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Key Points: 9 

• Ice slip on frozen till or rock at high velocity produce stick-slip stress-drops with AEs 10 
recorded on transducers frozen into the ice 11 

• Supervised learning can predict whether an event waveform originated from frozen till or 12 
rock, but spectral features are not predictive 13 

• Feature importance shows that till events are more impulsive, they generally have higher 14 
steady-state friction and stress-drops   15 
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Abstract 16 

Subglacial seismicity provides the opportunity to monitor inaccessible glacial beds in high 17 
resolution. There are different types of glacial beds, which determine the mechanics of slip and, if 18 
unstable, characteristics of resulting seismicity. Utilizing a double direct shear apparatus, we found 19 
conditions for instability at freezing temperatures and high slip rates for both rock and till beds, 20 
although with very different frictional evolution. During stick-slip stress-drops, we recorded 21 
acoustic emissions with piezoelectric transducers frozen into the ice. Supervised machine learning 22 
can classify recorded waveforms as coming from rock or till, while spectral information is not 23 
predictive. The Random Forest Classifier is interpretable, with the prediction based on the first 24 
three oscillation peaks. Till events are generally higher stress-drop, with more impulsive first 25 
arrivals compared to rock waveforms. These seismic signatures of mechanical slip processes and 26 
associated bed conditions can potentially greatly enhance interpretation of subglacial seismic data. 27 

Plain Language Summary 28 

A glacier can lurch forward while slipping on its base, like an earthquake, releasing seismic waves 29 
which are monitored from the surface. Just like in a tectonic setting, only certain conditions allow 30 
for this type of motion, and aspects of the bed conditions affect the mechanics of slip and resulting 31 
waveforms. We replicate realistic glacial bed conditions in the lab of two very different types, soft 32 
(sediment) and hard (rock), and measure lurching behavior and resulting waves from each. Using 33 
a variety of data science techniques, we decipher subtle differences between the two bed types 34 
from ‘remotely-sensed’ waves. This suggests that seismicity can provide important information on 35 
glacial bed conditions and how they differ in time and space.  36 

1 Introduction 37 

Future sea-level rise will largely be determined by fast-slipping polar glaciers, known as ice 38 
streams [Cuffey & Paterson 2010]. Since motion is mostly concentrated at their beds, conditions 39 
in this region have an outsized effect on the entire system’s mass-balance and evolution. Glacial 40 
beds are separated, to first order, into hard bedrock or soft sediment (till), and then as either wet 41 
(melting temperature) or dry (frozen or drained) [Clarke 2005]. Water and sediment can move and 42 
change on much shorter time scales than ice deforms, so the bed is one of the most dynamic parts 43 
of the ice sheet system, assumed to be responsible for recent changes in ice flow configurations 44 
[Bougamont et al., 2015] and ongoing responses to the changing climate [Parizek et al., 2013].  45 

Although the basal system is difficult to directly access, growing observations of subglacial 46 
seismicity offer the opportunity to monitor changes with high temporal and spatial resolution 47 
[Aster & Winberry 2017]. Recent studies have used subglacial seismicity observations to infer 48 
differences in bed strength [Guerin et al., 2021], failure mechanism [Kufner et al., 2021], fine-49 
scale asperity interactions [Gräff et al., 2021], basal water pressure [Gräff & Walter 2021], as well 50 
as local basal shear-stresses and slip-rates [Hudson et al., 2022]. 51 

Seismic observations are particularly useful since there are limited glacial bed conditions that have 52 
been shown to exhibit the requisite conditions for seismic failure [Iverson 2010, Lipovsky et al., 53 
2019]. Classically, ice deformation, and thus slip due to regelation and viscous creep, is assumed 54 
to be rate-strengthening [Schoof 2005]. Till deformation was also first treated as viscous but later 55 
shown to be Coulomb plastic, essentially rate-neutral [Iverson 2010, Zoet & Iverson 2020]. But 56 
nucleation of seismic instability requires rate-weakening resistance, described by the rate-state 57 
stability parameter (b – a), which allows acceleration due to feedback with decreasing friction, as 58 
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has been shown for fault rocks and gouge [Marone 1998]. This situation provides the opportunity 59 
for seismic observations to present a strong constraint on the conditions at their epicentral location 60 
and origin time, but each potential stick-slip mechanism and resulting seismicity characteristics 61 
must be thoroughly understood to determine what recorded seismic events represent.  62 

Laboratory simulations provide the opportunity to directly observe slip behavior under controlled 63 
subglacial conditions. To date, seismically required rate-weakening has been reported for debris-64 
laden ice on impermeable rock at sub-freezing temperature and permeable rock at the pressure 65 
melting point [Zoet et al., 2013], pure ice on impermeable rock at sub-freezing temperature 66 
[McCarthy et al., 2017], and pure ice on till at sub-freezing temperature [Saltiel et al., 2021], with 67 
stick-slip stress-drops only reported for debris-laden ice on impermeable rock at sub-freezing 68 
temperature [Zoet et al., 2020]. These findings suggest that seismicity is largely associated with 69 
dry (frozen or drained) conditions, but experiments have also shown rate-weakening is possible 70 
due to cavity formation behind hard bed obstacles [Zoet & Iverson 2016] and pore-pressure 71 
feedback from clast ploughing [Thomason & Iverson 2008]. Although each of these mechanisms, 72 
and the bed conditions which enable them, show rate-weakening drag, their frictional evolution 73 
can differ dramatically. For example, the critical slip distance (Dc) over which friction evolves to 74 
a new steady-state after a change in slip rate varies by more than an order of magnitude between 75 
rock and till beds under similar conditions in the same apparatus [McCarthy et al., 2017, Saltiel et 76 
al., 2021]. These mechanisms’ different frictional characteristics and applicable scales likely 77 
contribute to aspects of the resulting seismicity, which could further constrain epicentral bed 78 
conditions. 79 

We report here, for the first time, experimental stick-slip stress-drops for pure ice on impermeable 80 
rock and till at sub-freezing temperatures. In addition, we measured Acoustic Emissions (AEs) 81 
from these settings and analyze the measured waveforms using Machine Learning (ML) 82 
classification algorithms to find the characteristics associated with each bed type and its resulting 83 
mechanics. By improving our understanding of the mechanisms of unstable slip in glacial settings 84 
and their expression in seismic emissions, these experiments and analysis techniques provide the 85 
opportunity to extract more information of conditions / source mechanics of subglacial or other 86 
seismic settings. 87 

2 Experimental Methods and Materials 88 

Experiments were conducted using an ambient pressure, cryogenic temperature, servo-hydraulic 89 
biaxial friction apparatus [McCarthy et al., 2016], with modifications to the insulating cryostat and 90 
loading procedure to allow measurement of till [Saltiel et al., 2021]. In this double-direct-shear 91 
configuration, a central ice block slides against two stationary side blocks, with layers of pre-92 
compacted and frozen till or rock, on opposite sides of the ice, such that applied horizontal load is 93 
resolved as normal stress and vertical load as shear stress on the sliding interfaces (Figure 1a). 94 
Additional experimental details are described in supporting text S1. 95 

We made three additional modifications to the apparatus from that past study. An additional Linear 96 
Variable Inductance Transducer (LVIT) position sensor measures the sample displacement 97 
separate from the loading point’s preset displacement. This allowed measurement of displacement 98 
in each stress-drop ‘slip’ event as well as how much slip occurs during ‘stuck’ periods and the 99 
timing of both relative to stress-drops (Figure 1c). Here we refer only to mechanical or bulk stress-100 
drops, the stress change during a slip event as measured by our vertical load cell, not to be confused 101 
with seismologically derived stress-drops. A rubber gasket material was also inserted into the 102 
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loading geometry that effectively reduced the stiffness of the apparatus, reaching critical stiffness 103 
and allowing stick-slip instability. We estimate the effective apparatus stiffness using the 104 
mechanical data’s reloading slope between stress-drops, relative to the compression of the loading 105 
train including rubber, the load point displacement minus sample displacement (Figure 1c). We 106 
estimate the apparatus stiffness after adding the rubber to be ~ 0.1 kPa/μm or ~ 5 x 105 N/m, 107 
significantly less stiff than was estimated without the rubber ~ 1 kPa/μm [Saltiel et al., 2021]. 108 
Additionally, commercial piezoelectric transducers were frozen into the central ice block, facing 109 
one of the ice-bed interfaces, to measure AEs. After experimenting with four different types of 110 
transducers of varying sizes and frequency sensitivities, we settled on Physical Acoustic’s Nano-111 
30TM miniature AE sensor due to its small size and 125-750 kHz response, covering the major 112 
frequency content of the events. All AEs analyzed here were recorded with a single Nano-30. 113 

114 
Figure 1: a) Schematic of biaxial cryostat with additions of rubber spring to decrease loading 115 
stiffness, AE sensor frozen into central ice bock (pictured within ice in inset on left), and sample 116 
displacement measurement, modified from Saltiel et al., [2021]. b) An example AE waveform 117 
before processing, from a single stress-drop / slip event, and c) an example experiment of measured 118 
friction drops (in black on top) and stick-slip sample displacement (in red on the bottom) with the 119 
steady load point displacement (in black) for reference, due to instability induced by apparatus 120 
reaching subcritical stiffness. 121 

AEs were recorded using a preamplifier and TiePieTM HS6 differential digital oscilloscope. To 122 
ensure we recorded all relevant spectral content in the waveforms, they were recorded at a very 123 
high sample rate of 100 MHz for 2 ms time windows around each triggered event. These 124 
oscilloscope settings provided the optimum real-time viewing of triggered waveforms as they were 125 
being recorded (Figure 1b), but subsequent analysis showed most of the energy was under 1 MHz, 126 
and waveforms were subsequently down sampled to 10 MHz and windowed to 15 μs, lowering 127 
file size. Recordings of continuous acoustic signal without applied shear found electrical noise 128 
above 3 MHz, so filtering also helped remove persistent noise sources. The oscilloscope was set 129 
in rising-limb trigger mode with trigger amplitude set just above the noise level before the 130 
deformation program started, such that it did not trigger without an audible stress-drop. Since 131 
electrical and other sources of noise can vary, this trigger level was adjusted throughout the 132 
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experiment to maximize the number of captured events and minimize waveforms of purely noise, 133 
but some events were missed, and many events triggered by noise were saved. 134 

3 Data Processing and Machine Learning Analysis 135 

To remove noisy events, non-events triggered by noise, and to normalize the waveform in a way 136 
that focuses on the initial wave arrivals, we implemented a data cleaning and normalization 137 
approach based on that implemented by Nolte & Pyrak-Nolte [2022], described in supporting text 138 
S2. 139 

After removing noisy waveforms, we end up with 2817 total events, including 1547 waveforms 140 
from 6 till experiments and 1270 waveforms from 6 rock experiments. With this labeled catalog 141 
(Figure 2), we systematically explored the predictive performance of numerous supervised ML 142 
algorithms on the waveforms as well as on spectra and spectrograms creating from the waveforms. 143 
We found that none of the spectral-based algorithms were substantially more predictive than 144 
random (at best ~55%), so here we focus on waveform-based results. 145 

We divide the data into training and test sets based on experiment, i.e., for a given model training 146 
run the waveforms from 5 till and 5 rock experiments are used for the training set, and the 147 
remaining 1 till and 1 rock experiment are used for testing. By separating training and test sets by 148 
experiment, any experiment-dependent features of the waveforms would be irrelevant for 149 
classification. As experiments vary in number of events (between 94 – 465), we calculated 150 
balanced prediction accuracy for each set of test data. The prediction accuracy is summarized by 151 
a 6 till by 6 rock experiments matrix, giving the accuracy for 36 models with each combination 152 
used as the testing data (Figure 3). 153 

We focus our analysis on the Random Forest Classifier model [Breiman 2001] applied to processed 154 
waveforms, since it obtained some of our highest prediction accuracies (68% mean accuracy), 155 
independent of which experiments were used for testing, and it gives the feature importance for 156 
interpretability. The feature importance shows the weighting of each waveform sample in making 157 
predictions (Figure 4a). The feature importance is key for interpreting how the prediction is made 158 
and visually highlighting the subtle differences between different waveform sources. 159 
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Figure 2: a) Waveforms plotted in 160 
chronological order along y-axis, oldest 161 
experiments, lower number, on bottom, 162 
colored by amplitude and normalized by 163 
maximum amplitude (red is positive and 164 
blue negative) with rock events plotted on 165 
left and till on the right. b) Waveforms 166 
plotted together for each experiment 167 
(labelled on upper left). Rock experiments 168 
are plotted in red, while the till events are 169 
teal. Each waveform is plotted with a thin, 170 
light line, so the dark parts show many 171 
waveforms aligned on top of each other, 172 
and broader lines show less alignment. 173 
Since experiments vary significantly by 174 
number of events (94 – 465), that also 175 
contributes to the appearance of each 176 
experiment plot. Although there are subtle 177 
differences, it is not visually clear that the 178 
two beds can be deciphered, making it a 179 
useful dataset to explore ML-based 180 
classification. 181 
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4 Results and Discussion 182 

Using a wide range of classification algorithms, we consistently find prediction accuracy above 183 
50%, mostly between 60% and 85%, showing it is possible to tell if waveforms were emitted by 184 
till or rock beds. This is not clear by visually examining the waveforms (Figure 2), showing 185 
algorithms successfully extract subtle waveform features correspond to the different bed labels. 186 
Our preliminary explorations found almost no predictive power in the spectral data, including 187 
spectra, spectrograms, and further extracted. In contrast, every method of processing the waveform 188 
data and every algorithm we tested, found some overall predictive capability in the waveforms. 189 

Figure 3: a) Mean prediction accuracy given 190 
different sets of rock and till experiments used as 191 
testing dataset. In each case, the rest of the 192 
experiments were used as training data, producing a 193 
model for each combination of testing experiments 194 
(6 till and 6 rock experiments make for 36 different 195 
train and test datasets, and models). Although some 196 
experimental variation is expected, relatively 197 
consistent results across testing datasets shows that 198 
the overall predictability is not experiment 199 
dependent. b) Table on right provides the 200 
temperature range, number of events, and accuracy 201 
for each individual experiment. 202 

This prediction accuracy calculates how often the model could correctly classify individual 203 
waveforms as coming from till or rock beds, but we envision a tool whereby a collection of seismic 204 
events recorded from a given location would be analyzed to determine the probability it came from 205 
a till or rock-based glacier. So, the more relevant accuracy is if a single experiment can be 206 
accurately predicted to be till or rock, and how many events would be needed to make such a 207 
prediction accurate. By this metric, all 6 till experiments would be correctly predicted (with total 208 
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test accuracies well above 50%), while only 3 rock experiments are robustly predicted as rock. 209 
This shows that the model is very sensitive to till features, able to detect them in all the till 210 
experiments, but more specific for rock, in that every experiment predicted as rock was correct. 211 
Even though the algorithms correct for class imbalances there is a minimum number of events that 212 
are needed to give accurate results, which can be analyzed using a receiver operating characteristic 213 
(ROC) curves. This minimum catalog size, along with seismicity rates, would set the maximum 214 
temporal and spatial resolution of bed identification through this method. 215 

To be able to apply our findings from laboratory AEs to field-scale seismicity, it is vital that we 216 
can interpret how the algorithms make their prediction. Although transfer learning methods offer 217 
the potential to train with labelled laboratory or modelled datasets and ‘transfer’ the model to more 218 
limited field or laboratory data [Wang et al., 2021], clear differences in the spectral content, path 219 
effects, and scale of field seismic data make this a daunting task. But by isolating and interpreting 220 
the features the algorithms are using to make their successful predictions, we can understand the 221 
differences in the waveforms to look for and interpret in field data. The feature importance for all 222 
36 Random Forest Classifier models show similar parts of the waveform are used to make the 223 
prediction, focusing on the first three peaks (positive and negative) of the initial wave arrivals 224 
(Figure 4a). Plotting all the normalized waveforms (color coded by bed type) on top of each other, 225 
we can see that the till (teal) waves tend to have higher amplitude in these first peaks (Figure 4b). 226 
Analyzing the mechanical data from 23 till and 22 rock experiments (including other experiments 227 
without recorded AEs, in addition to those described above), we find that the stress-drops of stick-228 
slip events on till beds are generally higher (Figure 4c). This difference in stress-drop is consistent 229 
with till’s higher healing rates (Figure 4d) and higher average friction (Figure 5), but given the 230 
range of values for each and subtlety of waveform differences, ML techniques were needed to 231 
quantify how accurately bed-type can be deciphered from waveforms. Along with the fact that till 232 
events are generally predicted more accurately, we interpret the algorithm’s attention to initial 233 
arrivals as evidence that this till feature is the main identification and the rest are classified as rock. 234 

 235 
Figure 4: a) Mean feature importance, showing the relevance of each waveform sample to the 236 
models’ prediction, with 10th and 90th percentile error bands for all 36 Random Forest Classifier 237 
models, and b) plot of all rock (red) and till (teal) waveforms. Results highlight the importance of 238 
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the initial three wave arrivals in all models. Plotting the superimposed normalized waveforms, 239 
shows that the till (teal) events are higher amplitude in these first few oscillations. c) Box and 240 
whisker plots of largest repeated mechanical stress-drop amplitude from 23 till and 22 rock 241 
experiments at similar stress and temperature conditions show till also has higher stress-drops, 242 
although with overlap. d) Stress-drops vs their recurrence interval for till and rock experiments, 243 
the till beds’ greater healing (higher slope) contributes to their higher stress-drops. 244 
 245 
These experiments also show the temperature dependence of instability, as both rock and till 246 
experiments were over a range of temperatures. Although analyzing the temperature dependence 247 
of AEs is outside of the scope of this letter, we find stick-slip instability is limited to frozen 248 
temperatures (< ~ 0 °C for rock and < ~ -2.5 °C for till beds in Figure 5. Given temperatures are 249 
approximate, since they are measured behind the till/rock, there is some lag time before the 250 
temperature on the sliding interface reached those recorded. This finding is consistent with that of 251 
rate-weakening friction in till beds at ~ -3 °C using the same apparatus [Saltiel et al., 2021]. We 252 
estimate the apparatus stiffness with rubber to be ~ 0.1 kPa/μm or ~ 5 x 105 N/m, which is the 253 
same order of magnitude as the critical stiffness of estimated from velocity-step experiments ∼ 254 
0.02 kPa/μm or 1 × 105 N/m at similar conditions (see section on critical stiffness in Saltiel et al., 255 
[2021]). This factor of five difference is consistent with the error inherit in applying estimations 256 
of rate-state friction parameters (b – a, Dc) from few experiments, as well as in our rough 257 
estimation of apparatus stiffness. Past studies of ice-on-rock friction did not find rate-weakening 258 
until lower temperatures, < ~ -18 °C for McCarthy et al., [2017] using this apparatus. In that study, 259 
experiments above -18 °C which exhibited slight rate-strengthening were undertaken at less than 260 
half the slip rate, which could affect the rate-dependence of friction as well as stability more 261 
broadly [Schulson & Fortt 2012]. It is also possible to reach instability at nominally stable 262 
conditions given the strong elastic contrast between ice and rock beds [Rice et al., 2001]. This 263 
highlights the range of factors that contribute to seismic instability. Further experiments and 264 
analysis are needed to fully map subglacial stability. 265 

266 
Figure 5: Example experiments of the temperature effect on slip stability for a) rock and b) till 267 
beds. Each experiment shows stress-drops in the beginning of the experiment but, after an 268 
experimentally induced hold (described in supporting text S1), with increasing temperature the ice 269 
starts to stably slide without sudden drops in friction or audible stick-slips. The transition to stable 270 
sliding occurs around ~ 0 °C for the rock experiment. In the till experiment, stability is reached 271 
during the hold, but as the temperature is lowered again stress-drops resume after reaching ~ -2.5 272 
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°C. Each estimated transition temperature is highlighted with a solid black horizontal line. The till 273 
experiment has higher friction and healing rate (as the friction coefficient rose significantly more 274 
after hold times of similar duration). 275 

5 Conclusions 276 

This study presents stick-slip stress-drops and resultant AE waveforms for ice on rock and till beds 277 
at sub-freezing temperatures, a labeled dataset in which we explore how ML can decipher which 278 
bed produced the events. We found that instability, and thus seismicity, only occurs for each bed 279 
below a certain temperature (~ 0 °C for rock and ~ -2.5 °C for till), sliding stably as the temperature 280 
warms above and stick-slipping again when frozen below that temperature. Although the different 281 
bed types exhibit stick-slip behaviors at similar conditions, the mechanics of their drag are very 282 
different, demonstrated by friction that evolves over an order of magnitude more distance (Dc), 283 
significantly more rate-weakening (b – a), higher friction, and healing rates in frozen till compared 284 
to rock beds [Saltiel et al., 2021]. The higher healing rates contribute to the generally higher stress-285 
drops (Figure 4d). Resultant emissions have subtle differences, difficult to decipher visually, but 286 
which ML-based classification was able to identify; successfully predicting the bed type of a given 287 
waveform about 60% to 85% of the time. Given the events from an entire experiment, all 6 till 288 
experiments were correctly identified, but only half of the rock experiments were robustly 289 
predicted. In contrast, spectral data was not predictive. The Random Forest Classifier was 290 
particularly successful and interpretable, since it provides feature importance of each waveform 291 
sample, showing the models focus on the first three wave arrivals, where till waveforms are higher 292 
amplitude. This is consistent with more impulsive failure, higher stress-drops, friction, and healing. 293 

These findings are counter to our original hypothesis based on the longer frictional evolution 294 
distances (Dc) found in velocity-step experiments, which suggest less impulsive, lower frequency 295 
emissions. It is possible that different aspects of the frictional mechanics counter each other, for 296 
example more healing has been associated with higher frequency emissions in laboratory and 297 
natural faults [McLaskey et al., 2012], which could cancel the spectral effect of longer Dc. In a 298 
similar way, till experiments’ higher Dc and b – a balance each other to produce a critical 299 
rheological stiffness of the same order as rock [Saltiel et al., 2021]. In the end, our findings suggest 300 
that ML-based classification and correlation studies could find unknown and non-intuitive 301 
relationships between seismic emission characteristics and the mechanics / conditions of rupture 302 
in subglacial, as well as tectonic, volcanic, induced seismicity settings. Laboratory experiments 303 
offer the opportunity to obtain well-controlled, labeled datasets, but results need to interpretable. 304 
Although it will be difficult to transfer models trained in the lab directly to field-scale data, the 305 
understanding gained can be used to infer characteristics of natural or induced seismic sources. 306 
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