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Abstract15

The Monsoon Asia region is home to ten of the worlds biggest rivers, supporting16

the lives of 1.7 billion people who rely on streamflow for water, energy, and food. Yet,17

a synoptic understanding of multi-centennial streamflow variability for this region is lack-18

ing. To fill this gap, we produce the first large scale streamflow reconstruction over Mon-19

soon Asia (48 stations in 16 countries), spanning the past eight centuries. In making this20

reconstruction, we develop a novel automated, climate-informed, and dynamic reconstruc-21

tion framework that is skillful for 46/48 stations. We show that streamflow in Monsoon22

Asia is spatially coherent, owing to common drivers from the Pacific, Indian, and At-23

lantic Oceans. We also show that these drivers exert their greatest influence over the Mekong24

and Chao Phraya basins. We suggest that future water management in the region should25

be coordinated between basins, taking into account the states of the oceans.26

Plain Language Summary27

Ten of the world’s biggest rivers are located entirely within the Asian Monsoon re-28

gion. They provide water, energy, and food for 1.7 billion people. To manage these crit-29

ical resources, we need a better understanding of river discharge—how does it change30

over a long time? Are there common variation patterns among rivers? To answer these31

questions, we use information derived from tree rings to reconstruct river discharge his-32

tory at 48 gauges in 16 Asian countries. Our reconstruction reveals the riparian foot-33

print of megadroughts and large volcanic eruptions over the past eight centuries. We show34

that simultaneous droughts and pluvials have often occurred at adjacent river basins in35

the past, because Asian rivers share common influences from the Pacific, Indian, and At-36

lantic Oceans. We also show that the oceans exert their greatest influences on the Mekong37

and Chao Phraya basins. From these findings, we suggest that future water management38

in the region should be coordinated between basins, taking into account the states of the39

oceans. Our findings can benefit the riparian people of the Asian Monsoon region.40
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1 Introduction41

Of the world’s 30 biggest rivers, ten are located within Monsoon Asia, and two oth-42

ers originate from this region (Figure 1). These river basins are home to 1.7 billion peo-43

ple (Best, 2019). With high population densities, even smaller basins support the liveli-44

hood of millions—e.g., Chao Phraya (Thailand): 25 million, Angat (the Philippines): 1345

million, and Citarum (Indonesia): 10 million (Nguyen & Galelli, 2018; Libisch-Lehner46

et al., 2019; D’Arrigo et al., 2011). River discharge, or streamflow, provides water for do-47

mestic and industrial uses, irrigation, and hydropower. It sustains aquatic life (includ-48

ing fish yield), carries sediment and nutrients, and enables navigation. Streamflow is an49

important link in both the water-energy-food nexus and the ecological cycle. To man-50

age this resource, we need a good understanding of hydrologic variability. Such under-51

standing is often derived from streamflow measurements; however, these instrumental52

data span typically only a few decades, too short to capture long-term variability and53

changes in streamflow.54

When compared against instrumental data, longer streamflow records reconstructed55

from climate proxies—such as tree rings—often reveal striking insights. A reconstructed56

pre-dam variability of the Yellow River (Li et al., 2019) shows that streamflow in 1968–57

2010 was only half of what should have been; in other words, human activities depleted58

half of the available water! A reconstruction of the Citarum River (Indonesia) (D’Arrigo59

et al., 2011) shows that the period 1963–2006 contained an increasing trend of low flow60

years but no trend in high flow years, compared with the previous three centuries. This61

finding suggests that 10 million inhabitants of Jakarta may be facing higher drought risks62

than what is perceived from the instrumental record. The Mongolian “Breadbasket”, an63

agricultural region in north-central Mongolia (Pederson et al., 2013), experienced an un-64

usually wet twentieth-century, and the recent dry epoch is not rare in the last four cen-65

turies (Davi et al., 2006; Pederson et al., 2013; Davi et al., 2013). Consequently, agri-66

cultural planning cannot take the twentieth century to be the norm, lest history repeats67

the lesson of the Colorado River Basin: observations over abnormally wet years (Stockton68

& Jacoby, 1976; Woodhouse et al., 2006; Robeson et al., 2020) led to water rights over-69

allocation, and the Colorado no longer reaches the Pacific Ocean.70

Compelling evidence calls for more streamflow reconstructions in Monsoon Asia.71

Tremendous efforts, booming in the last four years (Figure S1), have partly addressed72

this need, but the hydrological knowledge gained was limited to individual catchments,73

more than half of which are in China (Figure S1 and Table S1). A synoptic understand-74

ing is lacking. Here, we produce the first large scale streamflow reconstruction for Mon-75

soon Asia, covering 48 stations in 16 countries, unraveling eight centuries of annual stream-76
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flow variability. To achieve this task, we develop a novel automated framework with three77

main components: (1) a climate-informed proxy selection procedure, (2) a dynamic state-78

space reconstruction model, and (3) a rigorous cross-validation routine for parameter tun-79

ing to achieve optimal skills. We also use the Monsoon Asia Drought Atlas version 2 as80

the paleoclimate proxy instead of a tree ring network, as the former offers computational81

advantages (supported with strong physical and statistical foundations) for this large scale82

reconstruction. With this work, 44 stations are reconstructed for the first time while the83

other four (Citarum, Yeruu, Ping, and Indus Rivers) are extended back in time compared84

to previous works (D’Arrigo et al., 2011; Pederson et al., 2013; Nguyen & Galelli, 2018;85

Rao et al., 2018). This data set allows us to assess both local historical water availabil-86

ity and regional streamflow patterns, revealing the spatial coherence of streamflow and87

its links to the oceans. This understanding may improve interbasin water resources man-88

agement and coordination.89

2 Data90

2.1 Streamflow Data91

We obtained streamflow data from the Global Streamflow Indices and Metadata92

Archive (GSIM) (Do et al., 2018; Gudmundsson et al., 2018), using stations having at93

least 41 years of data, with less than 3% missing daily values, and with mean annual flow94

of at least 50 m3/s. We also received streamflow data from our colleagues for some coun-95

tries where public streamflow records are not available (see Acknowledgment).96

Many stations in our collection have upstream reservoirs that may interfere with97

the proxy-streamflow relationship. This interference is stronger for seasonal streamflow98

than annual streamflow: reservoirs transfer water from the wet season to the dry sea-99

son, but not all reservoirs retain water from year to year. Reservoirs that are filled and100

emptied within a year do not change the annual water budget downstream. To minimize101

reservoir interference, we reconstructed annual streamflow, and we removed stations that102

have upstream retention time longer than a year. We identified upstream reservoirs by103

overlaying the Global Reservoirs and Dams (GRanD) data (Lehner et al., 2011) on the104

river network (Lehner & Grill, 2013; Barbarossa et al., 2018). The upstream retention105

time was calculated as the total upstream reservoir capacity (million m3) divided by the106

mean annual flow volume (million m3/year). For stations having over-year reservoirs con-107

structed towards the end of their records, we also truncated the corresponding years, keep-108

ing only the streamflow data before dam construction.109
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Figure 1. Study region. a) The Monsoon Asia region (Cook et al., 2010); river basins involved

in this study are highlighted by sub-region, rivers belonging to the world’s 30 biggest (Best,

2019) shown with blue names. b) Upstream retention time of the 30 stations that have upstream

reservoirs. Refer to Table S2 for station details.
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Our collection and quality control effort resulted in an annual streamflow data set110

of 48 stations in 16 countries. We used the calendar year (January to December) as there111

is not a common water year across the study domain (Knoben et al., 2018). The stations’112

locations and upstream retention times (for those having upstream reservoirs) are shown113

in Figure 1. More metadata are supplied in Table S2.114

2.2 Proxy Data115

Our paleoclimate proxy is the Monsoon Asia Drought Atlas version 2 (MADA v2)116

(Cook, 2015), built upon the original MADA of Cook et al. (2010). The MADA is a grid-117

ded data set of the Palmer Drought Severity Index (PDSI) (Palmer, 1965) over the Asian118

monsoon region; each grid cell contains an annual time series of the mean June-July-August119

PDSI, reconstructed from tree rings, and calibrated with the instrumental data set of120

Dai et al. (2004). The MADA proves to be a reliable long-term record of monsoon strength,121

having revealed the spatiotemporal extents of the four Asian megadroughts in the last122

millennium, and linking variations in monsoon strength to sea surface temperature pat-123

terns. MADA v2 improves over its predecessor by incorporating more tree ring chronolo-124

gies (453 versus 327), and targeting the self-calibrating PDSI (scPDSI), which addresses125

several limitations of the standard PDSI (Wells et al., 2004; van der Schrier et al., 2013).126

We use the MADA v2 portion between 1200–2012 as this is the common period of most127

grid points in the atlas (Figure S4), and is also the stable portion with sufficient sam-128

ple depth in the source tree ring network.129

Drought atlases (reconstructed from tree rings) have been shown to be good pa-130

leoclimate proxies for streamflow reconstruction: since both streamflow and PDSI can131

be modeled as functions of ring width, one can also build a model to relate streamflow132

to PDSI (Ho et al., 2016, 2017; Nguyen & Galelli, 2018). Drought atlases enhance the133

spatial expression of the underlying tree ring data—by incorporating the modern PDSI134

field in its calibration—and are also more uniform in space and time than the tree ring135

network itself (see Cook et al., 2010, Figure 1), making them better suited to large scale136

studies. We now elaborate these points as we describe the methodology.137

3 Methods138

3.1 Using a Drought Atlas as Paleoclimate Proxy139

3.1.1 Physical basis140

The main physical processes that involve climate and tree growth are depicted in141

Figure 2a. The climate at a given location can be characterized by precipitation and tem-142
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perature, among others. These climatic inputs control soil moisture on land. Except for143

losses (such as groundwater recharge, evaporation, and surface runoff), the net soil mois-144

ture storage then follows two main paths: one goes out of the catchment as streamflow,145

the other is taken up by the trees and transpired back into the atmosphere, influencing146

tree growth along the way. Thus, tree growth and streamflow are connected via land-147

atmosphere interactions—this is the basis for streamflow reconstruction from tree ring.148

Note, however, that tree growth does not directly control streamflow, and neither does149

streamflow control tree growth; we can infer a relationship between them only because150

they are both influenced by soil moisture. On the other hand, soil moisture directly con-151

trols streamflow and is, in principle, a reasonable predictor for streamflow.152

It would thus be ideal to have a “natural” soil moisture proxy record, but of course153

that is not the case. We can instead rely on a surrogate—a soil moisture record recon-154

structed from tree rings, such as the MADA.155

3.1.2 Statistical basis156

The physical discussion above yields three types of paleoclimate reconstruction: stream-157

flow from tree rings, soil moisture from streamflow, and streamflow from soil moisture.158

We now derive mathematically the relationships between these reconstruction types.159

  

CLIMATE 
Precipitation, Temperature, etc. 

TREE 
Ring width 

CATCHMENT 
Streamflow  

LAND 
Soil moisture 

C 

S 
R Q 

a) b) 

Figure 2. a) Relationships between hydroclimatic variables and tree growth. b) A probabilis-

tic graphical model representing the relationships in a), where C is a vector of climate variables,

S the soil moisture, R the ring width index, and Q streamflow. The arrows represent the condi-

tional dependence among variables.
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Each reconstruction is a conditional distribution of one variable (e.g. streamflow)160

given that we have observed another variable (e.g. soil moisture), and given the histor-161

ical climate. We represent these conditional distributions with a probabilistic graphical162

model (Koller & Friedman, 2009) as shown in Figure 2b. There are four random vari-163

ables involved: climate (C), soil moisture (S), ring width (R), and streamflow (Q). Each164

of these variables can be multivariate, i.e., C includes precipitation and temperature, among165

others, and all variables can include multiple sites or grid points. As a convention, let166

fX(x) be the probability density function (PDF) of the random variable X, fXY (x, y)167

be the joint PDF of X and Y , and fX|Y (x|y) be the conditional PDF of X given that168

Y = y.169

Reconstructing streamflow from tree ring is essentially deriving the distribution of170

Q given R and C, i.e, fQ|R,C(q|r, c), where r is the measured ring width index, and c is171

the historical climate. We can decompose this distribution as follows:172

fQ|R,C(q|r, c) =

∫
fQ,S|R,C(q, s|r, c) ds

=

∫
fQ|S,R,C(q|s, r, c)fS|R,C(s|r, c) ds.

(1)173

The first equality comes from the relationship between marginal and joint distributions.174

The second equality comes from Bayes’ theorem. Now, Q is independent of R given S175

and C (Figure 2b), so fQ|S,R,C(q|s, r, c) = fQ|S,C(q|s, c). Consequently,176

fQ|R,C(q|r, c) =

∫
fQ|S,C(q|s, c)fS|R,C(s|r, c) ds. (2)177

Observe that fQ|S,C is the streamflow reconstruction from the MADA, and fS|R,C178

is the MADA reconstruction from tree rings. Thus we have established mathematically179

the reasoning that tree-ring-based streamflow reconstruction is possible based on the link180

through soil moisture. fQ|R,C is the marginal distribution without observing the soil mois-181

ture. Instead of constructing fQ|R,C , we can infer S from R, then Q from S, by construct-182

ing fS|R,C and fQ|S,C .183

3.1.3 Computational advantages of using the MADA, and a caveat184

The MADA can be thought of as a transformation from the tree ring network, ir-185

regular in both space and time, to a regular grid with homogeneous temporal coverage—186

analogous to transforming meteorological station data to gridded temperature and pre-187

cipitation products. This transformation brings several advantages to reconstructing stream-188

flow using the MADA, compared to using the underlying tree ring network.189

First, in a typical reconstruction study, one must detrend and standardize the tree190

ring data to remove non-climate signals (cf. Cook and Kairiukstis (1990)). For a large191
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scale study like ours, such a task is complex. Instead, we can leverage the effort that has192

been devoted to detrending and standardizing the chronologies in making the MADA,193

and use the MADA as proxy, having built the physical and statistical foundations to do194

so.195

Second, the tree ring sites often cluster, with vast empty space between clusters196

(see e.g. Cook et al. (2010), Figure 1). When taking a subset of them for reconstruction197

at a station, there can be cases where none or very few sites are within a search radius.198

The MADA helps “bridging” the space, bringing climate signals from further-away tree199

sites to grid points nearer to the station. The high resolution grid (1◦×1◦ for version200

2) makes automated grid point selection easier. (The automated grid point selection pro-201

cedure is described in Section 3.2.1.)202

Third, when reconstructing streamflow from tree rings, nested models are often nec-203

essary because tree ring chronologies have different time spans. One starts with the short-204

est nest, using the common time span of all chronologies to build a model, then drop-205

ping the shortest chronology to build a second model with longer time span but less ex-206

plained variance than the first, and repeating the process, dropping more chronologies207

to achieve longer time spans until the final nest with the longest time span, but with the208

lowest explained variance. The nests’ outputs are then corrected for their variance and209

averaged to obtain the final reconstruction (see e.g. D’Arrigo et al. (2011)). This nest-210

ing step was carried out for the MADA, such that most grid points have the same time211

span (Figure S4). This lets us use a single common period (1200-2012), and eliminates212

our need to build nested models back in time. This is particularly desirable for our dy-213

namic state-space reconstruction model, as averaging the nests breaks the link between214

the catchment state and streamflow. (The reconstruction model is described in Section215

3.2.2).216

The computational advantages of using the MADA are thus threefold: (1) no de-217

trending and standardization, (2) easier grid point selection, and (3) no nesting. How-218

ever, these come with a cost: uncertainty. When reconstructing streamflow from the MADA,219

we treat the MADA (i.e, the model input) as constant. But in fact, the MADA is a re-220

gression product and has its own uncertainty. Incorporating this uncertainty is difficult221

and is out of the scope of this paper, but it is an interesting topic for further research.222

3.2 Climate-informed Dynamic Streamflow Reconstruction223

When reconstructing a climate field, such as a PDSI grid or a streamflow station224

network, it is desirable to preserve the field covariance structure. However, building a225
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large-scale spatial regression model is challenging. Instead, one can reconstruct each point226

in the field independently, and rely on the proxy network to capture the spatial patterns.227

This is the premise of the Point-by-Point Regression (PPR) method (Cook et al., 1999),228

and this principle has led to the successful reconstruction of many drought atlases (Cook229

et al., 1999, 2010, 2015). Our reconstruction framework is inspired by PPR—we recon-230

struct station by station—but diverges in several ways. The two key differences are, first,231

in the way proxy points are selected, and second, in the regression model.232

3.2.1 Climate-informed Input Selection233

The PPR procedure selects proxy points (tree ring chronologies) within a search234

radius. Given that geographical proximity does not imply hydroclimatic similarity, we235

selected our proxies (MADA grid points) by hydroclimatic similarity directly. The hy-236

droclimate at location i (a MADA grid point or a streamflow station) is characterized237

by three indices: aridity ai, moisture seasonality si, and snow fraction fi, following Knoben238

et al. (2018) (hereafter referred to as the KWF system, after the three authors). The hy-239

droclimatic similarity between two locations i and j is then defined as their Euclidean240

distance in the hydroclimate space. This distance is termed the KWF distance and its241

mathematical definition is242

dKWF (i, j) =
√

(ai − aj)2 + (si − sj)2 + (fi − fj)2. (3)243

The KWF distance lets us screen out MADA grid points that are geographically close244

to the station of interest but hydroclimatically different—a climate-informed grid point245

selection scheme. Whereas previous PPR implementations varied the search radius, we246

fixed the radius to 2,500 km—the scale of regional weather systems (Boers et al., 2019)—247

and varied the KWF distance between 0.1 and 0.3 in 0.05 increments. For reference, the248

maximum KWF distance between any two points in Monsoon Asia is 1.424. Each KWF249

distance yielded a search region encompassing a set of MADA grid points surrounding250

the streamflow station of interest. In our search regions, PDSI often correlates signifi-251

cantly and positively with streamflow (Figure 3); indeed hydroclimatic similarity is a phys-252

ical basis for correlation.253

Next, we performed weighted principal component analysis (PCA) to remove mul-254

ticollinearity among the MADA grid points. Following PPR, we weighted each grid point255

by its correlation with the target streamflow, using equation (4):256

zi = xiρ
p
i . (4)257

Here, xi is the scPDSI time series at grid point i, ρi the correlation between xi and the258

target streamflow, p the weight exponent, and zi the weighted version of xi. We used259
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Figure 3. a) Examples of the climate-informed grid point selection: selected MADA grid

points (green) based on two KWF distances (columns) at four stations (rows). b) Correlations

between streamflow at the same four stations and the MADA, significant correlations (α = 0.05)

enclosed in black boundaries. The selection regions in (a) generally have significant positive

correlation with streamflow. The areas with significant negative correlations need further investi-

gation.

p = 0, 0.5, 2/3, 1, 1.5, and 2, the same as those used by Cook et al. (2010). We then per-260

formed PCA on zi’s, and retained only those principal components having eigenvalue at261

least 1.0 (Hidalgo et al., 2000). We further reduced this subset using the VSURF (Vari-262

able Selection Using Random Forest) algorithm (Genuer et al., 2010). So, for each com-263

bination of KWF distance and PCA weight, we arrived at a subset of principal compo-264
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nents for reconstruction. Each streamflow station has an ensemble of 30 such subsets,265

the best of which was identified using cross-validation (Section 3.2.3) and used for the266

final reconstruction.267

3.2.2 Linear Dynamical System268

Having obtained the climatic inputs, the next step was to model the relationship269

between these inputs and the catchment output (streamflow). Here, this relationship was270

not modeled with linear regression (as with original PPR, and as typical with previous271

reconstruction studies), but as a linear dynamical system (LDS), following equations (5)272

and (6):273

xt+1 = Axt +But + wt (5)274

yt = Cxt +Dut + vt (6)275

where t is the time step (year), y the catchment output (streamflow), u the climatic in-276

put (an ensemble member from the climate-informed grid point selection), w and v white277

noise, and x the system state, which can be interpreted as the catchment’s flow regime,278

i.e, wet or dry (Nguyen & Galelli, 2018). By modeling the flow regime and its transition,279

the LDS model accounts for both regime shifts (Turner & Galelli, 2016) and catchment280

memory (Pelletier & Turcotte, 1997). These behaviors are not modeled in linear regres-281

sion.282

The LDS model assumes that the initial state and the noise processes are normally283

distributed:284

wt ∼ N (0, Q) (7)285

vt ∼ N (0, R) (8)286

x1 ∼ N (µ1, V1). (9)287

It follows that the catchment state and output must also be normally distributed. But288

some of our streamflow records are skewed. These were log-transformed to reduce skew-289

ness (Text S2 and Figure S3).290

The LDS model is trained using a variant of the Expectation-Maximization algo-291

rithm. In the E-step, we fix the model parameters and learn the hidden state. In the M-292

step, we fix the hidden state and learn the model parameters. Iterations are repeated293

between the E- and M-steps until convergence. The reconstruction algorithm is imple-294

mented in the R package ldsr (Nguyen, 2020a).295
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3.2.3 Cross-validation296

Consistent with the literature, we assessed reconstruction performance using the297

metrics Reduction of Error (RE) and Nash-Sutcliffe Coefficient of Efficiency (CE or NSE)298

(Nash & Sutcliffe, 1970; Fritts, 1976). Mathematically,299

RE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄c)
2

(10)300

CE = 1−

∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄v)2
(11)301

where t is the time step, V the validation set, Q the observed streamflow, Q̂ the recon-302

structed streamflow, Q̄c the calibration period mean, and Q̄v the verification period mean.303

Both RE and CE are based on squared error; they can be sensitive to outliers, especially304

the CE. To address this limitation, Gupta et al. (2009) proposed another metric, which305

assesses a model output based on its correlation with observation, as well as its bias and306

variability (equation (12)):307

KGE = 1−

√
(ρ− 1)2 +

(
µ̂

µ
− 1

)2

+

(
σ̂

σ
− 1

)2

. (12)308

Here, ρ is the correlation between model output and observation, µ̂ and µ the modeled309

and observed mean of the streamflow time series, and σ̂ and σ the modeled and observed310

standard deviation of the streamflow time series. This metric is now known as the Kling-311

Gupta Efficiency (KGE). Compared to the CE, the KGE is more robust to outliers, hence312

we chose the KGE as the criterion for model selection.313

Conventionally, reconstruction skills are often calculated in a split-sample (i.e., two-314

fold) cross-validation scheme: the model is calibrated with the first half of the data and315

validated with the second half, then calibrated with the second half and validated with316

the first half (see e.g. D’Arrigo et al. (2011)). The contiguous halves aim to test a model’s317

ability to capture a regime shift (Briffa et al., 1988). Unfortunately, this scheme is not318

practical for many stations in our record, where it would leave us only 20–25 data points319

for calibration (Figure S2). In addition, a two-fold cross-validation scheme provides only320

two point estimates for each skill score, and they may be notably different (for exam-321

ple, D’Arrigo et al. (2011) reported CE values of 0.21 and 0.73 for the two folds.) As a322

result, the mean skill score may not be robust. A number of recent works have instead323

used the leave-k-out cross-validation scheme (e.g. Ho et al. (2016); Li et al. (2019); Chen,324

Shang, Panyushkina, Meko, Li, et al. (2019)). In this scheme, a random chunk of k data325

points is withheld for validation while the model is calibrated with the remaining data326
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points, then calibration and validation are repeated over as many as 100 chunks of k. This327

scheme provides a more robust estimate of the mean skill score, but it may not correctly328

assess the model’s ability to capture a regime shift, because the withheld points are not329

contiguous like in the split-sample scheme.330

We sought a balanced approach. In each cross-validation run for each station, we331

withheld a contiguous chunk of 25% of the data points for validation and trained the model332

on the remaining 75%. This way, we maintain the goal of the split-sample scheme while333

still having enough data for calibration and getting a reasonably robust mean skill es-334

timate. We could not get as many contiguous chunks as if they were random, so we re-335

peated the procedure 30 times instead of 100, and calculated the mean KGE over these336

30 runs. The ensemble member (cf. Section 3.2.1) that resulted in the highest mean KGE337

across the 30 cross-validation runs was used for the final reconstruction of each station.338

The cross-validation procedure is also available in the ldsr package.339

4 Results and Discussion340

4.1 Reconstruction Skills341

Reduction of Error (RE) is positive at all stations (Figure 4a and b); Coefficient342

of Efficiency (CE) is positive at all but two: Nowrangpur (India) on the Godavari, and343

Ubon (Thailand) on the Nam Mun, a tributary of the Mekong (Figure 4c and d). Both344

negative values are larger than -0.08. The tree ring network used to build the MADA345

has lower density in India (Cook, 2015) so CE values here are understandably lower. Ubon,346

on the other hand, is located in an area of high quality tree ring chronologies (Buckley347

et al., 2007; Sano et al., 2009; Buckley et al., 2010), yet its variability is not captured348

by the MADA as well as nearby stations. We suspect there are data errors at this gauge.349

The histogram of CE resembles that of RE but shifts slightly left—this is expected as350

CE is a more stringent metric than RE (Cook & Kairiukstis, 1990). Much lower CE than351

RE implies overfitting; we do not observe that here.352

The Kling-Gupta Efficiency (KGE) is all positive, and its histogram leans toward353

the higher end (Figure 4e and f). It should be noted that if one wishes to benchmark354

a model against the verification period mean (as is with the CE), the threshold value is355

1−
√

2, i.e, KGE > 1−
√

2 is analogous to CE > 0 (Knoben et al., 2019). The KGE356

scores in Figure 4 suggest that our reconstruction model performs well in terms of key357

characteristics: correlation, bias, and variability.358

All three metrics have similar spatial distributions (Figure 4a, c, and e). As expected,359

lower (but positive) skills are seen in most of Central and West Asia, which lie outside360
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Figure 4. Distribution of model performance scores. Panels a, c, and e show the scores of

each station following the color legends encoded with the histograms in panels b, d, and f.

the active monsoon area. An exception is the upper reach of the Selenge River (Mon-361

golia), upstream of Lake Baikal, where model skill is high, owing to high quality tree ring362

records from Mongolia (Davi et al., 2006; Pederson et al., 2013; Davi et al., 2013; Ped-363

erson et al., 2014). In Japan, where the small catchments are sensitive to local climate,364

model skill is reduced. In all other regions, model skill is homogeneous. The consistent365

performance of our model suggests that the MADA is a good proxy for streamflow re-366

construction in Asia, and our climate-informed dynamic reconstruction is skillful.367

As an additional validation exercise, we compared the spatiotemporal variability368

of reconstructed streamflow against instrumental data for the period 1950–2012 (Fig-369

ure S5). Our reconstruction captures well the spatial variation patterns of streamflow370

in this period, as well as the timing, duration, and magnitude of extreme droughts and371

pluvials.372

4.2 Spatiotemporal Variability of Monsoon Asia’s Streamflow373

Having obtained good skill scores, we now present eight centuries of spatiotempo-374

ral streamflow variability in Monsoon Asia (Figure 5). This reconstructed history cap-375
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tures the riparian footprint of major historical events (large volcanic eruptions, megadroughts,376

and pluvials). We first discuss the impact of the three largest eruptions of the past eight377

centuries (Sigl et al., 2015): Samalas (1257) (Lavigne et al., 2013), Kuwae (1452-53) (Gao378

et al., 2006), and Tambora (1815) (Stothers, 1984).379

Assuming that Kuwae erupted in 1452 (consistent with tree ring records, see e.g.380

Briffa et al., 1998), these three eruptions saw a persistent streamflow pattern across South-381

east Asia, eastern China, and West Asia. In the eruption year t (t = 1257, 1452, 1815),382

abnormally high streamflow occurred in all three regions. In year t+1, streamflow re-383

mained high in Southeast Asia but abruptly turned low in West Asia and parts of east-384

ern China. This is unexpected given the results of Li et al. (2013). They found that in385

year t, PDSI (captured by the MADA) was negative in all three regions; in year t+1,386

PDSI remained negative in Southeast Asia but turned positive in West Asia and east-387

ern China. Based on their findings, one would expect streamflow to be low in all three388

regions in year t, then remain low in Southeast Asia but turn high in West Asia and east-389

ern China in year t+1. We observe the opposite. Interestingly, Anchukaitis et al. (2010),390

also using PDSI, found in year t wet conditions in Southeast Asia (similar to our results)391

but mixed wet and dry conditions in eastern China and West Asia (more similar to Li392

et al., 2013). The disparity in these studies are attributed to the different sets of erup-393

tions used—Anchukaitis et al. (2010) demonstrated this with three sets of events. Our394

divergence from their results are partly because they used Superposed Epoch Analysis395

while we analyze individual events, but we argue that the main cause is streamflow ver-396

sus PDSI. With our streamflow results, we offer a reconciling explanation: during and397

immediately after the eruptions, PDSI was more driven by temperature than precipita-398

tion, and while low temperature may have caused negative PDSI, it reduced evapora-399

tion and consequently, increased streamflow. This mechanism is particularly relevant in400

midlatitude eastern China and West Asia. In Southeast Asia, however, reduced temper-401

ature, from warm to cool, could increase soil moisture (Anchukaitis et al., 2010), result-402

ing in high streamflow. Not disagreeing with previous works, our results offer a look at403

another aspect of past climate using streamflow instead of PDSI.404

As a drought/pluvial indicator, streamflow may differ from PDSI in individual years,405

as discussed above, but on longer terms, our reconstructed streamflow agrees well with406

reconstructed PDSI. For example, our record fully captures the Angkor Droughts (1345–407

1374 and 1401–1425) (Buckley et al., 2010, 2014) with prolonged low flow throughout408

the Mekong and Chao Phraya basins (Southeast Asia). Heavy monsoon rain interrupted409

these megadroughts; such abrupt alterations to the flow regime proved difficult for Angkor’s410

water managers (Buckley et al., 2014). After the first Angkor Drought, they altered the411
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inflow/outflow functions of their barays (reservoirs) in an attempt to preserve water. Heavy412

rains and flooding subsequently destroyed the reduced-capacity hydraulic infrastructure.413

This flood likely occurred in 1375 (Figure 5b, event 2).414

By the second Angkor Drought, the hydraulic city had insufficient water storage415

and could not recover. Four more megadroughts that severely affected Asian societies416

(Cook et al., 2010) are also captured in our reconstruction, along with other major droughts417

and pluvials. Central Asia observed a six-decade drought between 1260–1320 and sus-418

tained pluvials during 1740–1769. East Asia experienced extended drought in the sec-419

ond half of the fifteenth century. Most notably, Southeast Asia suffered a drought be-420

tween 1225–1255 that was comparable in length to Angkor Drought I, but more severe421

in magnitude. Following this drought was a multi-decadal pluvial in 1271–1307. The drought422

is prominent in the speleothem record of Wang et al. (2019), and the pluvial can also423

be traced from there.424

4.3 Links to Oceanic Drivers425

To exemplify the spatial variation of how the oceans influence streamflow, we se-426

lected four river basins from west to east: Krishna, Chao Phraya, Mekong, and Yangtze427

(Figure 1), and selected one station from each basin. Because of over-year storage in the428

Krishna, the only station that met our data quality criteria (Section 2.1) lies in the up-429

per reach of the river. For the other basins, we were able to choose stations in the down-430

stream that are more representative of the basin. The names and locations of these sta-431

tions are shown in Figure 3.432

We calculated the correlation between reconstructed annual streamflow at each basin433

and the seasonal averages of global sea surface temperature (SST) for the period 1855–434

2012. Correlation patterns vary both seasonally and spatially, with differences among435

rivers and among oceans.436

4.3.1 Pacific Ocean437

For the Krishna, correlations are weak, and small significant correlation areas are438

observed in the tropical Pacific, mainly from summer to winter of the current year (Fig-439

ure 6a). Tropical Pacific SST—a manifestation of the El Niño-Southern Oscillation (cf.440

McPhaden et al., 2006)—correlates negatively with streamflow. The hydroclimate of South441

Asia tends to be drier during El Niños and wetter during La Niñas. These tendencies442

have also been observed from tree ring records (Borgaonkar et al., 2010), reconstructed443

PDSI (Yu et al., 2018) and precipitation (Shi & Wang, 2018). The seasonality of cor-444
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relation suggests that annual streamflow responds more strongly to an ongoing ENSO445

event than to a decaying one.446
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Figure 6. Correlation between reconstructed mean annual streamflow at four river

basins (this work) and seasonal averages of global sea surface temperature (SST) from the

NOAA ERSST v5 data set (Huang et al., 2017) for the period 1855–2012; significant correla-

tions (α = 0.05) enclosed in black boundaries. The stations used are shown in Figure 3. “(-1)”

denotes previous year.

The Yangtze has a similar current summer–winter Pacific SST correlation pattern447

to that of the Krishna (i.e, related to ongoing ENSO events), with larger significant cor-448

relation areas. It also responds to decaying ENSO events (prior summer–winter) much449

more strongly than does the Krishna. Correlation with decaying ENSO events takes the450

opposite sign to that of ongoing ENSO events (Figure 6d). These opposite ENSO influ-451

ences on eastern China have been shown in a similar seasonal correlation analysis using452

reconstructed precipitation (Shi & Wang, 2018) but not in the annual composite anal-453

yses of Yu et al. (2018) and Li et al. (2013). The latter two works showed wetter ten-454

dencies during El Niño and drier tendencies during La Niña, likely capturing only the455

decaying phase.456
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Unlike in the Krishna and Yangtze, streamflow in the Chao Phraya and Mekong457

correlates significantly with SST over most of the Pacific Ocean, and the correlation per-458

sists across all seasons, reflecting equal influences from decaying and ongoing ENSO events459

(Figure 6b and c). The basin-wide correlation pattern and its lack of seasonality sug-460

gest influences from a driver at longer time scales, likely the Pacific Decadal Variabil-461

ity (PDV)—decadal variations of Pacific SST resulted from complex tropical-extratropical462

ocean-atmosphere interactions (Henley, 2017). The North Pacific component of PDV is463

known as the Pacific Decadal Oscillation (PDO) (Mantua & Hare, 2002), its southern464

counterpart the South Pacific Decadal Oscillation (Shakun & Shaman, 2009); basin-wide465

SST variation patterns have also been termed Interdecadal Pacific Oscillation (Folland466

et al., 1999). These modes are closely related (Henley, 2017). The PDO has been shown467

to influence hydroclimatic variability in Monsoon Asia, in conjunction with ENSO (Yu468

et al., 2018). Specifically for the Chao Phraya, PDO also modulates ENSO’s influence469

on peak flow (C. Xu et al., 2019). Here, by juxtaposing the correlation maps, our anal-470

yses reveal that ENSO and PDV exert their greatest influence on the Mekong and Chao471

Phraya.472

4.3.2 Indian Ocean473

We observe negative correlations between streamflow and Indian Ocean SST in current-474

year winter in the Chao Phraya, and to a lesser extend in the Yangtze and Krishna. These475

basin-wide correlation patterns follow closely after peak ENSO correlations in summer476

and fall, consistent with the Indo-Pacific coupling described by Saji et al. (1999): an ENSO477

event in the Pacific leads to SST anomalies of the same sign Indian Ocean. This mode478

accounts for about 30% of Indian Ocean SST variability [ibid ]. These authors also pro-479

posed another mode—the Indian Ocean Dipole (IOD) mode, the positive phase of which480

is characterized by cool eastern Indian Ocean around Sumatra, and warm western In-481

dian Ocean around East Africa. Positive IOD events often occur around June–July, peak482

in October and abruptly end in November, a phenomenon called seasonal locking (Saji483

et al., 1999; Ummenhofer et al., 2017). Positive IOD events have been linked to droughts484

in Southeast Asia but this relationship is not robust (Ummenhofer et al., 2013). Con-485

sistent with their results, we observe a weak east-positive–west-negative correlation pat-486

tern between Indian Ocean SST and Southeast Asia streamflow (Mekong and Chao Phraya)487

in the fall (the peak IOD season), both for prior- and present-year, with small areas of488

significant correlation. This pattern becomes stronger in prior-year winter, suggesting489

a lag between peak IOD and its effect to Southeast Asia, but not so for present-year win-490

ter, likely because it is dominated by the basin-wide ENSO mode (the IOD mode only491

accounts for 12% of Indian Ocean SST variability (Saji et al., 1999)).492

–20–



manuscript submitted to Water Resources Research

4.3.3 Atlantic Ocean493

The Chao Phraya and Mekong streamflow correlates positively with tropical and494

northern Atlantic SST. Significant and consistent correlations are observed throughout495

the seasons for the Mekong, but less consistent for the Chao Phraya. Wang et al. (2019)496

proposed a mechanism to explain relationship: increased tropical Atlantic SST leads to497

changes in zonal moisture transport, causing depression over tropical Indian Ocean, re-498

ducing rainout over the basin, leaving more moisture available to be transported to main-499

land Southeast Asia, ultimately strengthening Indian Monsoon rain over the region. This500

mechanism is consistent with their speleothem record and also with our streamflow re-501

construction.502

4.3.4 Temporal variability503

Figure 6 shows how teleconnection between Monsoon Asia’s streamflow and global504

SST varied among river basins. To see if this teleconnection also changed through time,505

and how, we repeated the same analysis in three sub-periods: 1855–1904, 1905–1954, and506

1955–2004 (see Figure S6). We observe the following. First, our reconstruction captures507

the SST correlation patterns in the instrumental period (1955-2004), thereby further val-508

idating the quality of our reconstructions. Second, the SST correlation patterns changed509

through time for all four rivers, but more interestingly, teleconnection weakened remark-510

ably for the Chao Phraya, Mekong, and Yangtze during 1905-1954 compared to the other511

two time windows.512

5 Conclusions513

In this work, we produce the first large-scale and long-term record of streamflow514

variability for Monsoon Asia, covering 48 stations in 16 countries. In making this record,515

we also develop a novel automated, climate-informed, and dynamic streamflow recon-516

struction framework that leveraged the computational advantages offered by our climate517

proxy—the Monsoon Asia Drought Atlas (MADA) version 2. Our framework achieves518

good skills for 96% of the stations, and skill distribution is spatially homogeneous. Our519

results provide a synoptic understanding of Monsoon Asia’s streamflow variability over520

the past eight centuries, and reveal how the teleconnection between streamflow and its521

oceanic drivers varied over space and time.522

From our reconstruction, streamflow in Monsoon Asia appears coherent: high and523

low flows often occur simultaneously at nearby stations and adjacent basins. This co-524

herence is attributed to common oceanic drivers—the El Niño–Southern Oscillation (ENSO),525
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the Pacific Decadal Variability (PDV), the Indian Ocean Dipole, and tropical Atlantic526

sea surface temperature variations. Coherence emerges even though we reconstructed527

each station individually, demonstrating the merits of Point-by-Point Regression. More528

importantly, this coherence implies that water management in Asia should be coordi-529

nated among basins. For example, Thailand is increasingly purchasing Mekong-generated530

hydropower from Laos, and when that is insufficient, complements its energy needs with531

thermal power from plants that use water from the Chao Phraya for cooling (Chowdhury532

et al., 2019). Thailand’s energy system is at risk when a prolonged drought occurs at533

both rivers—our record shows such events have happened several times in the past.534

We showed that the Pacific, Indian, and Atlantic Oceans contribute to streamflow535

variability. Therefore, water management in Monsoon Asia should take into account the536

ocean states. A case study of the Angat River (the Philippines) showed that reservoir537

operating policies informed by ENSO states are more robust than conventional policies538

that only account for local hydrological conditions (Libisch-Lehner et al., 2019). Oper-539

ating policies may be improved further if, say, the PDV is also considered. There is prob-540

ably even more potential for improving water resources management in the Mekong and541

Chao Phraya River Basins, as the oceanic drivers exert very strong influences on these542

rivers.543
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