
Spectra and autocorrelations 

 
Figure 6. Contours of two-dimensional spatial autocorrelation of 
streamwise velocity from the simulation F- , at height . PSFD 
(left); FV (right). Dark to light gray lines correspond to contour levels from 

 to  with increments of . 

• Less streamwise elongation and more isotropy in the 
contours of two-dimensional autocorrelation, when 
compared to PSFD results 

 
Figure 7. One-dimensional spatial autocorrelation of streamwise velocity 
at height , along streamwise direction (left) and along spanwise 
direction (right). Colored line-stars, see Table 1; black line-star, PSFD. 

• Rapid decay of one-dimensional spatial autocorrelation
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Motivation and objectives 
Large-Eddy Simulations (LESs) of Atmospheric Boundary 
Layer (ABL) flows have been historically carried out using 
single-domain spectrally-accurate solvers. The increasing 
need to include complex geometries and physics has resulted 
in ad-hoc modifications to such solvers, whose impact on 
accuracy and stability is often hard to quantify. For this 
reason, general-purpose Finite-Volume (FV) solvers represent 
an attractive alternative for LES of ABL. Here, the 
performance of a general-purpose FV solver (OpenFOAM®1 
framework) is assessed in Wall-Modeled Large-Eddy 
Simulation (WMLES) of neutrally-stratified ABL flow. 
Results are contrasted against those from a well-proven 
mixed Pseudo-Spectral Finite-Difference (PSFD) code2. The 
sensitivity of the solution to grid resolution and aspect ratio is 
analyzed. 

Methodology 
Governing equations 
• Spatially-filtered incompressible Navier-Stokes equations 

• Static Smagorinsky sub-grid scale (SGS) model 

• Wall-model for surfaces in fully-rough aerodynamic 
regime, based on equilibrium logarithmic law of the wall4 

Numerical schemes 
• Gauss linear: Gaussian integration and linear 

interpolation 

• pisoFoam: PISO algorithm 

• backward: implicit Adam-Moulton 

Problem set-up

Results 
Mean profiles 

 
Figure 1. Wall-normal structure of streamwise velocity (left) and resolved 
Reynolds stress (right). Colored line-stars, see Table 1; black line-star, 
PSFD; solid red line, law of the wall (left) and  
(right). 

• Underprediction of streamwise velocity in the near-wall 
region 

• Overprediction of streamwise velocity in the bulk of the 
flow 

• Increase of turbulent stress with decrease of aspect ratio 

 
Figure 2. Wall-normal structure of resolved variances of streamwise 
velocity (left), vertical velocity (center) and spanwise velocity (right). 
Colored line-stars, see Table 1; black line-star, PSFD. 

• Increase of resolved velocity variances in the near-wall 
region ( ) with grid refinement 

• Overshoot of  for  at low resolution 

• Underestimation of  and  (weak pressure 
redistribution)  at low resolution 

 
Figure 3. Wall-normal structure of skewness of streamwise velocity (left), 
kurtosis of streamwise velocity (center) and transfer efficiency coefficient 
(right). Colored line-stars, see Table 1; black line-star, PSFD. 

• Overprediction of higher-order statistics
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Figure 8. Instantaneous snapshots of streamwise velocity fluctuations, 
normalized by root-mean-square velocity, at height . PSFD (top-
left); FV from the simulation F-  (top-right); FV from the simulation F-  
spatially filtered with support  (bottom-left); FV from 
the simulation F-  spatially filtered with support  
(bottom-right). 

• Lack of large-scale coherent structures in the FV snapshot 

Conclusions 
The performances of OpenFOAM® were assessed in WMLES 
of ABL flows. First- and second-order statistics show a good 
agreement with the results from a well-proven PSFD code, 
provided a twice as fine grid stencil is used in the horizontal 
directions in the FV code (Fig. 1 and 2). Higher-order 
statistics, however, are severely mispredicted, spectra lack an 
apparent inertial sub-range, and spatial autocorrelations 
decay rapidly (Fig. 6 and 7). In line with these findings, no 
LSMs are observed in the instantaneous velocity field (Fig. 
8). Findings suggest that general-purpose second-order 
accurate FV solvers not suitable for capturing spectral energy 
dynamics and turbulence topology in WMLES of ABL flows. 
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Figure 4. Normalized one-
dimensional spectrum of 
streamwise velocity at height 

. Colored line-stars, see 
Table 1; black line-star, PSFD; solid 
red line,  in the production 
range and  in the inertial 
sub-range. 

• Rapid decay of spectra at 
high wavenumber, with 
pile-up of energy on 
coarse mesh
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Figure 5. Premultiplied one-
dimensional spectrum of 
streamwise velocity from the 
simulation F- . Dark to light gray 
lines correspond to height 

 to . 

• Shift of the Large-Scale 
Motion (LSM) peak to 
higher wavenumber3
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Table 1. Summary of the cases simulated.
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