loading page

Sub-solar electron temperatures in the lower Martian ionosphere
  • +8
  • William K. Peterson,
  • Laila Andersson,
  • Robert E Ergun,
  • Edward Michael Benjamin Thiemann,
  • Marcin Dominik Pilinski,
  • Scott Alan Thaller,
  • Christopher M Fowler,
  • David L. Mitchell,
  • Mehdi Benna,
  • Roger Yelle,
  • Shane Wesley Stone
William K. Peterson
University of Colorado Boulder

Corresponding Author:[email protected]

Author Profile
Laila Andersson
Laboratory for Atmospheric and Space Physics (LASP)
Author Profile
Robert E Ergun
Univeristy of Colorado
Author Profile
Edward Michael Benjamin Thiemann
Laboratory for Atmospheric and Space Physics
Author Profile
Marcin Dominik Pilinski
Laboratory for Atmospheric and Space Physics
Author Profile
Scott Alan Thaller
University of Colorado Boulder
Author Profile
Christopher M Fowler
Space Sciences Laboratory
Author Profile
David L. Mitchell
University of California, Berkeley
Author Profile
Mehdi Benna
NASA Goddard pace Flight Center
Author Profile
Roger Yelle
University of Arizona
Author Profile
Shane Wesley Stone
University of Arizona
Author Profile

Abstract

Martian sub-solar electron temperatures obtained below 250 km are examined using data obtained by instruments on the Mars Atmosphere Evolution Mission (MAVEN) during the three sub-solar deep dip campaigns and a one-dimensional fluid model. This analysis was done because of the uncertainty in MAVEN low electron temperature observations at low altitudes and the fact that the Level 2 temperatures reported from the MAVEN Langmuir Probe and Waves (LPW) instrument are more than 400 Kelvin above the neutral temperatures at the lowest altitudes sampled (~120 km). These electron temperatures are well above those expected before MAVEN was launched. We find that an empirical normalization parameter, neutral pressure divided by local electron heating rate, organized the electron temperature data and identified a similar altitude (~160 km) and time scale (~2,000 s) for all three deep dips. We show that MAVEN data are not consistent with a plasma characterized by electrons in thermal equilibrium with the neutral population at 100 km. Because of the lack data below 120 km and the uncertainties of the data and the cross sections used in the one dimensional fluid model above 120 km, we cannot use MAVEN observations to prove that the electron temperature converges to the neutral temperature below 100 km. However, the lack of our understanding the electron temperature altitude profile below 120 km does not impact our understanding of the role of electron temperature in determining ion escape rates because ion escape is determined by electron temperatures above 180 km.
Feb 2020Published in Journal of Geophysical Research: Space Physics volume 125 issue 2. 10.1029/2019JA027597