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[sothermal models generally in good agreement with

isentropic models

¢ For fast decompression rates, isothermal models slightly
undercalculate the rate applied during isentropic ascent

¢ For slow decompression rates, isothermal models slightly

overcalculate the rate applied during isentropic ascent
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non-simplified as the “real” profile a
model with simplifying

¢ Cylindrical geometry generally has good agreement between
1D and 3D models

¢ 1D models of necked geometries deviate more from the 3D
timescale the more restricted the opening and the slower the

decompression rate

¢ Equilibrium degassing timescales generally agree well with
disequilibrium degassing timescales

¢ Biggest deviation occurs for mid-range decompression rates,
and little deviation for very fast and very slow

decompression rates
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