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Abstract

Thermobarometry is a fundamental tool to quantitatively interrogate magma
plumbing systems and broaden our appreciation of volcanic processes. Devel-
opments in random forest-based machine learning lend themselves to a more
data-driven approach to clinopyroxene thermobarometry. This can include al-
lowing users to access and filter large experimental datasets that can be tai-
lored to individual applications in Earth Sciences. Here we present a method-
ological assessment of random forest thermobarometry, using the R freeware
package “extraTrees”, by investigating the model performance, tuning hyper-
parameters, and evaluating different methods for calculating uncertainties. We
determine that deviating from the default hyperparameters used in the “extra-
Trees” package results in little difference in overall model performance (<0.2
kbar and <3 C difference in mean SEE). However, accuracy is greatly affected
by how the final pressure or temperature (PT) value from the voting distribu-
tion of trees in the random forest is selected (mean, median or mode). This
thus far has been unapproached in machine learning thermobarometry. Using
the mean value leads to a higher residual between experimental and predicted
PT, whereas using median values produces smaller residuals. Additionally, this
work provides two comprehensive R scripts for users to apply the random for-
est methodology to natural datasets. The first script permits modification and
filtering of the model calibration dataset. The second script contains pre-made
models in which users can rapidly input their data to recover pressure and
temperature estimates. These scripts are open source and can be accessed at
https://github.com/corinjorgenson/RandomForest-cpx-thermobarometer.

Plain Language Summary

Determining the structure of magmatic plumbing systems is an integral part
of understanding the processes preceding volcanic eruptions. Thermobarome-
try estimates the pressure and temperature of crystallisation of minerals that
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crystallise from the magma using their chemical composition. This can pro-
vide quantitative information on the depth and temperature of magma stor-
age before eruption. Clinopyroxene, a common phenocryst found in volcanic
rocks, has been shown to be a reliable mineral for thermobarometry. Classic
thermobarometers use a single equation for a specific melt chemistry and are
often rigid in their usage. There exists an alternative methodology which uti-
lizes a machine learning algorithm called random forest. This algorithm creates
hundreds of hierarchical flowcharts called decision trees to generate predictive
models which can be applied to natural data. Here we present a study which
focuses on optimization of these models and presents users with two versions
which they can access, modify, and use for their data. These two versions are
available freely at https://github.com/corinjorgenson/RandomForest-cpx-
thermobarometer and can be easily used within the freeware package R.

1. Introduction

Quantifying the pressure and temperature of mineral crystallization is an invalu-
able method to view the magmatic plumbing system of volcanoes, and constrain
fundamental processes within the Earth’s crust and mantle (Giacomoni et al.,
2016; Ridolfi et al., 2008; Shane & Smith, 2013; Shaw, 2018; Smith, 2013).
Clinopyroxene chemistry has been widely used for this endeavour by calibrating
thermobarometers (Masotta et al., 2013; Neave & Putirka, 2017; K. D. Putirka,
2008). Classically these thermobarometers result in a single equation which
links site-specific mineral chemistry (plus or minus equilibrium liquid data) to
the variation in pressure or temperature of crystallisation. However, these for-
mulas are often associated with large standard error estimates (SEE) and are
only appropriate for specific melt compositions (e.g. Neave & Putirka, 2017 for
ultramafic to intermediate compositions; Masotta et al., 2013 for alkaline mag-
mas). Additionally, early thermobarometers are self-validated, which means
that data used to regress the model are also used to validate it. This typically
leads to data overfitting and an underestimated SEE (Nimis & Taylor, 2000;
K. D. Putirka, 2008). Recent developments in machine learning applications
to petrology by Petrelli et al., 2020 and Higgins et al., 2021 have resulted in a
machine learning derived random forest approach to thermobarometry.

Random forest is a machine learning method that employs decision trees to pop-
ulate an improved prediction-based model, using the results from a distribution
of hundreds of trees to generate an output (Breiman, 2001, 2002; Ho, 1995). A
decision tree is a hierarchical flowchart that determines an outcome when given
a set of input variables (Figure 1). Each tree is comprised of branches and leaves,
where the branches represent different pathways from the root to the desired
outcome (the leaves). Branches split at nodes, where at each node a branch
may spilt either left or right in the simplest case. When a branch can no longer
split, a leaf is “grown”, and the desired output is reported. In our case the
branches and nodes are dictated by clinopyroxene geochemistry, and the leaves
are pressure (P) or temperature (T) of crystallization. However, the chemical
element (or oxide) selected at each node greatly influences the predictive out-
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come of the tree. Hence the random forest model is ultimately comprised of
hundreds of decision trees. Therefore, from these hundreds of decision trees,
the output (predicted P or T) is the mean value from all decision trees in the
case of regressive models. To allow the model to construct reasonable decision
trees for prediction of natural data we input a dataset of experimentally derived
clinopyroxenes (e.g., Supplementary Figure. 1) with a known pressure and tem-
perature of crystallization, hereafter referred to as the calibration dataset. In
principle the idea is very simple — the algorithm uses the calibration dataset to
create a predictive model, which we can apply to natural samples. However,
there are several parameters to consider when producing a model for reliable
prediction of natural data, in addition to several statistical metrics for selecting
the best estimation from the voting distribution of decision trees (e.g., mean,
median, or mode).

Increasingly models and methodologies for Earth science applications have
moved to powerful and adaptable codes for programs such as R, python, and
MATLAB as well as hosted on online servers such as github (Georgeais et al.,
2021; Ghiorso & Wolf, 2019; Iacovino et al., 2020; Lemenkova, 2019; Lubbers
et al., 2019). This allows for more user interaction and, in some cases, provides
open-source options to users regardless of their operating system or access
to apps like excel. Thus, the twofold aim of this work is to 1) build and
test the performance of a thermobarometer model for clinopyroxenes and 2)
provide a comprehensive explanation of how to apply our thermobarometer for
applications to natural data. Our regression strategy offers a generalised model
that can be tailored for certain settings, applications, or other suitable mineral
phases (e.g., amphibole; Higgins et al., 2021).

1. Methods
(a) Datasets and Preprocessing

The calibration dataset is comprised of experimentally grown clinopyroxenes
and equilibrium liquids compiled from the Library of Experimental Petrology
Research database and additional works not included in the LEPR database
(Hirschmann et al., 2008; Supplementary Table 1). The unfiltered calibration
dataset features 1773 datapoints, including temperatures from 679 — 2180 C, 0
- 160 kbar and 6.5 — 78.18 wt.% SiO,. All clinopyroxene data were first filtered
for reasonable cations within a range from 3.96 — 4.04 as suggested by Ziberna
et al., (2016). The calibration dataset was further filtered based on Kdp, yq
(Klugel & Klein, 2006) Following Putirka (2008) we accepted a range of Kd
FeMg = 0.04 — 0.68 (Figure 2A). Then the data was filtered to remove the
high-pressure experiments (> 50 kbar) which are not in great numbers. Finally,
any data points with abnormally low SiO, liquid contents (< 35 wt. % SiO,)
were removed. This forms the final calibration dataset (Supplementary Table 1,
Supplementary Figure 1).

Typically, classic thermobarometers are calibrated and tested in the following
way. Firstly, a large (>80 % of total experiments) training dataset is selected



from the total calibration dataset of experiments. This dataset is used to cal-
ibrate with the chosen regression strategy (e.g., linear regression, multivariate
linear regression). The remaining data are placed into a test dataset which is
used to assess the performance of the model. This is commonly achieved by
running each composition in the test dataset through the regressed model and
calculating the standard error estimate or distribution of residual values to the
known experimental values (K. D. Putirka, 2008; Ridolfi et al., 2008).

The pressure-temperature distribution of the calibration dataset is not uniform
— experiments are preferentially run at low pressures. Thus, randomly extracting
from the calibration dataset unevenly weights the test set to have low pressure
experiments, resulting in a poor representation of the SEE. To circumvent this
issue our test dataset was uniformly extracted from the calibration dataset on a
gridded basis (Supplementary Figure 1b). Sampling from a gridded distribution
offers additional biases as in oversampling PT grid spaces that may have a small
distribution of data — thus the grid spacing was randomized for each 200 runs
and samples were not extracted if the grid space did not have at least two
datapoints. This results in each test dataset sampling approximately a tenth
of the total calibration dataset. Once the respective test and train data sets
are extracted then the model is run for each set (200 times). By generating
multiple random splits of test and train datasets we can evaluate the full effect
of sampling on the SEE (and other model performance metrics). This effect
is not considered in conventional calibration methods (e.g. Ridolfi et al., 2010;
Ridolfi & Renzulli, 2012).

1. Components of a random forest

We chose to use the R package “extraTrees” developed by Simm et al., (2014)
although the “randomForest” package by Breiman (2002) produces comparable
results at greater computational expense (Petrelli et al., 2020). Within the
“extraTrees” package exist several parameters that can affect model performance.
Firstly, ntree (default = 500) determines the number of individual decision trees
which are used for prediction. A sufficiently high number of trees must be used to
provide stability of the variable importance. Generally speaking more trees give
better results at the cost of processing time, although this is dependent on the
dataset used (Breiman, 2001; Probst et al., 2019; Probst & Boulesteix, 2018).
Secondly, mtry, dictates how many variables (in our case, the major element
chemical constituents of clinopyroxene) are considered at each node. The mtry
is more influential on the overall performance of the model and default mtry
for “extraTrees” is the total number of variables divided by three (Probst et al.,
2019; Simm et al., 2014). For each node in a decision tree, a random subset
of variables equal to mtry are selected from which the best performing variable
is eventually chosen. In “extraTrees” each node is split at a random value, as
described Simm et al., (2014). To choose which of the selected variables is used
for the next node, a score is calculated for each variable for regressive models.
This score is calculated considering a proportional negative variance for each
split (denoted by L for left and R for right).
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Where n;, and np are the number of datapoints assigned to each left or right
branch, and var is the negative variance of the data on the left (or right) side
of the split for the y variables (Simm et al., 2014). The tested variable with the

highest score is chosen for the node.

The “extraTrees” package provides an additional variable for modification which
is the number of random cuts (numRandomCuts). The package “extraTrees”
may provide more than two splits to allow for non-binary splitting. This can
be envisioned in real life by a tree splitting a branch in three sections instead of
two. As noted in the “extraTrees” vignette, optimization may occur when using
numRandomCuts between 3 — 5.

Each tree generates a single output value and thus a forest with 300 trees gener-
ates 300 pressure or temperature estimates. In order to choose the best estimate,
the random forest takes the mean or modal value for regression or classification
models respectively. Though our models are regressive, and thus the default
is to use a mean estimation, we additionally calculate the median and modal
estimates to evaluate the model performance. The median is calculated by tak-
ing the middle value from a sorted set of values. Thus, to avoid the rare case
where there is an even number of trees, and the two center points are drasti-
cally different, we have decided to use an odd number of trees to average the
two values.

1. Error assessment

Before continuing, we must consider the argument of accuracy versus precision.
Random forest is effective at generating precise values, but a reliable thermo-
barometer needs to be accurate as well as precise. As such, the evaluation of
the uncertainty of an individual model will be led by the R? values (equation 3,
where RSS is the residual sum of squares and TSS is the total sum of squares)
and the residual values (absolute difference between the experimental temper-
ature or pressure and the temperature or pressure output from the model), in
addition to the standard error estimate (SEE) and the interquartile range (IQR)
of the voting distribution.

R*=1- 582 (3)

To avoid self-validation and overfitting, the test dataset must not be used in
the training dataset which trains the model. Varying the test dataset is one the
largest sources of variation in the SEE and so we have decided to extract the
test dataset and running of the model 200 times. Then the average SEE is taken
from the distribution of errors for all 200 dataset splits. The final model uses the
modal SEE but includes all data in the calibration dataset which, as it has more
data, should result in a more accurate model. Two hundred runs were chosen as
this is the minimum number of runs where the SEE range does not significantly



increase, thus preserving computational cost while maintaining a representative
assessment. Natural data may vary from the calibration dataset and might not
be represented by an individual experiment. Therefore, we also use the IQR to
calculate a confidence interval of the estimated value. We recommend users to
use the and IQR double to the models SEE as a post-model filtering to remove
poor estimates.

1. Results
(a) Hyperparameter tuning

Hyperparameter tuning can help to achieve the best performing model possible
(Breiman, 2002; Probst & Boulesteix, 2018). To systematically test the effect
of hyperparameter variability, we ran 16,200 simulations which encompasses 81
combinations ranging from 1-9 mtry and 101-901 ntrees where each permutation
is run 200 times with the respective test and train datasets to determine the
average SEE and R?, calculated using the ideal median pressures and tempera-
tures.

The mean SEE varies with the number of trees (Figure 2) where the smaller
number of trees performs marginally better than the larger number of trees
(Figure 2b; for example, mtry = 2 the mean SEE for ntree varies from 4.63 to
4.59 kbar and 77.6 to 77.0 C from ntree 101 to 901). We suggest this is due to
a plateau effect, as seen in other studies focused on hyperparameter tuning of
random forests (Oshiro et al., 2012; Probst et al., 2019). Figure 2 (b, e) show a
slight negative trend in both the pressure and temperature between 101 and 201
trees, but we stress that the difference is marginal. Clearly, we can see that the
mtry has a larger control on the performance of the model, as expected from
results in previous studies (Probst et al., 2019; Simm et al., 2014). As seen in
Figure 2 (a, d), the larger mtry performs better (e.g., at ntree =201 an mtry of
6 gives a mean SEE of 4.37 kbar and 72.6 C) than the smaller mtry (e.g., at
ntree =201 mtry of 1 give a mean SEE of 5.06 kbar and 84.5 C) for both the
mean SEE and residuals. At mtry greater than 6, any difference is minor (4 0.01
kbar), and so to limit computational cost an mtry of 6 should be used. This is
counter to the package default which is one third the number of total variables.
A similar trend is observed in the calculated IQR. However, when considering
data with the inclusion of liquid — crystal pairs, the new maximum mtry is 18
and hence a new mtry needs to be considered. We performed further testing on
the model with the increased mtry and found that though the computational
intensity increased the model follow the same pattern as the models without
liquid where the ntree is relatively invariable on the performance metrics and
the mtry is optimized at about two thirds of the total variables (Supplementary
Figure 2). As such, we suggest users select a ntree of 201 and an mtry equal to
two thirds of the total variables for thermobarometry.

The package “extraTrees” also provides the option to vary the number of cuts at
each node. This is easy to conceptualize in a classification model for grouping
people on the basis of hair colour: instead of discriminating between black or



blonde hair (binary choice), brown hair and red hair can also be considered as
additional options (4 cuts). Whilst the default is 1 cut (binary), increasing the
number of cuts to 3 — 5 may yield performance improvements (Simm & Magrans
de Abril, 2013). Upon further testing we found that the additional number of
cuts does minorly improve the model. However, the minor improvements to the
SEE are less than 0.02 kbar and 0.5 C and so are not worth the significant
increases in computational cost. Therefore, we continue to use the default of 1.

1. Mean, mode and median estimates

As discussed previously, the random forest is comprised of several hundred de-
cision trees, as defined by the user via the function argument ntree. For each
inputted sample ntree estimates for pressure and temperature are generated
(Supplementary figure 3), and the final value is chosen from this distribution.
The default option of the R package “extraTrees” in regression is for the forest
to choose the mean of all decision tree outputs as the pressure or temperature
(Simm et al., 2014). However, the distribution of the decision trees may not
be a perfect gaussian distribution and thus we have also considered the median
and modal estimates of the pressure and temperature voting distributions in
addition to the mean (Figure 3).

To evaluate the performance of the mean, median, and modal estimates, we
create pressure and temperature models using the entire calibration dataset
for clinopyroxene, with no additional pressure filtering. The entire dataset is
used instead of the 200 splits as a model with the full dataset included should
perform the best and thus give the best estimates. Figure 3 shows estimated
pressure plotted with respect to the true pressures for all 200 test datasets, using
the mean, median, and modal method. The residuals, the difference between
the estimated and true pressure and temperature estimates, show the widest
distribution of residuals for the mean and extend out to £5 kbar. This means
that many of the pressure estimates are incorrect by 5 kbar, indicating a poorly
performing model. When we consider the SEE the median outcompetes both
the mean and mode (median SEE = 3.27 kbar, mean SEE = 3.30 kbar, and
mode SEE = 3.70 kbar). R? shows best performance from the mean (R? =
0.889) where the median (R? = 0.888) is slightly worse and the modal R? is also
slightly worse (R? = 0.858).

1. Inclusion of equilibrium liquids

The elements that can be added to the structure of the clinopyroxene crystal is
not just pressure and temperature dependent but also dependent to a certain
degree on chemical availability in the residual liquid (melt). Thus, it is clear
there needs to be two models — one with clinopyroxene data, as we have pre-
sented thus far, and one which also includes liquid data in equilibrium with the
clinopyroxene. Performance testing of the two models (Figure 4) reveals that,
as expected, the model performs more favourably when liquid data is included.
Figure 4 shows that liquid model curves have a higher point density at 0 for the
residuals, and IQR ranges closer to 0. For pressure, the SEE decreases by over



1 kbar and the R? changes from 0.80 to 0.89. For temperature, the difference is
even more striking where the SEE decreases by almost half from 76.0 C to 47.6
C and the R? improves from 0.85 to 0.94. Performance of the 200 splits of the
test and train dataset can be seen in the supplementary materials and shows
that the liquid estimates have a slight tendency to estimate higher pressures
relative to the liquid free model.

1. Discussion
(a) Mean, mode, and median: which to use?

Fundamentally, if the distribution of decision trees produces a perfect gaussian
distribution, then using the mean is appropriate. However, the distribution is
often not a perfect gaussian curve. Some voting distributions may be uniform in
which the model has a low degree of certainty. Other voting distributions show
sharp peaks at a given value followed by small, wide tails to low and/or high
pressure. Such tails initiate on poorly behaving trees, leading to overestimates of
pressure or temperature due to unfair weighting by the mean of the distribution.
Poorly behaving trees can result from elements being selected for decision tree
nodes which do not have a strong relationship with the variation of clinopyroxene
unit cell parameters: these features ultimately govern the relationship between
pressure, temperature, and mineral chemistry (Nimis & Ulmer, 1998).

Mean, median and modal models all perform well, although clearly the residuals
from the modal and median model are preferable to the mean (Figure 3D).
Considering the R? of modal versus median model estimates, modal estimates
(0.858) are lower than that of the median (0.888). Despite the modal model
showing a marginally tighter distribution of residuals, it has a fundamental
flaw which is shown in Figure 5. Here, 10% of the calibration dataset was
randomly extracted and a pressure gap between 5 and 15 kbar was forced into
the training dataset. When the testing set is run in this pressure gapped model
it is clear that the mode cannot interpolate any points in this pressure gap.
Conversely, the median and mean models can close this gap by averaging values.
Of course, this is an exaggerated example but it will indeed happen on smaller
scales as experiments are often lacking in intermediate values (Hirschmann et
al., 2008). In nature mineral chemistry typically shows a mixture of punctuated
and continuous variability (Armienti et al., 2007; Conticelli et al., 2010). Thus,
we suggest that all users adopt a median value for the PT estimates.

1. Evaluating the estimation uncertainty

Throughout the course of this work, we have optimized each model to give
the best representation of the true (experimental) pressure and temperature.
Though we have tested and optimized each model, there remains datapoints
with high residuals, giving a poor estimate relative to the true experimental
value (e.g., Figure 3). With natural samples the true pressure or temperature
value is unknown and, if they exist in natural datasets, these anomalous samples
cannot be identified. Thus far, we have assessed the overall performance of the
calibrated models by using a mean SEE for each model (Figure 2). However,



this averaged SEE characterises the model’s ability to predict an entire test
dataset and so does not provide a unique representation of the uncertainty of
any specific sample. To permit closer assessment of uncertainty, we use the
interquartile range (IQR) of the voting distribution (Figure 5) to assign the
confidence interval of individual natural samples. The premise is that, although
certain individual trees may perform poorly (see Methods above), a model that
performs well overall will result in a high number of trees predicting a pressure or
temperature close to the true value. This will manifest in a voting distribution
that is tight, indicating that the model has a high degree of certainty in its
prediction.

To understand why some samples yield high IQRs and some low we will once
again turn to our test and train datasets to look at some examples of variations
in IQR. In Figure 6 we see three examples of the pressure estimates provided
by the 201 trees represented by a density curve. The solid black vertical line is
the estimated pressure using the median method, the solid red vertical line is
the true pressure, and the two black vertical dashed lines represent the IQR. In
Figure 6a we see a standard IQR value, where the true (2.0 kbar) and estimated
(1.7 kbar) pressures are relatively close and the IQR is a reasonable value (2.4
kbar). Figure 6b shows the ideal case where the IQR is too small to see on the
plot, and the estimated and true pressures are identical (10.0 kbar). Figure 6¢
shows a sample with a large IQR (12.3 kbar) and different true (16.0 kbar) and
estimated (19.1 kbar) pressure. In this last case we see that the true pressure
is still plotting within the IQR, however we recommend users treat any data
with an IQR higher than half the overall model SEE with a healthy amount of
caution.

The user may either present their natural data with the IQR or use the IQR
as a metric for post-estimate filtering. Figure 7 shows a single split of the test
and train dataset. In (a) the data is shown with the IQR plotted as pseudo
error bars in which almost all of the points within their IQR ranges lie on the
1:1 line. In (b) there is an example of the same dataset but filtered to remove
datapoints with an IQR larger than 5 kbar. We observe that points qualitatively
identified as outliers are removed, and the points which remain plot closer to
the 1:1 line. The same principle can be applied to temperature estimates. This
approach encourages users to carefully consider their own data, and how it may
contribute to their individual geological story: points with a low IQR may be
considered more robust and interpretations can be based on these points with
greater confidence.

1. Pressure filtering

Experiments which are performed under pressurized conditions require complex
machinery and sometimes large time commitments (Holloway & Wood, 2012;
Kégi et al., 2005; Leinenweber et al., 2012). Thus, the suite of data in the
calibration dataset is heavily skewed towards experiments performed at lower
pressures (2 kbar). This is especially true for experiments performed at 1 atm,
which comprise 23% of the filtered calibration dataset. We had concerns that



this might unevenly skew the barometer estimates to lower pressures. To test
this, we ran several models: the base model (or “mantle model”; P 50 kbar)
and the “crustal model” (P 15 kbar), as chosen for the crustal range on the
basis of the average crustal thickness (Kopp et al., 2011; MacKenzie et al., 2008;
Tewari et al., 2018). Finally, we ran these two models with 1 atm experiments
included and excluded.

As seen in Figure 8 there is not a strong effect on the residuals for the four models
in pressure or temperature space. However, there is a slight effect on the IQR,
with the density curves of crustal models for both pressure and temperature
showing a higher density of low IQR values than the mantle model (Figure 8).
Considering this quantitatively, we can turn to the average R? and SEE values
over the 200 test and train dataset splits. For the “mantle-1 atm” in model the
SEE is 4.4 kbar and 72.6 C, and R? of 0.80 for pressure and 0.85 for temperature,
whereas the “crustal-1 atm in” model gives a lower SEE of 4.1 kbar and 69.4 C
and an R2 of 0.81 for the pressure model and 0.87 for the temperature model.
When we consider the 1 atm excluded models, the “mantle-1 atm out” model
gives an SEE of 3.4 and 70.8 C and a R? of 0.73 for pressure and 0.79 for
temperature and the crustal model shows a similar trend of a lower SEE 3.1
kbar and 65.4 C and R? of 0.72 for pressure and 0.83 for temperature.

Given this information we must also consider one of the most striking limi-
tations of a random forest algorithm — that it cannot extrapolate data. Thus,
even though the crustal model has shown slight advantages with respect to IQR,
and average SEE if a user inputs natural data, that may include clinopyroxenes
that have crystallized in the mantle, into a crustal model low-pressure estimates
might be generated. As such, we suggest that users employ the mantle model
with the 1 atm experiments included. This is even more critical for composi-
tions where experimental data is less dense. Alternatively, the distribution code
contains instructions for tailoring models to user requirements such as chang-
ing bounds of pressure for application to areas with thicker (continental) crust
(Bloch et al., 2017).

1. Adding liquid data to the model

As demonstrated in Figure 4, adding equilibrium liquid data improves the model
(SEE is lower by >1 kbar and >30 C), and so quantitatively it seems favourable
to use liquid data if it is available to users. In nature, however, opportunities for
reliable coexisting melt measurement may be rare. Melt inclusions have been
shown to suffer from post-entrapment crystallization which alters the compo-
sition of the melt inclusion (Bucholz et al., 2013; Danyushevssky et al., 2002;
Steele-macinnis et al., 2011) or precipitation of daughter minerals of the edges
of the melt inclusions (Moore et al., 2018; Venugopal et al., 2020). Additionally,
melt inclusions may be absent in crystals or overrepresented in core or rim do-
mains due to favourable growth along cracked surfaces (Faure & Schiano, 2005)
or during heating, dissolution, and reprecipitation (Cashman & Blundy, 2013;
Edmonds et al., 2016; Nakamura & Shimakita, 1998). Measuring matrix glass
as the mineral - liquid pair is the most common metric for clinopyroxene- liquid
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thermobarometry. This may generate a bias in P-T estimates towards the final
equilibration conditions of the upper part of the magmatic system, which may
explain the questionable consensus that magma chambers form dominantly at
~2 kbar (Higgins et al., 2021). By using single-phase thermobarometers the en-
tire protracted history of the crystal can be measured, which can recover the full
extent of crystallisation P-T in trans crustal magmatic systems (Annen et al.,
2006; Christopher et al., 2015; Sparks et al., 2019). Regardless, the performance
of the liquid model is clearly superior to the crystal only melt, so we suggest that
users of the liquid model keep a detailed petrological record of melt inclusions
including distribution in the crystal and occurrence of mineral precipitation at
melt inclusion margins.

1. Code distribution and Usage

We believe that our methodology can be widely implemented within the vol-
canology and petrology community. With this in mind, we have created two
versions of the models which we are fondly calling “Choose your own adven-
ture” and the “Plug and play” model. Both versions are available on github
as a comprehensive R script for download at https://github.com/corinjo
rgenson/RandomForest-cpx-thermobarometer and archived on Zenodo at
https://zenodo.org/record/5179981#.YROqtYgzaUl (Jorgenson et al., 2021).
In this section we will describe how to use each of the respective scripts. Users
who are not familiar with R are directed to “YaRrr! The Pirate’s Guide to R”,
where Chapter 2 has instructions for installation (https://bookdown.org/ndphi
llips/YaRrr/installing-base-r-and-rstudio.html, Phillips, 2017).

1. Data collection recommendations

The “Plug and Play” models are created using a defined set of major
oxides which a user must have in their data to use the model. The
elements are Si0O,, TiO,, Al;O4, CryO4, FeO, MgO, MnO, CaO,
and Na,O for the clinopyroxene analysis and SiO,, TiO,, Al,Os,
FeO, MgO, MnO, Ca0O, Na,O and K,O for the liquid analysis. If
users do not have these elements, then they must use the “Choose
your own adventure” and adjust what elements are used to make the
model. Liquid analysis should be in equilibrium with the clinopyrox-
ene host and this the two measurements should be taken relatively
close together. We recommend users input their data into the .csv
file “InputData” and replace the data there with their own, while
keeping the column headers. If a user does not have liquid data then
they can leave it blank or put zeros in place.

1. Choose your own adventure

This folder comprises seven separate R scripts which should be run in order. The
folder also includes the initial calibration dataset as a .csv file, an example natu-
ral dataset, and an R data file with oxide weights titled cpx_dat, YOUR,__ DATA,
and OxiWeight.Rdata respectively. A brief explanation of usage can be found
in a .txt file titled README. Here we will sequentially discuss the code for
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each file. We recommend between running each script, the user clears the envi-
ronment and reloads the necessary files to preserve computer memory. Whilst
running this code, users should keep a keen eye on the console in case of any er-
rors. If there are any errors we advise clearing the environment and re-running
the code.

1. Preprocessing — cpx thermobaro

This script is used for pre-processing of the calibration dataset (Supplementary
Table 1). All mineral data are recalculated according to their respective struc-
tural formula following the methodology of Deer et al. (1997). This is output
as a file called raw.Rdata. You do not need to change anything in this sheet
unless you change the calibration dataset (e.g., to add new experimental data
from the scientific literature). If the user decides to add new experiments to
the calibration dataset it is imperative that they format the new data the same
way that the calibration dataset is currently formatted.

1. Filtering — cpx thermobaro

This script is used for filtering of the calibration dataset, choices for filtration
limits can be found in section 2.1. The user does not need to change anything in
this script unless they desire alternative filtrations (i.e., specific compositional
or pressure filters).

Data outputted from script 1 (called raw) should be reloaded into the environ-
ment. This file is renamed to dat, and an extra column called Rm is added to
the data frame which will have wither a Y or N, which dictates if data should
be filtered (Y) or not (N).

First, the sum of cations is calculated and samples with cations above 4.04 or
below 3.96 should be filtered out. Next, we calculate a value kd which is added
to the data frame. As outlined in section 2.1 the Kd represents the whether
the clinopyroxene and liquid are in equilibrium on the basis on the Fe/Mg ratio.
The third filtration is to remove samples from the calibration dataset above
50 kbars, as there is not sufficient data accurately estimate pressure at these
pressures. Lastly, we filter for extremely low liquid SiO, contents, which we
have set as 35 wt.% SiO,.

The data is filtered so the samples which were assigned Y to the Rm column are
removed. Then the calibration dataset is mixed to avoid bias in organization of
the data. This filtered data frame is then called input and saved as an Rdata
file.

1. Distribute Grid Search

This script and the next one (Determine SEE) are used to determine the SEE for
the final models by extracting 200 test and training datasets and then running
the model 200 times and calculating the SEE based on that. Section 2.3 explains
further the idea behind extracting 200 splits. The user does not need to change
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anything in this script unless they want to change how many test/train splits
there are.

In this script the calibration dataset is loaded in as input.Rdata. First, we decide
of how many test/train datasets, which is controlled by the variable r. Then we
extract the index places of the 200 testing datasets. The test dataset is ~10%
depending on how many points are in the calibration dataset (input). In the for
loop (which runs r = 200) times a grid system is defined where P/T.upper/ lower
are the bounds for each grid square. perms gives all the possible combinations
for the lower P and T bounds, and then has the upper bounds added to it.
sam is the actual grid, which is sampled in samp. samp sampled one sample
from each of the grid squared and adds it to perms. From perms, we determine
the number of points in each of the grid squares and the grid squares with less
than two points are removed from the sampled point (no.perms). Finally, the
samples from each of the grid squares (perms) are called test.ids. This is just
the test data set, so the identities of the training dataset are determined as well
and called train.ids. Both the test.ids and train.ids are saved as .Rdata files.

1. Determine SEE — cpx thermobaro

This code determines the average SEE for the P and T models. In this script the
user can decide on whether they want to use liquid data or not. It is imperative
that whatever conditions you use for this script are the same as script #5. We
strongly recommend you clear the environment before using this script.

The calibration dataset is loaded into the environment as input.Rdata and the
test and train ids are loaded as testids.Rdata and trainids.Rdata. Next, users
can decide if they want to include liquid data in the model (lig <- ¢("Liquid”))
or not (lig <- ¢("NoLiquid”)). Next, elements that will go into the model are
chosen, the order of these elements must be the same in this script as in script
#5 or the model will read the wrong elements and return a very poor predictor.
Elements for the clinopyroxene are defined in ox and for the liquid phase is in
liqox. Next the r value (200, as in script #3) and hyperparameters are defined,
we direct the reader to section 3.1 for further information on these. Lastly, if
you wish to filter any pressure you can here (1 atm experiments included or
excluded). The calibration dataset at this stage is renamed dat for the rest of
the script.

Objects id.test and id.train are used determine the ids of the test/train sets in
the dat (calibration dataset) data frame. A set of empty lists are made for the
data to be filled into. The for loop is run r (200) times. For each run, the training
set is used to create the model and the test set is inputted into the model and
pressures are estimated using the median pressure determination. From this
estimated pressure the residuals, R?2 and SEE are calculated. This is done for
both pressure and temperature and loaded into output, which is reduced and
saved as final.Rdata. From these 200 run the average SEE can be determined
by calculating the average SEE. This code is the longest computational time,
while it is running you should see j printed in the console twice (up to 200 times,
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once for pressure and once for temperature) to keep you updated on where you
are in the model.

This calculates the mean, median, and modal pressures, as discussed above we
suggest that users use the median estimates moving forward, but as this version
is choose you own adventure we leave this option up to the user. If you choose
to rune this script several times you may notice minor differences in the SEE (~
0.2 kbar and ~10 C). These variations are a fundamental part of the random
forest, that it is random!

1. Final Model Training — cpx thermobaro

This script has the SEE as calculated in script #4 and thus any changes made in
script #4 must be made in this script as well, the options are the same as script
#4. This script makes the actual model. Once you have made and saved this
model you can continue to use this model in script 6 for any datasets you desire
without needing to re-run scripts 1-5 for the calibration dataset. The models
are called P_C and T_ C for the pressure and temperature models respectively
and saved as. Rdata files.

1. Filter user data — cpx thermobaro

This script is essentially the same as script #1 and #2 with some adjustments
to avoid overwriting the calibration dataset or your data. User’s will need to
change the code userdat <- read.delim(”InputData.txt”) to reflect the title of
their data or copy and paste your data into the InputData.csv file (and remove
the data we have there) so the formatting is correct. Else, make sure your cations
are properly suffixed (.cpx for clinopyroxene and .liq for the liquid data).

1. Run the model — cpx thermobaro

This script this the final step, where you can input your data and get pressure
and temperature estimates! You inputted data should be filtered as in script
#6. The models are loaded in as P_ C.Rdata and T_ C.Rdata and outputted
as predP and predT respectively. Your data is loaded in and subsetted for the
elements used to make the model. Once again it is imperative that the element
order is the same or the outputs will be wrong.

The code then takes the pred P and predT and calculates the respective mean,
median, mode, and IQR estimates using the apply function. After the colon of
each line the data is saved the OUTPUTDATA dataframe. This OutputData.csv
is the final file with your estimated values!

1. Plug and play

This script and corresponding .Rdata files allow the user to use a pre-determined
model with a pre-set SEE for either liquid or no liquid data. These models are
run with ntree =201, mtry =6, numcuts =1, pressures input from 0-50 kbar
(with 1 atm included). The SEE for the liquid model is 3.2 kbar, 47.6 C and
for the no liquid models SEE of 4.4 kbar and 76.0 C.
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This model assumes that the user has already filtered their data for poor totals.
Users are requested to copy and paste their data into the example excel file
InpudtData.csv and leave the column headers so the suffixes are saved. Clinopy-
roxene major oxides should be the same as in the model and need to be suffixed
with .cpx even if using a no liquid model and liquid/melt analysis should be
suffixed with .lig. Examples and lists of the major oxides needed are in the
script itself.

To use the script users will need to first open R studio and comment (add a #)
and uncomment (remove #) to be reflective if they have liquid data or not. For
example if you aren’t using liquid data then the code should look like:

lig <- "NoLiquid”
# liq <- "Liquid”

And if you do have liquid data the # will be in front of the first line and not in
front of the second line. After this step the user should be able to select all the
code and press run. Your data is saved as a csv called OutputData.csv. The end
of the script features some basic plots you can use with your data, though we
encourage user to delve into the wonderful world of plotting in R for themselves.

1. Conclusions

We have shown that machine learning is a powerful and versatile approach to
thermobarometry, in agreement with other studies (Higgins et al., 2021; Petrelli
et al., 2020). Through detailed testing we have determined that our models have
accuracy and precision comparable to the leading clinopyroxene thermobarom-
eters (Masotta et al., 2013; Neave & Putirka, 2017; K. D. Putirka, 2008). This
thermobarometer can be applied to a wider range of compositions with a similar
performance as existing models. Additionally, this model as has the added ben-
efit of error estimates on individual estimates, where users can discard poorly
performing estimates if they desire. Hyperparameters generally make little dif-
ference to the performance of the thermobarometer. The largest effect is the
value of mtry which, at low values (1 or 2), creates a more poorly perform-
ing model (Figure 2). Instead, the largest effect on model performance is the
method of output determination i.e., whether the mean, median, or mode of the
voting distribution is used to recover pressure and temperature. Here we reveal
that, although the mean can provide reasonable pressure and temperature es-
timates, cases where there are poorly performing trees may yield anomalously
high-pressure predictions for low-pressure experiments. The mode, on the other
hand, seems to give values with the lowest residuals but struggles to reproduce
data reliably in significant pressure and temperature gaps (Figure 5a). Thus,
we recommend a semi-automated approach where users filter their data using
the interquartile range of the voting distribution but rely on the median value
of the predicted pressure and temperature. This allows for consistently lower
residual values when predicting experimental data.

Two sets of codes have been created, with detailed comments and instructions,
for the Earth sciences community to rapidly predict intensive parameters for
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natural data, or create more tailored models. The purpose of this paper is to
provide a framework for use of machine learning thermobarometry in Earth
Sciences for users of widely differing computing experience. We believe that our
model, given the right considerations, can result in a high-resolution study of
crustal magmatic systems. Future work will focus on testing the model with
chemically independent pressure and temperature estimates and show examples
of how this model can be utilized for different melt compositions.
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Figure 1. Process of determining temperature from a natural (unknown T)
clinopyrozene using machine learning thermobarometry. The input to the model
(1) is the chemistry of the natural clinopyrozene. The chemical composition
is cascaded through each decision tree in turn (2; orange path), arriving at the
temperature at the base of each tree. The voting distribution (3; output) is used
to determine the temperature. This temperature can be selected based on the
mean, median or mode of the voting distribution (see text for details)
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Figure 2. Distribution of the mtry (a and d), ntree (b and e), and residuals

(c and f) for both pressure and temperatures calculated using the modal method.

Each point represents the average SEE for each of the 200 runs for each mitry
and ntree combination. The residual plots are density plots of the residuals from

the 200 run for mtry values from 1 to 9, at a constant ntree of 201
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Figure 8. Mean (SEE = 3.8 kbar, R* = 0.889) (a), median (SEE = 5.3 kbar,
R? = 0.888) (b), and modal (SEE = 3.7 kbar, R® = 0.858) (c) pressure deter-
minations for the 200 test datasets versus their true pressure. d) Density plots
of the residuals for the mean, median, and mode.
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Figure 4. Residuals (solid) and IQR (dashed) density plots for liquid and no
liquid models, plots are for pressure (a) and temperature (b)
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Figure 5. Results from a model with a pressure gap from 5 to 15 kbar forced into
the calibration dataset (grey dashed lines). Clearly seen in a and b is the poor
performance of the modal estimates
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Figure 6. Figure explaining the components of the IQR and showing examples
of samples which have generated a high (c) and low (b) IQR. Samples plotted
here are the 201 estimates given from one forest for one sample. The solid
black vertical line is the estimated pressure using the median method, the solid
red vertical line is the true pressure, and the two black vertical dashed lines
represent the IQR. Text on the plot shows the true pressure, estimated pressure
and interquartile range, all in kbar.
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Figure 7. a) Single split of the test/train dataset plotted with the IQR as one
would with error bars in grey. b) the same dataset but filtered to remove IQR
larger than 8 kbar
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Figure 8. Residuals (solid) and IQR (dashed) density plots for the pressure
filtered models mantle (0-70 kbar), crustal (0-15 kbar) with and without the 1
atm experiments. Plots are for pressure (a) and temperature (b)
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