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Supporting information of additional details on experimental methods and materials, as 22 
well as data processing. Text S1 includes details of ice, rock, and till sources and 23 
preparation procedures; apparatus design; and experimental protocols. Text S2 includes 24 
data cleaning and normalization processing steps. Dataset S1 is a movie of the experiment 25 
and data stream in real-time, including audible stick-slips that are simultaneous with AEs 26 
and mechanical stress-drops being recorded. The datasets generated for this study are 27 
available on figshare.com at doi: 10.6084/m9.figshare.21257730, and Jupyter notebook for 28 
processing data is available at https://github.com/StraboAI/IcesAEs. 29 
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Text S1: Experimental Details 31 
For this study we only used bulk ice samples, frozen slowly from deionized water in 32 

a slightly oversized die, and subsequently cut down to 50 x 50 x 100 mm with a microtome 33 
housed in a cold room (~ - 12 °C). The bulk freezing process results in large, non-uniform 34 
grain size compared to ‘standard ice,’ created using a narrow range of seed ice grain sizes 35 
[Cole 1979]. Saltiel et al., [2021] showed an insignificant frictional difference between the 36 
two types, so we employed bulk ice in this study. The simplified freezing process is much 37 
less time intensive and allows the ultrasonic transducers to be frozen directly into the ice 38 
sample (Figure S1), minimizing travel distance from the ice-bed interface and contact 39 
surfaces which can greatly diminish recorded acoustic amplitudes. The sliding surfaces 40 
were roughened with a no. 100 grit sandpaper using the same procedure as McCarthy et 41 
al., [2017], who determined a roughness average (Ra) of 7 ± 1 μm using a profilometer 42 
(Mitutoyo SF-210). 43 

 44 
Figure S1:   Bulk ice with an ultrasonic 45 
transducer (AE sensor) frozen into it. The bulk 46 
freezing process allows the suspension of the 47 
sensor in the deionized water during slow 48 
freezing. The sensor is oriented to face the 49 
sides of the block, where the ice-bed interface, 50 
source of AEs, will be when loaded into the 51 
apparatus. 52 
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As in Saltiel et al., [2021], we control temperature with Peltier thermoelectric coolers 65 
in front and behind the ice block, as well as circulation of chiller fluid through the side 66 
blocks where both temperature and flow rate of chiller fluid were actively controlled to 67 
reach the desired temperature. Resistance Temperature Detectors (RTDs) ported directly 68 
behind the till or rock monitor the temperature as close to the sliding interfaces as possible. 69 
Unlike in Saltiel et al., [2021], we preformed experiments with both stable and changing 70 
temperature to explore the effect on stick-slip instability, stress-drops, and resulting AEs. 71 

Actively chilled aluminum side blocks were employed with either frozen till or rock 72 
attached to their ice-facing sides (Figures 1a, S2). All till experiments used a sample 73 
collected from the Matanuska glacier in south-central Alaska and were prepared using the 74 
same procedure described in Saltiel et al., [2021]. For rock beds, we employed Barre 75 
granite quarried from Barre Township, Vermont, that was cut into two 10 x 50 x 50 mm 76 
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slabs. A hole was drilled into the back side of the rock with the size and orientation of the 77 
side blocks’ RTD port, to embed the RTD and measure the temperature directly behind the 78 
ice-rock interface. These slabs were then epoxied onto the aluminum side blocks and 79 
roughened using no. 100 grit sandpaper. 80 

 81 

 82 
Figure S2: Photo of apparatus fully loaded. Since the peltier coolers cover the ice block, a 83 
photo without the cover is inset in the bottom left corner showing the central ice block at 84 
the end of an experiment, at the end of its full displacement. 85 

All experiments were undertaken at ~50 kPa of normal stress and a load point velocity 86 
of 100 μm/s (just over 3 km/yr) for the entire displacement of 40 mm. This relatively high 87 
load point velocity was chosen because previous work has shown that stability decreases 88 
with slip velocity [Zoet et al., 2013, Saltiel et al., 2021]. Since the load point Linear 89 
Variable Differential Transformer (LVDT) only has 20 mm of stroke, the load point was 90 
stopped halfway through each experiment and then LVDT was reset to complete the rest 91 
of the experimental displacement. In this way, every experiment included a hold of about 92 
60 seconds during which the shear stress relaxed and then reloaded, usually resulting in the 93 
largest stress-drop and AE of each experiment. 94 
 95 
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Text S2: Data Cleaning, Trimming, and Normalization 96 
We implemented a data cleaning, trimming, and normalization approach based on 97 

that implemented by Nolte and Pyrak-Nolte [2022]. First, waveforms were trimmed to a 98 
total of 1200 samples, including 400 samples before the trigger point, giving a total window 99 
of 15 microseconds. Waveforms were then normalized by the sum of the squared 100 
amplitudes of the first 400 samples after the trigger, multiplied by a cosine taper. Zero and 101 
large amplitude waveforms were removed, defined as having a sum of the first 400 102 
normalized samples greater than 15. This threshold was found to give the best catalog of 103 
non-noise events without removing too many. 325 events were then removed that a have 104 
high amplitude low frequency noise component. Finally, the waveforms were realigned to 105 
the first maximum peak after the trigger, which refined alignment by a few samples in most 106 
cases. From this catalog of normalized, filtered, and aligned 1200-sample waveforms, we 107 
used a trial-and-error approach to determine how much of the pre- and post-trigger 108 
waveforms to use for training the models and found a total length of 150 samples, with 45 109 
before the trigger, was optimal. This subsample of the waveforms emphasizes the first 110 
arrivals of each AE, which are more dependent on source effects, while ignoring the coda, 111 
which depend more on path effects. Although, as we will show in the next section, the 112 
original, unprocessed catalog was able to produce as high prediction accuracies, the 113 
processed waveforms were clearer to interpret, the main point of this study. 114 
 115 
Text S3: Results from Suite of ML Classification Algorithms 116 
 We systematically tested of a suite of ML classification algorithms, the original, 117 
full catalog and that created by the trimming and cleaning processing steps described 118 
above, using both waveforms and spectra. Figures S3 – S6 show the distributions of 119 
prediction accuracies for each of these combinations of algorithms and catalogs. 120 
 121 

 122 
Figure S3: Whisker plot 123 
showing the distribution of 124 
prediction accuracies using 125 
the processed waveform 126 
catalog for each algorithm 127 
tested. Random Forest 128 
Classifier shows the 129 
highest mean accuracy of 130 
the all the algorithms which 131 
give a distribution, and, 132 
most importantly, provides 133 
feature importance for 134 
interpretation, so we focus 135 
on those results. 136 
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Figure S4: Whisker plot showing the 137 
distribution of prediction accuracies for each 138 
input data type tested, using the processed 139 
catalog. Waveforms show the tightest 140 
distribution and highest mean. Spectra are not 141 
very accurate, because the low frequency 142 
power dominates the spectral power and thus 143 
contains little information (see S4 below). 144 
But log10 of the spectrum retain the high 145 
frequency information and accuracy can be as 146 
high as the predictions using waveforms. 147 

 148 
 149 

 150 
Figure S5: Whisker plot showing the distribution of prediction accuracies for the original, 151 
‘full’, catalog of events vs. the processed, ‘trimmed’, catalog, using the processing steps 152 
described in text S2. Although the full catalog is able to give as good, or sometimes better 153 
predictions accuracies, which is not surprising since it contains more information, we focus 154 
our analysis on the processed, ‘trimmed’, catalog since the results are easier to interpret, 155 
the main focus of this study. 156 
 157 
Text S4: Predictions using Spectrum vs Log Spectrum 158 
 We first undertook our analysis using spectrum, to test the predictive power of 159 
spectral information. But since the low frequency power dominates, using straight spectral 160 
power greatly diminishes the amount of data available (Figure S6a), and thus the 161 
predictions are relatively poor (Figure S4). By taking the log of the spectrum the higher 162 
frequency information is useful (Figure S6b) and predictions are more accurate. 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
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a) 171 

 172 
b)  173 

 174 
Figure S6: a) Spectrum from every till (teal) and rock (red) event, and the feature 175 
importance used to make Random Forest Classifier model predictions. Most spectral power 176 
is below 200 kHz, b) by taking the log spectrum, the higher frequency information is 177 
useable and prediction accuracy is improved.  178 
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Text S5: Testing Experimental Differences 179 
 To ensure that the prediction is not based on some aspect of the waveform specific 180 
to the ice sample or other uncontrolled aspect of the experiment and not the bed type which 181 
we are testing for, we also tested each experiment independently, not allowing the 182 
algorithm to train on data from the same experiment as the testing. We divide the data into 183 
training and test sets based on experiment, i.e., for a given model training run the 184 
waveforms from 5 till and 5 rock experiments are used for the training set, and the 185 
remaining 1 till and 1 rock experiment are used for testing. By separating training and test 186 
sets by experiment, any experiment-dependent features of the waveforms would be 187 
irrelevant for classification. The prediction accuracy is summarized by a 6 till by 6 rock 188 
experiments matrix, giving the accuracy for 36 models with each combination used as the 189 
testing data (Figure S7). 190 

Figure S7: a) Mean prediction accuracy given 191 
different sets of rock and till experiments used as 192 
testing dataset. In each case, the other 193 
experiments were used as training data, 194 
producing a model for each combination of 195 
testing experiments (6 till and 6 rock experiments 196 
make for 36 different train and test datasets, and 197 
models). Although some experimental variation 198 
is expected, relatively consistent results across 199 
testing datasets (either randomly selected from 200 
all experiments or from an individual one) shows 201 
that the overall predictability is not experiment 202 
dependent. b) Table on right provides the 203 
temperature range, number of events, and 204 
accuracy for each individual experiment. 205 
This prediction accuracy calculates how often the model could correctly classify individual 206 
waveforms as coming from till or rock beds, but we envision a tool whereby a collection 207 
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of seismic events recorded from a given location would be analyzed to determine the 208 
probability it came from a till- or rock-bedded section of a glacier. So, the more relevant 209 
accuracy is if a single experiment can be accurately predicted to be till or rock, and how 210 
many events would be needed to make such a prediction accurate. Since its clear from 211 
Figure 5 that there are overlapping ‘till-like’ rock events and visa-versa, the direct 212 
prediction does not have to be used for the overall population prediction. For example, we 213 
find that all the experiments can be correctly predicted if 37.5% ‘rock-like’ events, or 214 
62.5% ‘till-like’ events, is used as the cut-off for overall prediction (Figure S8). Our data 215 
shows a sharp cut off at these values, so it likely would not remain a perfect classifier with 216 
more experiments, but it does suggest how predictions might be made given the 217 
overlapping event populations. 218 

Figure S8: Each experiments 219 
percentage of events predicted 220 
as rock, which we label as ‘rock-221 
like’ events. The till and rock 222 
experiments perfectly separate 223 
if more than 37.5% of the events 224 
are predicted as rock. 225 

 226 
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Since there are rock experiments with more ‘till-like’ events than ‘rock-like’ events, it is 230 
possible that the model is ‘defaulting’ to till since there are slightly more till than rock 231 
events overall. We do not believe this is the case, given the significant overlap in the 232 
characteristics of rock and till events (Figure 5). While the rock stress-drops have a tighter 233 
distribution (Figure 4c), these stress drops do not follow a simple relationship with 234 
recurrence interval, as would be expected with a single healing rate and as seen with the 235 
till experiments (Figure 4d). Although there is not enough data to fully constrain, Figure 236 
4d suggests that some rock experiments sit on the till healing relation (stress-drops of about 237 
25 kPa per second of recurrence interval), while others have lower healing rates. This may 238 
explain the imbalance in prediction accuracy, why there are more ‘till-like’ rock AEs than 239 
‘rock-like’ till AEs. Some experiments near the cut-off, such as 270, would be very difficult 240 
to predict correctly. 270 is one of the rock experiments with a high healing rate (~22 kPa/s), 241 
which might contribute to its having more ‘till-like’, misclassified events. 242 

Movie S1: Movie of experiment and AE recording in real-time. Audible stick-slips and 243 
mechanical stress-drop data (not shown) both simultaneously occur with the recorded AEs. 244 
Some events appear to have two arrivals, probably one from each ice interface, since they 245 
have different path lengths they arrive at the sensor at slightly different times even if they 246 
occur at the same time. In these cases, the processing steps from text S2 remove the later 247 
arrival. 248 


