A seismic investigation on Saturn’s moon Enceladus could determine the thickness of the ice shell, along with variations from the mean thickness, by recovering phase and group velocities, and through the frequency content of surface waves. Here, we model the Enceladus ice shell with uniform thicknesses of 5 km, 20 km, and 40 km, as well as with ice topography ranging from 5-40 km. We investigate several approaches for recovering the mean ice shell thickness. We show that surface wave dispersions could be used to determine the mean ice shell thickness. Flexural waves in the ice only occur if the shell is thinner than a critical value < 20 km. Rayleigh waves dominate only in thicker ice shells. The frequency content of Crary waves depends on the ice shell thickness.