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Abstract 19 

We explore the links between elevation variability of the Antarctic Ice Sheet (AIS) and large-20 
scale climate modes. Using multiple linear regression, we quantify the time-cumulative effects of 21 
El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on gridded AIS 22 
elevations. Cumulative ENSO and SAM explain a median of 29% of the partial variance and up 23 
to 85% in some coastal areas. After spatial smoothing, these signals have high spatial correlation 24 
with those from GRACE gravimetry (r~=0.65 each). Much of the signal is removed by a firn 25 
densification model but inter-model differences exist especially for ENSO. At the lower parts of 26 
the Thwaites and Pine Island glaciers, near their grounding line, we find the Amundsen Sea Low 27 
(ASL) explains ~90% of the observed elevation variability. There, modeled firn effects explain 28 
only a small fraction of the variability, suggesting significant height changes could be a response 29 
to climatological ice-dynamics.  30 

 31 

Plain Language Summary 32 

This study investigates how variations in the height of the Antarctic Ice Sheet (AIS) are 33 
connected to large-scale climate patterns. We used a statistical method to measure the effects of 34 
two climate phenomena: El Niño Southern Oscillation (ENSO) and the Southern Annular Mode 35 
(SAM). We found that the cumulative effects of these phenomena account for about 29% of the 36 
variations in AIS height on average, and up to 85% in some coastal areas. These patterns match 37 
well with independent data from the GRACE satellites over the same period. Applying a model 38 
that considers the accumulation of snow and its compaction into ice (firn densification) removes 39 
much of this signal, suggesting much, but not all, of the signals are related to snowfall variations. 40 
At the fronts of the rapidly changing Thwaites and Pine Island glaciers, the dominant climate 41 
phenomenon is the Amundsen Sea Low (ASL), which varies in strength and location. Here, the 42 
cumulative effects of the ASL changes explain about 90% of the variations in height of these 43 
glaciers, with only a small part explained by firn effects. We suggest the unexplained variability 44 
could be partly due to changes in ice flow. 45 

 46 

1 Introduction 47 

Observations of the changing volume of the Antarctic Ice Sheet play a major role in 48 
understanding ice-sheet change (e.g., Otosaka et al., 2023; Shepherd et al., 2012) from the 49 
whole-of-ice-sheet down to individual glaciers (e.g., Smith et al., 2020; Wingham et al., 2009). 50 
The now three-decade record of continuous ice volume change captures the variability and 51 
longer-term change of both surface mass balance (SMB), and related firn processes, and 52 
elevation effects of changing ice dynamics. These changes are, respectively, related to 53 
atmospheric and oceanic processes (Horwath et al., 2012; Smith et al., 2020). Several studies 54 
have examined the relationship between ice height changes and modes of climate variability, in 55 
particular linking them to both El Niño - Southern Oscillation (ENSO) and the Antarctic 56 
Circumpolar Wave (Kaitheri et al., 2021; Mémin et al., 2015; Mémin et al., 2014).  57 

Less studied in this context is the role of the dominant mode of climate variability in the 58 
Southern Hemisphere, the Southern Annular Mode (SAM). Despite SAM driving variability and 59 
trends in SMB across a wide range of timescales (Diener et al., 2021; Medley & Thomas, 2019; 60 
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van den Broeke & van Lipzig, 2017), SAM has yet to be linked to observations of ice sheet 61 
elevation change, with one related study reporting no correlation to estimates of ice shelf 62 
elevation change (Paolo et al., 2018). By contrast, the cumulative sum of SAM (Diener et al., 63 
2021; Kim et al., 2020) has recently been shown to be linearly related to the dominant signal in 64 
detrended surface mass time series derived from satellite gravimetry (King et al., 2023), with 65 
large-scale spatially-coherent signal across coastal regions at decadal timescales.  66 

The ~300 km spatial resolution of satellite gravimetry, combined with uncertainties in models of 67 
SMB (Mottram et al., 2021), meant that King et al. (2023) were not able to separate the relative 68 
contributions of SMB and ice dynamical change forced respectively by the atmosphere and 69 
ocean (Hansen et al., 2021; Kim et al., 2020; Palóczy et al., 2018; Spence et al., 2017; Thomas et 70 
al., 2017; Verfaillie et al., 2022).  In particular, ice dynamical change will have a distinct spatial 71 
pattern compared to SMB that is not detectable by GRACE but could be possible with altimetry 72 
(Smith et al., 2020). Detecting (or otherwise) a response of the grounded ice sheet to large-scale 73 
climate variability via the oceans and ice shelves would provide important insights into ice-sheet 74 
sensitivity to climate change. 75 

In this paper we analyze a recent gridded compilation of satellite altimeter data and compare 76 
these time series to cumulative climate indices. We compare the derived signals to those from 77 
space gravimetry and then, taking advantage of the high-resolution altimeter data, explore the 78 
signal over key ice streams: Thwaites, Pine Island, Totten, and Denman. 79 

 80 

2 Datasets and Analysis 81 

2.1 Altimeter dataset 82 

We make use of a gridded altimeter product (Nilsson et al., 2023) at 1920 m horizontal 83 
resolution and covering the period from Apr 1985 to Dec 2020 (Nilsson et al., 2022). We 84 
spatially down-sample this to 5 km horizontal resolution. To facilitate comparison with space 85 
gravimetry data we only make use of data from 2002 to the end of the record. The dataset 86 
contains monthly ice-sheet elevation-change data derived from a range of radar and laser 87 
altimeter missions; over the study period these are ERS-2, Envisat and CryoSat-2 and ICESat 88 
and ICESat-2. The approach to accounting for differences in reflection surfaces and other 89 
systematic effects is described by Nilsson et al. (2022). To reduce spatial noise, we apply a 90 
Gaussian smoother with widths specified in later sections. For these, width is defined at the half 91 
height of the Gaussian function, consistent with the definition commonly used in GRACE data 92 
smoothing (Wahr et al., 1998). 93 

2.2 Space gravimetry dataset 94 

We use the COST-G RL01 Level-3 50 km gridded ice-mass change per surface area GRACE 95 
and GRACE-FO V0002 dataset obtained from http://gravis.gfz-potsdam.de/antarctica (Sasgen et 96 
al., 2020). We make use of data from Mar 2002 to Dec 2020, with the end point chosen to match 97 
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the end of the altimetry dataset. The data are spaced approximately monthly and with a data gap 98 
of ~12 months between GRACE and GRACE-FO from mid-2017 to mid-2018.  99 

We note that while this product is gridded at 50 km, the intrinsic GRACE resolution is ~300-100 
400 km. Post-processing steps include replacement of low-degree GRACE coefficients and 101 
insertion of degree-1 terms using standard approaches (Dahle & Murböck, 2020; Sasgen et al., 102 
2020). 103 

Since we are interested in decadal variability and trends, we also lightly smooth the altimetry and 104 
GRACE data with a Gaussian filter with width 7 months (Wahr et al., 1998).  105 

2.3 Climate indices 106 

We compare the altimeter and GRACE data primarily with SAM and ENSO indices, with 107 
additional comparison to Amundsen Sea Low (ASL) indices in the Amundsen Sea region. For 108 
the ASL indices, we make use of both the absolute center pressure (ASLP) and longitude (ASLλ) 109 
within the ASL Index version 3.20210820-era5 based on monthly ERA5 reanalysis data 110 
(Hosking et al., 2016). For SAM, we make use of the Marshall station index (Marshall, 2003). 111 
For ENSO, we make use of the Nino3.4 index based on the HadISST1 dataset (Rayner, 2003) 112 
and use a 6-month lag (King et al., 2023; Paolo et al., 2018). We normalized each index with the 113 
mean and standard deviation computed over 1971-1999 inclusive, then cumulatively summed 114 
them, limited them to the data period, and then renormalized to produce SAMΣ, ENSOΣ, ASLPΣ, 115 
and ASLλΣ. 116 

The raw indices and their cumulative sums are shown in Fig S1. Correlations above 0.7 are 117 
evident between ASLPΣ and SAMΣ and between ASLλΣ and ENSOΣ (Fig S1, S2). This is due to 118 
the ASL being affected by larger-scale modes of climate variability, with SAM in particular 119 
modulating its absolute pressure and ENSO modulating the longitude of its center (Clem et al., 120 
2017; Hosking et al., 2016; Turner et al., 2013). 121 

2.4 Multi-variate Empirical Orthogonal Functions 122 

For a data-driven analysis we make use of Multi-variate Empirical Orthogonal Functions 123 
(MEOF) (Wang, 1992; Wu, 2023). MEOFs are an extension of conventional Empirical 124 
Orthogonal Functions but allow the dominant modes across multiple variables to be identified 125 
rather than treating each variable separately. We use MEOF to analyze the elevation and mass 126 
change gridded datasets after individual normalization. We first smooth the altimetry dataset 127 
with a 50 km-wide Gaussian smoother and sub-sample the altimeter dataset to match the 50 km 128 
horizontal grid resolution of GRACE. Given the limited sampling of altimetry in the northern 129 
Antarctic Peninsula we truncate that region from both datasets prior to computing MEOFs. 130 

2.5 Regression 131 

Using ordinary least squares, we solved the coefficients (a, b, c, d, and e) of the functional model 132 
describing time-evolving elevation (h) with time (t): 133 

ℎ(𝑡𝑡𝑖𝑖) = 𝑎𝑎 + 𝑏𝑏(𝑡𝑡𝑖𝑖 − 𝑡𝑡0) + ∑ (𝑐𝑐𝑘𝑘𝑠𝑠 sin(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖) + 𝑐𝑐𝑘𝑘𝑐𝑐 cos(2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑖𝑖)) + 𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆Σ + 𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸Σ2
𝑘𝑘=1   (1) 134 
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Where fk = [1, 2] cycles per year. We adopted 𝑡𝑡0 as the mid point of the altimeter series.  135 

2.6 Data uncertainty 136 

For regression parameter uncertainties, we recognize the existence of temporal correlations in the 137 
altimeter time series (Ferguson et al., 2004), in part due to SMB variation (King & Watson, 138 
2020), and take these into account. Following King et al. (2023), we compared trend 139 
uncertainties from a linear regression using a Generalized Gauss Markov noise model to those 140 
generated using a white noise only (temporally uncorrelated) noise model using HECTOR v2.0 141 
software (Bos et al., 2013). For regressions that included the SAM and ENSO terms, the white 142 
noise only model produced uncertainties a factor of 3 too small, taken as the median of the ratio 143 
of trend uncertainties, or factor 40 too small when not including the SAM and ENSO terms. We 144 
applied these scale factors to the uncertainties from the regression. For the GRACE uncertainties 145 
we used the scale factors of King et al. (2023). 146 

3 Results 147 

3.1 Ice-sheet scale analysis 148 
Our data-driven MEOF analysis shows that ice elevation and mass time series are both 149 
dominated by decadal-scale variability (Fig. S3c, f). Together, the two leading modes explain 150 
65% of the non-linear variance of the combined and smoothed time series. Their corresponding 151 
principal components (PCs) correlate with detrended SAMΣ (r=0.73) and 6-month lagged ENSOΣ 152 
(r=0.89). The ASLPΣ and ASLλΣ terms are not of direct relevance at the ice-sheet scale given the 153 
limited geographical footprint of influence of the ASL, but also have high correlations with the 154 
data. 155 
 156 
GRACE and altimetry MEOFs have a high spatial correlation (Fig. S3a-b, d-e; r=0.87 for 157 
MEOF1 and r=0.75 for MEOF2) suggesting they are sensing the same signal and are both 158 
dominated by coastal changes. The potential in the high-resolution altimetry record is 159 
particularly evident in MEOF1 where the spatially-diffuse signal in GRACE (Fig. S3a) is shown 160 
to be concentrated over small regions that coincide with the major ice streams of the Amundsen 161 
Sea Embayment and the coastline of the Bellingshausen Sea and Marie Byrd Land (Fig. S3b). 162 
We note that while MEOF3 (Fig. S4) is partly affected by striping in the GRACE field, 163 
characteristic of GRACE systematic error, coherent signal is evident between GRACE and 164 
altimetry along the coastlines of the Bellingshausen Sea, Marie Byrd Land and Wilkes Land, 165 
suggesting the signal is robust in those regions, although the variance explained (5%) is much 166 
smaller than MEOFs 1 and 2. A similar signal to PC3, with periodicities of ~4-7 years, has also 167 
been identified in analysis of GRACE (King et al., 2023) or GRACE and altimetry data (Mémin 168 
et al., 2015). Beyond MEOF3, the modes explain little variance (<4%) and are dominated by 169 
noise, at least for GRACE (Fig. S4d). 170 
 171 
To quantify the SAM and ENSO contribution to ice sheet elevation change we regress the 172 
altimetry time series against SAMΣ and ENSOΣ and the other parameters in Eq. 1. Here we use 173 
the gridded data after applying a 10 km Gaussian spatial filter. The 5 km gridded altimeter 174 
regression analysis shown in Fig. 1a,b reveals large-scale spatially coherent signal relating to 175 
SAM and ENSO around the coasts of Antarctica. Together, these two terms often explain more 176 
than 40% of the partial variance (R2partial) of the timeseries around the coast and into the interior, 177 
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with the partial variance the square of the partial correlation within which effects of the other 178 
regression terms are controlled. The median partial-variance explained across the ice sheet is 179 
29% (Fig. 1c). The SAMΣ coefficient is strongest in the Amundsen Sea Embayment where it 180 
centers on the Pine Island, Thwaites, Smith, and Pope Glaciers (Fig. S5a). The negative elevation 181 
signal in this region is linked to periods where positive SAM dominates negative SAM (positive 182 
SAMΣ). Other strong signal exists along the coastal zone of the Bellingshausen Sea, Marie Byrd 183 
Land, and parts of coastal East Antarctica. A more diffuse signal is evident in the interior of 184 
West Antarctica and parts of East Antarctica (Fig. S6a). The ENSOΣ coefficient has particularly 185 
high positive values, indicating elevation increase associated with sustained El Niño, along the 186 
coast of the Bellingshausen Sea and well upstream into Pine Island Glacier (Fig. S5b) 187 
 188 
Applying a 200 km Gaussian smoother to the altimeter data and rerunning the regression (Fig. 189 
1d-e) produces coefficients with large-scale spatial coherence and larger partial variances 190 
explained, often exceeding 60% in key coastal regions but extending well into the interior of the 191 
ice sheet (Fig. 1f). Comparing them to results of a regression with GRACE data (Fig. 1g-h) 192 
(King et al., 2023) shows high agreement in the signs and spatial distribution of the signal. We 193 
note that there are insufficient altimeter data in the Northern Antarctic Peninsula to analyze the 194 
signal in this region. Computing spatial correlations between the smoothed altimetry regression 195 
and the GRACE regression gives r=0.65 for SAMΣ and r=0.68 for ENSOΣ.  196 
 197 

We next examine the role of SMB variability on the estimated coefficients from the altimetry 198 
regression. To do this we subtract the IMAU Firn Densification Model (IMAU FDM) v1.2A 199 
(Veldhuijsen et al., 2023) from the altimetry time series and repeat the regression. The results are 200 
shown in Figure 2. Comparing Fig. 2a with Fig. 1a shows that IMAU FDM effectively removes 201 
all the SAM-related signal in East Antarctic Ice Sheet (EAIS) but much of the SAM signal 202 
remains in West Antarctic Ice Sheet (WAIS). Much of the coastal EAIS ENSO-related signal is 203 
removed by IMAU FDM but with small over-correction evident for much of the ice sheet, 204 
including signal reversing sign in George V Land and WAIS. Repeating the regression but 205 
instead using the GSFC FDM v1.2.1 (Medley et al., 2022) shows that there is significant 206 
sensitivity to the choice of FDM (Fig. 2d-f), with GSFC FDM apparently over-correcting ENSO-207 
related signal in the Totten Glacier region but in much better agreement with the altimetry in 208 
WAIS. Given the decadal timescales of the signals, these inter-model differences are likely to 209 
have contributions from both the FDMs themselves and their underlying SMB models (Medley 210 
et al., 2022; Verjans et al., 2021). 211 

 212 

 213 
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 214 

Figure 1. Results of regression analysis of gridded data. Shown are the SAMΣ and ENSOΣ 215 
coefficients and variances explained for the altimetry (top row), altimetry after 200 km Gaussian 216 
smoothing (middle row), and GRACE (bottom row). The partial variances explained by SAMΣ 217 
and lagged ENSOΣ are in the right column. The hachuring indicates regions not significantly 218 
different to zero at the 95% confidence interval. 219 

 220 
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 221 

 222 

Figure 2. Results of regression analysis of FDM-corrected gridded altimeter data. Regression 223 
coefficients are shown (left and central columns) and the partial variances explained by SAMΣ 224 
and lagged ENSOΣ (right column).  Shown are the coefficients and variances explained for the 225 
altimetry time series after subtracting of the IMAU FDM (top row) and GSFC FDM (bottom 226 
row). 227 

 228 

Next, we explore the origins of these signals further on a glacier-by-glacier basis. 229 

 230 

3.2 Regional scale analysis 231 

3.2.1 Thwaites and Pine Island glaciers 232 

The partial variance explained by the SAMΣ and ENSOΣ terms (before subtracting an FDM) is 233 
above 60% for much of the Amundsen Sea Embayment (ASE; Fig. 1c, f; S5c). Regardless of the 234 
FDM model adopted, much SAMΣ signal remains in the ASE broadly and ENSOΣ signal is 235 
evident in the Pine Island Glacier (PIG) region (Fig. 2). Closer examination of these regions in 236 
Fig. S5 (top row) indicates that the ASE signals are concentrated along low-elevation and fast 237 



Confidential manuscript submitted to Geophysical Research Letters 

9 
 

flowing regions that correspond to PIG, Thwaites, and nearby glaciers. This is further evidenced 238 
through cross-sections near to the front of these glaciers (Fig. S6) along the yellow lines in Fig 239 
S5. It is notable that the phase of the SAM-related signal is switched in the low elevation and 240 
fast-flowing region of PIG.  241 

Coefficient magnitudes generally decay upstream of the grounding line (Fig. S7). Subtracting the 242 
IMAU FDM before performing the regression results in coefficients along the centerline and 243 
cross profiles that are shifted nearly uniformly but are not significantly altered in their spatial 244 
pattern (dashed lines Fig. S6-S7).  245 

Along the coastal margin of the ASE the climatology is more directly controlled by the ASL than 246 
SAM and ENSO which modulate its depth and location (Clem et al., 2017; Turner et al., 2013). 247 
To explore this further we repeated the regression replacing SAMΣ and ENSOΣ in Equation 1 248 
with ASLPΣ and ASLλΣ. While the magnitude of the estimated coefficients differs between 249 
SAMΣ/-ASLPΣ and ENSOΣ/-ASLλΣ the broader spatial pattern will be nearly identical due to the 250 
high correlations of these coefficient pairs over the data period (Fig. S1-S2) and so we just 251 
explore in detail the impact of estimating the ASL coefficients at one point location per glacier, 252 
at a centerline location about 20 km upstream of their respective grounding lines (Fig. S5 yellow 253 
crosses; Table S1). 254 

The detrended data are shown in Fig. 3 (top row) where they reveal non-linear variability of 255 
several meters over the data period (blue plusses). Time series of estimated ASL coefficients 256 
sum to closely reproduce the data (black line). These two terms explain 84% (Thwaites) and 90% 257 
(Pine Island) of the partial variance of the altimeter time series. Interestingly, the phase of the 258 
ASLPΣ term is opposite between Thwaites and PIG, while the ASLλΣ term is in phase.  259 

Neither of the FDM models can explain the elevation variability at Thwaites or Pine Island 260 
glaciers (Fig. S8, brown lines). This could be because the SMB models are unable to reproduce 261 
the precipitation in this region, especially in ~2007 at Thwaites Glacier, but this would require a 262 
highly localized signal as this event does not occur at PIG. This is not implausible given existing 263 
SMB model limitations in low-altitude coastal regions (Kappelsberger et al., 2023; Noël et al., 264 
2023). The misfit could be caused by errors in background altimeter models, however we note 265 
we obtain nearly identical results using the alternative dataset of Schröder et al. (2019) and misfit 266 
also exists in SMB-corrected GRACE fields (King et al., 2023). A further possible source of the 267 
unexplained height signal is ice flow dynamics responding to large-scale climate variability.  268 
 269 
The dynamic effect of ice flow and its influence on ice sheet mass and surface elevation at a 270 
given point can be estimated from satellite-derived glacier velocities and mass conservation 271 
(Supplementary Text S1). The year-on-year changes in ice velocity since 2003 suggest several 272 
meters per year of dynamic elevation change. Our analysis shows decadal variations in the lower 273 
parts of Pine Island and Thwaites, which could potentially be linked to climate variability and the 274 
way the glaciers respond dynamically to variations in ice shelf melt through a combination of 275 
advection and strain (Fig. S9).  276 

 277 
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278 
f 279 

Figure 3. Detrended elevation time series at glacier point locations. Time series are shown for 280 
sites ~20 km upstream of the grounding line and along the centerline of flow (Fig. S5 yellow 281 
crosses; Table S1). Shown are the altimeter time series after 10 km Gaussian smoothing and 282 
subtracting the estimated trend and harmonics (blue plusses), and the two components of the 283 
model (colored lines) and their sum (black line) for each glacier. For Thwaites and Pine Island 284 
glaciers (top row), ASL coefficients are shown, while for Totten and Denman glaciers (bottom 285 
row) SAM and ENSO terms are shown. The partial variances explained by the sum of the two 286 
coefficients are listed in each panel. Grey shading is the 1-sigma uncertainty of the model. Error 287 
bars represent the 2-sigma uncertainties of the data. 288 

 289 
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3.2.2 Totten and Denman glaciers 290 

The SAM and ENSO coefficients in the region of Totten and Denman glaciers have smaller 291 
magnitude and are much more diffuse than in the ASE (Fig. S5d-e). Nonetheless, these terms 292 
explain significant amounts of the partial variance (Fig. S5f) in this region. There is almost no 293 
non-linear signal to explain near the front of the Denman Glacier (Fig. 3), with the largest SAM 294 
or ENSO signal in the Denman region is west of Denman. Nonetheless, SAM contributes about 295 
30% of the partial variance at Denman. If the underlying surface lowering trend of Denman is 296 
affected by climate variability it is not obviously associated with SAM and ENSO over this 297 
period.  298 

Despite the modest signal near Totten there is still evidence that significant SAM and ENSO 299 
signals exist in the fast-flowing region of Totten Glacier (Fig. 3), at least in the 20-30 km above 300 
the grounding zone (Fig. S6c, Fig. S7). Unlike the ASE glaciers, there is insufficient ice velocity 301 
time series for Totten Glacier to explore the cumulative impacts of time-varying ice dynamics on 302 
ice elevation. As noted above, the FDM-corrected results are model-dependent in this region and 303 
so the origin(s) of the Totten Glacier non-linear elevation change signal is unclear. 304 

4 Discussion 305 

Our analysis reveals the spatial fingerprints of SAM and ENSO on AIS elevation over 2002-306 
2021, patterns which are confirmed by analysis of GRACE mass change data over the same 307 
period. These patterns may not be stationary with time. Indeed, circulation patterns associated 308 
with SAM are known to vary over decades (Marshall et al., 2013; Silvestri & Vera, 2009), with 309 
effects including variable precipitation in the Antarctic Peninsula (Goodwin et al., 2016). Within 310 
this context it is therefore not unexpected that our pattern of SAM variability is different to the 311 
SMB-only SAM reconstruction of Medley and Thomas (2019) for the second half of the 20th 312 
century for instance. Differences with SMB-only reconstructions would also result if ice-313 
dynamic effects on ice elevation and mass were non-negligible as hinted at by our data. 314 
 315 
There are only a few previous studies exploring the relationship between ice dynamics, 316 
expressed as changes in ice mass, thickness, or elevation, and modes of climate variability, most 317 
notably in the Amundsen Sea Embayment region (Christie et al., 2023). Dutrieux et al. (2014) 318 
found reduced PIG ice shelf melt during a strong 2012 La Niña. Consistent with this, Paolo et al. 319 
(2018) found PIG ice shelf melting increased during El Niño, reducing ice shelf thickness, but 320 
that the ice shelf elevation increased overall due to increased accumulation. The way in which 321 
these decadal-scale changes impact upstream ice velocity and integrate with time to thickness 322 
and elevation variation requires investigation.  323 
 324 
The rate of dynamic thinning or thickening depends on the relative contributions from strain and 325 
advection (Supplementary Text S1). At PIG, both factors contributed to sustained thinning of > 2 326 
m per year in 2007-2008 in our analysis (Fig. S9). In 2009, strain switched to thickening while 327 
thinning by advection also decreased. Hence, the glacier exhibited net thickening of > 1 m per 328 
year during the 2012 La Niña. After 2015, observed velocities suggest the glacier thinned again, 329 
mostly due to strain. At Thwaites, strain thinning at rates of 4 m per year or greater outpaces the 330 
effect of advection, which is mostly positive (Fig. S9).  331 
 332 



Confidential manuscript submitted to Geophysical Research Letters 

12 
 

The observed height anomalies (Fig. 3) and dynamic elevation change (Fig. S9a,b) do not 333 
obviously correlate over the period velocities are available. This may have several explanations. 334 
To derive the latter, we assumed surface velocities are constant with depth, which is unlikely to 335 
be correct near the bed. Errors in the gridded velocity or ice thickness data also affect these 336 
estimates. Fundamentally, upstream ice elevation variability is unlikely to be a simple and 337 
immediate linear response to sub ice shelf climate variability (Snow et al., 2017). 338 
 339 
The SAM/ASLP-related signal upstream of PIG, Thwaites, and other ASE glaciers is the largest 340 
unexplained signal in Antarctica, and it is especially strong at low elevations where atmospheric 341 
conditions may drive larger snowfall variations. While there is also a record of ice shelf 342 
geometry changes and grounding line retreat there, we suggest the large residual SAM/ASLP 343 
signal (Fig. 2) in the ASE is related to SMB and/or firn densification because the ice-dynamic 344 
signal which is also present there has a different temporal pattern (compare Fig. 3 with Fig S9c-345 
f).  346 
 347 

We note that while the SAMΣ and ASLPΣ signals are correlated and our analysis cannot separate 348 
their different effects, they have different long-term implications for the ice sheet. As discussed 349 
by King et al. (2023), SAMΣ has a trend due to the positive phase of SAM that has emerged since 350 
the 1940s. ASLPΣ does not have a strong long-term trend, and so the extent to which the changes 351 
in coastal West Antarctica are related to the ASL rather than SAM will reduce the inferred 352 
contribution of SAM to ice-mass loss over recent decades (King et al., 2023). 353 

 354 
Finally, our findings offer a simple way to remove decadal-scale variability from altimetry time 355 
series in the presence of imperfect firn densification models. This reduces correlated noise in the 356 
time series and will alter both the derived trends and, perhaps most significantly, the 357 
uncertainties of derived trends and other parameters if correlated noise is considered in the 358 
regression as it should (Ferguson et al., 2004; King & Watson, 2020; Williams et al., 2014; 359 
Wouters et al., 2013).  360 

 361 

5 Conclusions 362 

We analyzed gridded Antarctic ice elevation time series (2002-2020) and show that much of the 363 
time series variance can be explained through a simple linear model based on the cumulative 364 
indices of the Southern Annular Mode and El Niño Southern Oscillation. The spatial pattern of 365 
this signal, once spatially smoothed, is in close agreement with the spatial pattern evident in 366 
GRACE data suggesting that observed ice elevation variability is robust and climatological. The 367 
Amundsen Sea Low is more directly relevant to the Amundsen Sea Embayment and we show 368 
that variations in its pressure and longitude linearly relate to ~90% of the variance over Pine 369 
Island and Thwaites glaciers.  370 

Subtracting the effects of modeled firn densification removes much, but not all, signal, with 371 
inter-model differences evident. Residual climatological signal is particularly large at the fronts 372 
of fast-flowing glaciers in the Amundsen Sea Embayment. Surface velocity and ice thickness 373 
data indicate that ice dynamics make a discernable contribution to decadal variability in 374 
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upstream ice elevation. Further work is required to quantify the magnitude and response-times of 375 
upstream ice to changes in climatological variability in ice shelf melt. 376 
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