loading page

Biogeochemical processes are altered by non-conservative mixing at stream confluences
  • Stephen Plont,
  • Erin Hotchkiss,
  • Durelle Scott
Stephen Plont
Virginia Tech

Corresponding Author:[email protected]

Author Profile
Erin Hotchkiss
Virginia Tech
Author Profile
Durelle Scott
Virginia Polytechnic Institute and State University
Author Profile

Abstract

Stream confluences are ubiquitous interfaces in freshwater networks and serve as junctions of previously independent landscapes. However, few studies have investigated how confluences influence transport, mixing, and fate of organic matter and inorganic nutrients at the scale of river networks. To understand how network biogeochemical fluxes may be altered by confluences, we conducted two sampling campaigns at five confluences in summer and fall 2021 spanning the extent of a mixed land use stream network. We sampled the confluence mainstem and tributary reaches as well as throughout the mixing zone downstream. We predicted that biologically reactive solutes would mix non-conservatively downstream of confluences and that alterations to downstream biogeochemistry would be driven by differences in chemistry and size of the tributary and upstream reaches. In our study, confluences were geomorphically distinct downstream compared to reaches upstream of the confluence. Dissolved organic matter and nutrients mixed non-conservatively downstream of the five confluences. Biogeochemical patterns downstream of confluences were only partially explained by contributing reach chemistry and drainage area. We found that the relationship between geomorphic variability, water residence time, and microbial respiration differed between reaches upstream and downstream of confluences. The lack of explanatory power from network-scale drivers suggests that non-conservative mixing downstream of confluences may be driven by biogeochemical processes within the confluence mixing zone. The unique geomorphology, non-conservative biogeochemistry, and ubiquity of confluences highlights a need to account for the distinct functional role of confluences in water resource management in freshwater networks.