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Text S1: Derivation of we,crit

Derivation of we,crit relies on the assumption that in order for a downward moving air

parcel to reach the ground its kinetic energy must match the work needed to counterbal-

ance the forces hindering the downward movement. Under stable stratification downward

movement is hindered by buoyancy force FB:

FB = g
ρ− ρe
ρe

, (1)

where g is acceleration due to gravity (m s−2), ρe is density of the downward moving air

parcel (kg m−3) and ρ is the air density of air surrounding the air parcel. Note that FB is

relative to unit mass and both ρ and FB depend on height z. Also canopy drag hinders air

movement through the canopy. The drag force (FD) per unit mass can be approximated

with (e.g. Poggi, Katul, & Albertson, 2004; Cescatti & Marcolla, 2004; Watanabe, 2004):

FD = −cdaUwe, (2)

where cd is drag coefficient (unitless), a is leaf area density (m2 m−3), U is horizontal wind

speed (m s−1) and we is the speed of the air parcel (m s−1). All these four variables vary

with height z. The work (W ) needed to offset these two forces can be calculated as line

integral from height h to the surface (z = 0 m):

W = −
∫ 0

h
(FB + FD) dz (3)

= −
∫ 0

h

(
g

(ρ− ρe)
ρe

− cdaUwe
)
dz (4)

= gh
ρ̂− ρe
ρe

+
∫ 0

h
cdaUwedz (5)

where ρ̂ is the average air density in the air column below h. Following prior studies (Inoue,

1963; Amiro, 1990; Poggi, Porporato, et al., 2004; Yi, 2008) U and we profiles below
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canopy height were parameterized as U(z) = U(h)eβ(z/h−1) and we(z) = we(h)eα(z/h−1).

The coefficients α and β were obtained by fitting to observations (β = 2.0, R2 = 0.98

and α = 1.5, R2 = 0.96). σw profiles measured at the same site in a prior study were

used (Launiainen et al., 2007) for determining α. This approach assumes that σw below

canopy is governed by downward penetrating sweeps. Now if we assume that cd and a are

constant with height (ĉd and â, respectively), after integration we find

W ≈ gh
ρ̂− ρe
ρe

+ ĉdâU(h)we(h)
h

β + α

(
e−β−α − 1

)
, (6)

which can be further reduced to

W = gh
ρ̂− ρe
ρe

− γĉdLAIUhwe(h), (7)

where LAI is leaf area index (LAI = hâ), Uh = U(h) and γ is a constant depending on the

horizontal wind and downward penetrating air parcel speed profiles below h (γ = 1−e−β−α

β+α
).

Note that since α > 0 and β > 0, therefore also γ > 0.

Now since kinetic energy of downward moving air parcel (1
2
we(h)2) must match the

work, we can equate

1

2
we(h)2 = gh

ρ̂− ρe
ρe

− γĉdLAIUhwe(h), (8)

which can be solved for we(h) to get we,crit:

we,crit = −γĉdLAIUh −
√
γ2ĉd

2LAI2U2
h + 2gh

ρ̂− ρe
ρe

. (9)

Here only the negative root was selected as physically meaningful. Assuming that air

density changes only due to temperature and that the air parcel heats up adiabatically

during its descent, then we,crit can be written using potential temperature (θ)

we,crit = −γĉdLAIUh −

√√√√γ2ĉd2LAI2U2
h + 2gh

θe − θ̂
θ̂

, (10)
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which equals Eq. (1) in the main text.
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