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Rotational flattening (left) and the tidal bulge The enclosed region contains results where spherical

(right) both contribute major Degree 2 ® harmonic coetticients of forward modeled topography are
(wavelength = circumference/2) shapes to ‘:;7 o g within 3 standard deviations of that observed, the derived
topography. Both relate to moment of inertia. £ rigid core heating pattern is closest to what may be caused by tidal
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