JUNLIN HUA

and 3 more

This study presents an improved approach to common-conversion point stacking of converted body waves that incorporates scattering kernels, accurate and efficient measurement of stack uncertainties, and an alternative method for estimating free surface seismic velocities. To better separate waveforms into the P and SV components to calculate receiver functions, we developed an alternative method to measure near surface compressional and shear wave velocities from particle motions. To more accurately reflect converted phase scattering kernels in the common-conversion point stack, we defined new weighting functions to project receiver function amplitudes only to locations where sensitivities to horizontal discontinuities are high. To better quantify stack uncertainties, we derived an expression for the standard deviation of the stack amplitude that is more efficient than bootstrapping and can be used for any problem requiring the standard deviation of a weighted average. We tested these improved methods on Sp phase data from the Anatolian region, using multiple bandpass filters to image velocity gradients of varying depth extents. Common conversion point stacks of 23,787 Sp receiver functions demonstrate that the new weighting functions produce clearer and more continuous mantle phases, compared to previous approaches. The stacks reveal a positive velocity gradient at 80-150 km depth that is consistent with the base of an asthenospheric low velocity layer. This feature is particularly strong in stacks of longer period data, indicating it represents a gradual velocity gradient. At shorter periods, a lithosphere-asthenosphere boundary phase is observed at 60-90 km depth, marking the top of the low velocity layer.

Deborah Wehner

and 7 more

We present the first continental-scale seismic model of the lithosphere and underlying mantle beneath Southeast Asia obtained from adjoint waveform tomography (often referred to as full-waveform inversion or FWI), using seismic data filtered at periods from 20 - 150s. Based on >3,000h of analyzed waveform data gathered from ~13,000 unique source-receiver pairs, we image isotropic P-wave velocity, radially anisotropic S-wave velocity and density via an iterative non-linear inversion that begins from a 1-D reference model. At each iteration, the full 3-D wavefield is determined through an anelastic Earth, accommodating effects of topography, bathymetry and ocean load. Our data selection aims to maximize sensitivity to deep structure by accounting for body-wave arrivals separately. SASSY21, our final model after 87 iterations, is able to explain true-amplitude data from events and receivers not included in the inversion. The trade-off between inversion parameters is estimated through an analysis of the Hessian-vector product. SASSY21 reveals detailed anomalies down to the mantle transition zone, including multiple subduction zones. The most prominent feature is the (Indo-)Australian plate descending beneath Indonesia, which is imaged as one continuous slab along the 180-degree curvature of the Banda Arc. The tomography confirms the existence of a hole in the slab beneath Mount Tambora and locates a high S-wave velocity zone beneath northern Borneo that may be associated with subduction termination in the mid-late Miocene. A previously undiscovered feature beneath the east coast of Borneo is also revealed, which may be a signature of post-subduction processes, delamination or underthrusting from the formation of Sulawesi.