions (Chantry et al., 2021) as well 470 

as a new way to identify possible physical mechanisms. In the future, the machine learning models 471 

can be tested for other snow prone regions and used for predicting regional snowfall variability 472 

and changes based CMIP climate projections for the future.  473 

  474 
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