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Description of Study area

Region 1: WAS (Western Arabian Sea)

WAS lies around (5°-25°N and 50°-65°E) with the domination of seasonal upwelling. This region
is rich in nutrients during the southwest monsoon due to coastal upwelling circulation at the
Somalia and Oman coast. This supplies nutrient-rich deep water at the surface. During spring
inter-monsoon, productivity reduces, and the waters become low in nutrients as the Somali Jet
weakens. This region is characterized by downwelling with an intermediate level of productivity
during the Northeast monsoon. WAS is a climatologically more acidic region compared to other
regions, especially during the Southwest monsoon season of the tropical Indian Ocean (lO)
(Takahashi et al., 2014). River discharge in this region is low, as seen in the Indus River (1681
umol kg™') is a meager 10% of the Ganges and Brahmaputra rivers (Carter et al.,, 2014).

Region 2: NBoB-Al (North Bay of Bengal and Around India)

NBoB-Al is a region covering peninsular India from the eastern Arabian Sea to the western Bay
of Bengal. (Sarma et al.,, 2015) air-sea CO, exchange promotes acidification along with
southwest coastal BoB, while anthropogenic sources in northwest coastal BoB, have triggered
aerosol acidification, transforming it into a source of CO, from a traditional sink. The region
covering the west coast experiences upwelling during May-June. The Coastal Kelvin wave may
cause some upwelling around the coast of India. The Bay of Bengal, the largest bay, forms the
north-eastern part of the 10. (Carter et al.,, 2014) explains that BoB has two major high-alkaline
river systems emptying into it, the Ganges (1966 umol kg') and the Brahmaputra (1114 umol
kg™") (Cai et al., 2008), with one of the most subsequent discharge points (42,000 m*/sec),
globally (Land et al., 2015), raises the surface alkalinity comparative to salinity distribution in
the region (Sabine et al., 2002, 2004). This region is thus well stratified as compared to the WAS
(S.S. C, Shenoi et al., 2004; S. S. C. Shenoi et al., 2002). Both above regions have warm SST but
are characteristically different due to increased evaporation in the former, while riverine
discharge off the latter. The physical characteristics manipulate the solubility pump natures of
these two basins and cause differences in control of SST.

Region 3: EBoB-ClO (East Bay of Bengal and Central 10)

EBoB-CIO is a region extending from the Bay of Bengal to the central north equatorial 10
region (see Figure S1). This region also includes the WEIO which lies around 50°E-70°E, 10°S-
10°N. (Sompongchaiyakul et al., 2008) shows that the Andaman Sea (eastern BoB) has lower
surface alkalinity compared to northern or western BoB. The Bay of Bengal part of this region
has lower salinity, as low as 30 ppt or below, as compared to other regions due to precipitation
from southwest monsoon and river discharges.

Region-4 and 5: EEIO, SEIO (Eastern and Southern Equatorial 10)

The Equatorial IO is characterized by warm SST as this region lies in the Equatorial belt along
the Tropical Convergence Zone (TCZ). Unlike the Pacific and Atlantic, the eastern 10 SST is
warmer because of the dominant westerly component in the equatorial wind which causes
deepening of thermocline in the east-west direction and downwelling along the equatorial
belt (Trenary & Han, 2008; Xie et al., 2002).

Region: 6 to 8 (Southern |0 and Subtropical Oligotrophic Gyre i.e. STIO, SSIO and SOG)

The subtropical or southern 10 is a region of wind-driven gyre circulation. The southern 10 is
characterized by a subtropical anticyclonic gyre, located 30°S south of the equator. In the
subtropical gyre, Ekman transport causes intensive downwelling at the center, which results in
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the deepening of thermoclines, pycnocline and nutriclines. Due to the deepening of
nutriclines, this gyre is an oligotrophic region i.e., the biological productivity in the region is
relatively low. Interdependence of surface alkalinity and salinity is observed in nearly all
tropical and subtropical oceans (Millero et al., 1998), as observed in this region. In the rest of
this study, we will focus on the acidification parameters in the regions identified above.

Text S2.
The seasonal mean of pH

As seen in Figure S4, pH averaged over the 10 domain ranges from 8.0 to 8.13 units. During
January-February-March (JFM) entire 10 region appears to be of a monotonic pattern of pH,
with averaged pH over the IO ranging from 8.05 to 8.09 units. Downwelling in the WAS during
northeast monsoon causes a decrease in DIC, thus making the water alkaline (Fassbender et
al., 2011; Feely et al., 2009). Associated SST cooling also increases pH (Midorikawa et al., 2010).
April-May-June (AMJ) is a warm SST season in the northern 10 causing the ocean to be slightly
more acidic during this time which is clearly reflected in the contrast of pH values between
this region and the higher alkaline STIO region during this period (Bollasina & Nigam, 2009;
Dommenget, 2011; Sasamal, 2007). During JAS, the upwelling in the Arabian Sea is more
intense (Emeis et al., 1995), causing the WAS to be highly acidic, with values reaching around
8.01 units. The Southern 10 appears to be highly alkaline in the southwest monsoon season
with cold SST where the release of H* ions is less common in a colder environment (Bollasina &
Nigam, 2009; Midorikawa et al., 2010). Also, the presence of subtropical anticyclonic gyre,
which has strong downwelling at the center decreases DIC and increases the pH (towards
more alkaline) in the southern part of the 10. During OND the northwest monsoon causes pH
to be slightly alkaline in the WAS (Fassbender et al,, 2011). The Southern 10 slowly turns acidic
as the JFM approaches. The contours of OTTM pH are concurrent with the (Takahashi et al.,
2014) observation of pH changes in the ocean.
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Figure S1. Different Indian Ocean bioprovinces (Source: (Sreeush et al., 2020))
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Figure S2. Annual average pH over the IO (Takahashi et al., 2014)
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114  Table S1: Seasonal mean OTTM pH difference (ApH) between CTRL and Sensitivity (SENS)
115  simulations for SST, DIC, ALK and S respectively over 10 bio-provinces.

Bioprovinces JFM AMJ JAS OND
WAS
CTRL-SENS_SST 0.006414 +0.005 -0.02345 +0.005 0.008816 +0.002 -0.00344 +0.003
CTRL-SENS_DIC -0.00702 +0.012 0.007785 +0.015 -0.03549 +0.003 -0.03178 +0.005
CTRL-SENS_ALK -0.00587 +0.006 -0.00497 +0.0045 0.002269 +0.002 0.019809 +0.004
CTRL-SENS_S -0.00146 +0.0001 -0.00111 +0.00009 -0.00068 +0.0002 -0.00092 +0.0004
NBoB-Al
CTRL-SENS_SST 0.009288 +0.005 -0.01829 +0.003 -0.00225 +0.0008 -0.00023 +0.004
CTRL-SENS_DIC -0.01852 +0.008 0.006533 +0.005 -0.02888 +0.002 -0.02148 +0.004
CTRL-SENS_ALK 0.007945 +0.0008 -0.00421 +0.002 0.006692 +0.0005 0.005717 +0.0006
CTRL-SENS_S -0.00089 +0.0007 0.000142 +0.0008 -0.00167 +0.0005 -0.00067 +0.0004
EBoB-CIO
CTRL-SENS_SST 0.000322 +0.004 -0.01453 +0.003 0.000809 +0.0009 0.001879 +0.001
CTRL-SENS_DIC -0.02307 +0.004 -0.00182 +0.001 -0.00659 +0.001 -0.02281 +0.006
CTRL-SENS_ALK 0.004112 +0.003 -0.00681 +0.002 -0.00871 +0.004 0.022775 +0.004
CTRL-SENS_S 0.00037 +0.0008 0.000167 +0.0007 -0.00149 +0.0001 -0.00348 +0.0004
EEIO
CTRL-SENS_SST -0.00536 +0.002 -0.01071 +0.001 0.001874 +0.001 0.001633 +0.0005
CTRL-SENS_DIC -0.00872 +0.002 -0.00291 +0.009 -0.05067 +0.004 -0.01325 +0.004
CTRL-SENS_ALK 0.006029 +0.001 -0.00362 +0.003 0.016177 +0.002 0.003123 +0.001
CTRL-SENS_S 0.000481 +0.0005 -0.00167 +0.001 -0.00239 +0.0004 -0.00151 +0.0001
SEIO
CTRL-SENS_SST -0.01851 +0.002 -0.00974 +0.007 0.018957 +0.001 -0.00242 +0.006
CTRL-SENS_DIC 0.008218 +0.002 -0.01543 +0.009 -0.03748 +0.003 -0.0101 +0.007
CTRL-SENS_ALK -0.00965 +0.001 0.002946 +0.002 0.004588 +0.0007 0.002073 +0.002
CTRL-SENS_S 0.00121 +0.0005 0.001666 +0.0009 -0.00367 +0.0006 -0.00272 +0.0008
STIO
CTRL-SENS_SST -0.02159 +0.002 -0.00928 +0.007 0.019888 +0.002 0.002343 +0.007
CTRL-SENS_DIC -0.0016 +0.002 -0.00948 +0.004 -0.02223 +0.002 -0.00545 +0.003
CTRL-SENS_ALK -0.00079 +0.002 -0.0045 +0.002 -0.01029 +0.00006 -0.00852 +0.0008
CTRL-SENS_S -0.00067 +0.0004 0.000637 +0.0001 -0.00088 +0.0003 -0.002 +0.0001
Sslo
CTRL-SENS_SST -0.02789 +0.002 -0.0091 +0.009 0.026351 +0.002 0.004576 +0.009
CTRL-SENS_DIC 0.004206 +0.001 -0.01522 +0.008 -0.03635 +0.002 -0.01564 +0.006
CTRL-SENS_ALK -0.01042 +0.002 3.23E-05 +0.001 0.002869 +0.0003 -0.0031 +0.002
CTRL-SENS_S 0.00022 +0.0003 0.000372 +0.0003 -0.00092 +0.0001 -0.00115 +0.00006
SOG
CTRL-SENS_SST -0.037 +0.002 -0.00866 +0.01 0.031757 +0.003 0.004799 +0.01
CTRL-SENS_DIC 0.003427 +0.0009 -0.01866 +0.007 -0.03809 +0.002 -0.01815 +0.005
CTRL-SENS_ALK -0.00511 +0.002 0.003376 +0.0004 0.001517 +0.0003 -0.00129 +0.002
CTRL-SENS_S 0.000104 +0.0001 0.000464 +0.0001 -5.87E-05 +0.00003 -0.00033 +0.00003
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Table S2: Seasonal mean ROMS pH difference (ApH) between CTRL and Sensitivity (SENS)
simulations for SST, DIC, ALK and S respectively over IO bio-provinces.

Bioprovinces
WAS
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
NBoB-Al
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
EBoB-CIO
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
EEIO
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
SEIO
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
STIO
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
Ssio
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S
SOG
CTRL-SENS_SST
CTRL-SENS_DIC
CTRL-SENS_ALK
CTRL-SENS_S

JFM

0.003786
0.001037
-0.00053
0.000357

0.004274
0.005065
-5.37E-04
-0.00025

-0.00186
0.000133
-0.00107
0.002412

-0.00385
0.001533
-0.00164
0.001433

-0.01501

0.004376
-0.00165
0.001683

-0.01949
0.007349
-0.0034
-3.97E-05

-0.02253
0.003488
0.001499
-9.33E-06

-0.02878
0.012783
-0.00494
-0.00013

+0.005
+0.003
+0.00006
+0.0004

+0.006

+0.001
+0.0001
+0.0004

+0.004
+0.0007
+0.0003
+0.0002

+0.002

+0.001
+0.0005
+0.0001

+0.001

+0.001

+0.001
+0.0005

+0.001

+0.001
+0.0007
+0.0006

+0.0008
+0.001

+0.0001

+0.0002

+0.002

+0.002
+0.0006
+0.0002

AMJ

-0.01483
0.007447
-0.00093
0.000577

-0.01198
0.006888
-5.22E-04
-0.00394

-0.00733
0.001888
-0.00097
0.000408

-0.00466
0.00313
-0.00178
-0.00017

-0.00041

0.001754
-5.53E-05
0.001819

-0.00014
0.00379

-0.00082

0.001526

0.000958
0.004616
-0.00052
0.000445

0.005046
0.004795
-0.00053
0.000129

+0.006
+0.002
+0.00008
+0.0003

+0.005

+0.002
+0.0001

+0.001

+0.005
+0.0003
+0.00009
+0.0008

+0.002

+0.001
+0.0005

+0.001

+0.006

+0.002
+0.0008
+0.0008

+0.007

+0.003

+0.001
+0.0003

+0.008

+0.001
+0.0004
+0.0001

+0.01
+0.005
+0.002
+0.0001

JAS

0.011041
-0.00997
0.000618
-0.00016

0.004066
-0.00841

0.000281
0.001491

0.006427
-0.00011

0.001455
-0.00204

0.006628
-0.00176
0.001694
-0.00144

0.018366
-0.00386
-0.00104
-0.00208

0.021284

-0.00821

0.003543
-0.0001

0.024341
-0.00362
-0.00109
0.000107

0.030764
-0.01172
0.00541
-2.8E-05

+0.003

+0.003
+0.0005
+0.0001

+0.001

+0.003
+0.0002

+0.002

+0.0006
+0.0008
+0.0006
+0.0002

+0.0007
+0.0005
+0.0006
+0.0007

+0.001
+0.0008
+0.0003
+0.0002

+0.001
+0.0005
+0.0002
+0.0002

+0.001
+0.0009
+0.00003
+0.00008

+0.002
+0.0008
+0.0002
+0.00006

OND

5.17E-05
0.000847
0.000819
-0.00076

0.00369
-0.00389
0.000798
0.003102

0.002784
-0.00197
0.000585
-0.00064

0.001906
-0.00287
0.001752
0.000195

-0.00288
-0.00159
0.002916
-0.00139

-0.00153
-0.00164
0.001174
-0.00137

-0.00259
-0.00426
0.000266
-0.00053

-0.00669
-0.00557
0.000932
3.37E-05

+0.003

+0.001
+0.0004
+0.0001

+0.004

+0.001
+0.0002
+0.0009

+0.0006

+0.0002
+0.001

+0.0007

+0.001
+0.0002
+0.0004
+0.0002

+0.005
+0.0005
+0.0009
+0.0001

+0.006

+0.002
+0.0008
+0.0002

+0.007

+0.001
+0.0005
+0.0001

+0.01
+0.003
+0.001
+0.0001
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Table S3: Quantification of contribution from trends in SST, DIC, ALK and S on pH trends
(File uploaded separately)

Table S4: Regression coefficients in Linear trend fit for pH

WAS
Intercept
Slope

r2
NBoB-Al
Intercept
Slope
r2

EBoB-CIO
Intercept

Slope
r2
EEIO
Intercept
Slope
r2
SEIO
Intercept
Slope
r2
STIO
Intercept
Slope
r2
SSI0
Intercept
Slope
r2
SOG
Intercept
Slope
r2

JFM

-0.00152
-0.00652

-0.74875

-0.00355
0.000999

0.07923

-0.00071
-0.00921

-0.71098

-0.00158
-0.00754

-0.6733

-0.00198
-0.00506

-0.66059

-0.00188
-0.00438

-0.72968

-0.00152
-0.0075

-0.94379

-0.00168
-0.01188

-0.95188

+0.00006
+0.0002

+0.0002
+0.0008

+0.0001
+0.0003

+0.00008
+0.0003

+0.00008
+0.0002

+0.00004
+0.0002

+0.00002
+0.0001

+0.00004
+0.0002

Supplementary References S1

AMJ

-0.0015
-0.0079

-0.54202

-0.00106
-0.0123

-0.8802

-0.0015
-0.00818

-0.8973

-0.00169
-0.0075

-0.52978

-0.00209
-0.006

-0.46541

-0.00064
-0.0105

-0.62863

0.000374
-0.01719

-0.91282

-0.00018
-0.0156

-0.96828

+0.0001
+0.0005

+0.00008
+0.0004

+0.00003
+0.00016

+0.0001
+0.0004

+0.0001
+0.0005

+0.0001
+0.0006

+0.00006
+0.0003

+0.00005
+0.0002

JAS

-0.00228
-0.00582

-0.70153

-0.00211
-0.005

-0.85244

-0.00146
-0.0093

-0.72677

-0.00186
-0.00689

-0.84736

-0.00281
-0.0034

-0.55945

-0.00236
-0.00215

-0.19441

0.000172
-0.01423

-0.77091

0.000612
-0.01397

-0.9501

+0.00004
+0.0002

+0.00005
+0.0002

+0.00006
+0.0003

+0.00004
+0.0001

+0.00004
+0.0002

+0.00008
+0.0005

+0.0001
+0.0004

+0.00008
+0.0002

OND

-0.00059
-0.01084

-0.81995

-0.00088
-0.01104

-0.89939

-0.00135
-0.0098

-0.74154

-0.00207
-0.00685

-0.72375

-0.00205
-0.00588

-0.57345

-0.00124
-0.0078

-0.81333

0.000238
-0.01535

-0.9243

0.000207
-0.0149

-0.93695

+0.00007
+0.0003

+0.00008
+0.0003

+0.00007
+0.0003

+0.00005
+0.0002

+0.0001
+0.0004

+0.00005
+0.0002

+0.00005
+0.0002

+0.00008
+0.0003
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