Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

E. Natasha Stavros

and 12 more

The Surface Biology and Geology global imaging spectrometer is primarily designed to observe the chemical fingerprint of the Earth’s surface. However imaging spectroscopy across the visible to shortwave infrared (VSWIR) can also provide important atmospheric observations of methane point sources, highly concentrated emissions from energy, waste management and livestock operations. Relating these point-source observations to greenhouse gas inventories and coarser, regional methane observations from sensors like the European Space Agency (ESA) TROPOMI will contribute to reducing uncertainties in local, regional and global carbon budgets. We present the Multi-scale Methane Analytic Framework (M2AF) that facilitates disentangling confounding processes by streamlining analysis of cross-scale, multi-sensor methane observations across three key, overlapping spatial scales: 1) global to regional scale, 2) regional to local scale, and 3) facility (point source scale). M2AF is an information system that bridges methane research and applied science by integrating tiered observations of methane from surface measurements, airborne sensors and satellite. Reducing uncertainty in methane fluxes with multi-scale analyses can improve carbon accounting and attribution which is valuable to both formulation and verification of mitigation actions. M2AF lays the foundation for extending existing methane analysis systems beyond their current experimental states, reducing latency and cost of methane data analysis and improving accessibility by researchers and decision makers. M2AF leverages the NASA Methane Source Finder (MSF), the NASA Science Data Analytics Platform (SDAP), Amazon Web Services (AWS) and two supercomputers for fast, on-demand analytics of cross-scale, integrated, quality-controlled methane flux estimates.