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Abstract12

The predictive skill of a neural network model for the prediction of the highly nonlinear Lorenz13

‘96 dynamics is examined and a way to improve the skill is investigated. We train neural networks14

with pairs of a large-scale variable and its tendency generated by numerical integrations of full-level15

Lorenz ’96 equations. The Neural Network (NN) models are then used to estimate the tendency16

given state of the variable which is then updated without resolving or parameterizing smaller-scale17

processes. We also apply ensemble data assimilation to the predicted background states and examine18

to which degree NN models capture the dynamics in a long-term prediction-analysis cycle. It has19

been found that NN models are skillful in estimating the tendencies for dynamics with quasi-periodic20

characteristics. Moreover, they have strong potentials in predicting even more chaotic waves when21

an external forcing has been increased. We have examined if the performance of NN models can be22

enhanced by using ensemble frameworks in the context of machine learning or training an NN with23

a dataset generated by ensemble simulations of full-level Lorenz ’96 equations. In these approaches,24

prediction-analysis cycles run stably for long periods and NN models are skillful in representing25

the large-scale dynamics. However, NN models can face difficulties in capturing extreme events26

occurring rarely and whose predictability is very low. An interesting aspect of the results is that27

efforts need to be focused in finding an effective way to increase the diversity of a whole ensemble28

and improve the skill in such situations.29

Plain Language Summary30

We have examined the performance of a neural network model for the prediction of a con-31

ceptual dynamic system of complex weather and climate called ”Lorenz ’96 model”. It has been32

found that neural network models are competent in representing slowly varying dynamics which33

has quasi-periodic characteristics. This can be done without solving the full-level equation set but34

by training the neural network with information about the states of the first-level variables and35

their tendencies. However, it is especially challenging for neural network models to predict rarely36

occurring extreme waves which are highly unpredictable. Their predictive skill can be improved by37

using some approaches tested in an attempt to use a combination of neural network models or an38

effective training strategy. Upon results from this study, we suggest that efforts need to be focused39

in finding methods to increase the diversity of a whole combination of neural network models.40
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1 Introduction41

Machine learning approaches have drawn intensive attentions from diverse research communi-42

ties including Numerical Weather Prediction (NWP). For example, the early applications of Neural43

Network (hereafter, NN) model to prediction and data analysis in the research area of meteorology44

and oceanography are reviewed and discussed about some of associated difficulties in Hsieh and45

B. (1998). They also proposed a link between the NN model to variational data assimilation and46

outlooked a hybrid of NN and dynamical models. For aerodynamic problems, White et al. (2019)47

introduced a new neural network architecture called “a cluster network” model that performs better48

than previous model-free methods, in attempts to save time for the prediction of computation inten-49

sive problems while maintaining sufficient accuracy. Recently, Scher (2018) measured the predictive50

skill of a Convolutional Neural Network (CNN) model trained on a simple general circulation model51

and showed that it could predict model states several time steps ahead. They further suggested52

that the NN model could produce similar climate statistics to that generated by the global circu-53

lation model. Weyn et al. (2019) developed weather prediction models using deep CNN trained on54

past weather data and used them to predict 500-hPa geopotential height. Their best performing55

CNN has captured the climatology, annual variability of 500-hPa heights, and predicted realistic56

atmospheric states at lead times of 14 days although this model did not outperform an operational57

weather model. Meanwhile, Brajard et al. (2020) built a data-driven surrogate CNN model to em-58

ulate the 40-variable Lorenz model (Lorenz & Emanuel, 1998) from partial and noisy observations.59

Their method is based on an iterative algorithm in such way that at each iteration, an Ensemble60

Kalman Filter (EnKF) step alternates with a machine learning step that learns the underlying dy-61

namics of the analysis from the data assimilation. In their sensitivity experiments, forecast skills62

decrease smoothly with increased observational noise as long as the fraction of observations exceeds63

a half of the model domain. They argued that the success of this newly suggested approach might64

at least partially rely on the autonomous characteristics of the Lorenz ’96 system but expect that65

this method can be extended to a system of slow variations.66

Recently, Scher and Messori (2021) have tested some ensemble generation methods in the67

context of machine learning such as a “network retraining ensemble” which is generated by starting68

with different initial seeds for the random number generators in the initialization of the network69

weights. An ensemble framework can be also generated by retraining the network by using different70

sets of features or input variables (Borovkova & Tsiamas, 2019). Scher and Messori (2021) have71

found that their ensemble approaches enable the system perform better than an ”unperturbed72

neural network forecasting system”. Among the four ensemble approaches used in their study, the73

retraining ensemble performed best. The machine learning ensemble models have drawn attentions74

in diverse research areas (e.g., Eslami E. & Lops, 2019, and others) and demand for them would75

grow. Studies on the use of neural networks further include postprocessing of ensemble weather76

forecasts (e.g., Rasp & Lerch, 2018, and others), and it is suggested that neural network models77

can be more efficient and perform better than benchmark postprocessing techniques.78
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Dueben and Bauer (2018) examined whether models based on machine learning can compete79

with conventional physical models in the simulation of large-scale flows of the three-level Lorenz ’9680

system (Thornes et al., 2017) and global weather forecasts. Upon some success with NN models81

for short-term forecasts, they discussed that NN models would face challenging issues such as82

complex interactions between coupled components of the earth system. This perspective has drawn83

our attention to the predictive skill of NN models for a highly-nonlinear dynamic system and84

finding a way to improve their performance. In connection with the studies by Dueben and Bauer85

(2018), we investigate closely the accuracy of predicted large scale variables of multi-scale Lorenz86

’96 systems without parameterizing or resolving smaller scale processes explicitly. Also, ensemble87

data assimilation is applied for the variable to examine to which extent the NN models can identify88

the evolution of complex dynamics in a long-term prediction-analysis cycle. In this study, it has89

been found that the accuracy of NN model predictions is influenced by the dynamical characteristics90

of the Lorenz ’96 system, and it is challenging for the NN model to capture highly unpredictable91

transitions correctly. For the purpose of finding a way to improve the predictive skill of NN models92

in such situations, we use data sets generated by ensemble simulations of full equation sets for the93

training of NN models and additionally test an ”ensemble” (Scher & Messori, 2021) frameworks.94

A neural network ensemble is generated most commonly following a two-stage design process95

(Sharkey, 1996): 1) first generating individual networks; 2) and then combining the output of96

several networks that solve the same task. For an extension of it, Loyola R. (2006) suggest a three-97

stage design process for neural network ensembles: 1) first generating multiple training data sets98

different from the original data set; 2) training networks individually using the data sets, one for99

each network; 3) and then selecting a subset of the more suitable networks for a combination. In100

our initial pursuit, we adopt simple approaches each from these two types of NN ensembles for101

testing highly-nonlinear cases. Also, we suggest a way of NN training by providing information102

about diverse state transitions obtained from ensemble simulations of full-level equation sets. It103

has been found that NN models have potentials in predicting states of large-scale variables without104

having to parameterize or resolving smaller-scale processes explicitly so that they can be applicable105

for an individual multi-scale or a coupled system. However, it has been also observed that NN106

models have difficulties in estimating correct tendency for dynamical states which undergoes rapid107

changes.108

We provide detailed explanations of the two- and three-level Lorenz ’96 systems and parameters109

chosen for the tests in the following section. Tests of two different external forces in the Lorenz110

system are introduced and dynamic features are also illustrated. Then, the NN model generated for111

this study is briefly presented and the information of training/validation data sets are given. Also,112

we summarize some concise details of data assimilation process based on Ensemble Kalman Filter113

(EnKF). In section 3, we compare the accuracy of predictions by NN models and numerical solvers114

for the large-scale flow dynamics, and evaluate the performance of NN models when ensemble data115

assimilation is applied cyclically. Also, results from the test of machine learning ensemble are given116
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in details. We discuss the skill of NN models in representing large-scale dynamics for multi-scale117

systems and summarize the performance of the NN models dependent on the dynamical properties118

of a target system in the final section.119

2 Experimental set-up120

2.1 The Lorenz ’96 system121

We examine the performance of a neural network model for the two-level Lorenz ’96 system

(Lorenz, 1996) first and then test the three-level Lorenz ’96 equation suggested in Thornes et

al. (2017). The three-level equation is an extended version of the two-level one by adding one

more level to further subdivide multi-scale interactions. Accordingly, the NN model updates only

states of large-scale variables without solving one or two smaller-scale processes of each Lorenz ’96

system, respectively. We describe these two multi-level systems by adopting the same notations

used in Lorenz (1996) and Thornes et al. (2017). The two-level model consists of the two governing

equations coupled to represent a larger scale variable “x” and a smaller scale variable “y”:

dxk

dt
= xk−1(xk+1 − xk−2) − xk + F − hc

b

J∑
j=1

yj,k ,

dyj,k
dt

= −cb yj+1,k (yj+2,k − yj−1,k) − c yj,k +
hc

b
xk .

(1)

The indices j and k range from 1 up to J and K that represent the dimension of x and y,122

respectively. Likewise, the three-level model is composed of three governing equations with the123

variables, a large-scale “x”, medium-scale “y” and small-scale “z”, and the index i is used to for124

the variable z and it ranges from 1 up to I:125

dxk

dt
= xk−1(xk+1 − xk−2) − xk + F − hc

b

J∑
j=1

yj,k ,

dyj,k
dt

= −cb yj+1,k (yj+2,k − yj−1,k) − c yj,k +
hc

b
xk − he

d

I∑
i=1

zi,j,k ,

dzi,j,k
dt

= −ed zi−1,j,k (zi+1,j,k − zi−2,j,k) − gze zi,j,k +
he

d
yj,k .

(2)

Table 1 shows the list of the parameters chosen following Thornes et al. (2017) and Dueben and126

Bauer (2018). Among the parameters in table 1, F is the large-scale forcing term that can modulate127

the behaviors of the Lorenz system. It is set to be first 8.0 and then raised to 20.0 to examine the128

predictive skill of NN models for a system having different dynamical characteristics (Lorenz, 1996).129

For simplicity, the other parameters are left unchanged that are tunable to control the frequency,130

amplitude of oscillations, and the strength of coupling between variables that represent different131

scales. The degrees of the freedom given to the two-level model are I = 10, J = 10, and to the three132

level are I = 8, J = 8, K = 8 as chosen in Thornes et al. (2017) and Dueben and Bauer (2018).133
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Table 1: List of parameters for the Lorenz ’96 equation set

Notation Definition Value

H Strength of the coupling between spatial scales 1.0

B Relative magnitudes of the coupled variables x and y 10.0

C Relative evolution speed of the coupled variable x and y 10.0

F Large-scale forcing applied to the system 8.0 or 20.0

D Relative magnitudes of the coupled variables y and z 10.0

E Relative evolution speed of the coupled variables y and z 10.0

gz Damping parameter 1.0

The multi-level Lorenz ’96 equations are integrated by the fourth-order Runge-Kutta method134

(e.g., Ott et al., 2004, and others), and the numerical solutions of x are assumed to represent135

the true states of the large-scale flow. In this way, the data for training and validation of neural136

network models are obtained by integrating these discretized multi-level equation sets. The temporal137

discretization is ∆t = 0.005 Model Time Units (MTUs) for the integration as in Dueben and Bauer138

(2018). The lag autocorrelation and dynamical characteristics of the simulated system is shown in139

Fig. 1a for the case F = 8. The correlation draws closely to zeros near 0.37 MTU, which corresponds140

to about 2 days (Lorenz, 1996). Figure 1b shows the phase space of x1 and x2 trajectories among the141

ten x variables, illustrating a quasi-periodic characteristics of the system. Dynamical systems with142

diurnal or seasonal cycles have a strong quasi-periodicity (Sterk & van Kekem, 2017). Trajectory143

alternates one or the other periodic courses. Meanwhile, the lag autocorrelation given F = 20 is144

about 0.27 MTU ( 1.3 days) (Fig. 1c). With the increased forcing, the system shows highly chaotic145

characteristics as illustrated by the the phase space trajectories of x1 and x2. During the time146

integration of the equation, xn
k and ∆xn

k = xn+1
k - xn

k are saved at every 1 MTU for the training147

of NN models so that 2,010,000 sets of this pair are prepared. Namely, the input data for the148

training are pairs of the largest scale variable and its tendency sampled in such way that temporal149

correlation of each pair is sufficiently low (Dueben & Bauer, 2018). Eventually, the predictive skill150

of a numerical solver and NN models are evaluated by measuring the deviation from the true state151

of x when they solve the evolution of only large-scale variable x. It means that the numerical solver152

integrates only the first-level equation for x while the y-dependent term in the equation is omitted.153

Meanwhile, NN models estimate the tendency of the large-scale variable only to update its state at154

every time step.155
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Figure 1: Autocorrelation in time and the phase space of x1 and x2 trajectories of the two-level
Lorenz’ 96 system given F = 8; (a) and (b), and F = 20; (c) and (d).

2.2 The NN model156

“Artificial Neural Networks” consist of many connected neurons that can produce a sequence157

of activations. Neurons get activated through weighted connections from other neurons activated158

earlier. In this way, “learning” is about finding the “weights” in order to make NNs eventually159

exhibit “desired behavior” (Schmidhuber, 2014). We use the Keras Python library Chollet (2015)160

to construct a sequential neural network which is a linear stack of layers with neurons placed on161

input, hidden, and output layers. The input layer is the first layer that feeds on information from162

input data, while results from neural networks are sent off from the output layer. There are hidden163

layers in between. The information about the input is given to the first layer with specifications of the164

dimension of the input data. The connections of neurons in the network designate assigned weights.165

A positive weight reflects an excitatory connection, while negative values inhibitory connections.166

Then a bias term is added to the total weighted sum of inputs to shift the activation function167

that controls the output. We use the same design options for the generation of NN models as168

done in Dueben and Bauer (2018). For the activation function, we use the hyperbolic tangents169

while a stochastic gradient descent is used for optimization processes. During the training phase170
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of the neural network, the weights and biases within the network are optimized by reducing a171

given loss function. We use the mean absolute error as for the loss function. The optimization172

algorithm repeats propagations and weight updates. When an input vector is fed on the network,173

it is propagated forward through the network, layer by layer, until it reaches the output layer. The174

output of the network is then compared to the desired output and the loss function is computed.175

The resulting error value is calculated for each of the neurons in the output layer. The error values176

are then propagated from the output back through the network in such a way to minimize the177

loss function. The software package developed by Hatfield (2019) has provided a basis for the178

computational tool for the investigation of the multi-scale Lorenz 96 systems in this study.179

Figure 2 illustrates the processes of feeding data into the neural network and following se-180

quences. Each neuron (node) in a layer is sequentially connected to a neuron in other layer forming181

a multilayer neural network. As briefly stated in the previous section, 2,010,000 sets of xn
k and ∆xn

k182

= xn+1
k - xn

k are prepared for the training of NN models. Then, the constructed NN model is used183

to make predictions of the tendency of the large-scale variables x to update the state of x of the184

next time step. In this study, we try only the so called “global” approach suggested in Dueben185

and Bauer (2018), in which all xk variables (k =1, · · · , K) are used to predict a tendency of a186

single variable xk, instead of using variables surrounding that grid point. Dueben and Bauer (2018)187

used the third-order Adams–Bashforth explicit time-stepping scheme by iteratively using NN model188

tendency outputs to reduce the error associated with temporal discretization. However, we directly189

use the tendency (∆xm
k ) output from NN models to update the states of xk at the next time step190

(xm+1
k = xm

k + ∆xm
k ) to uniformly use the same order of time stepping as in the tests for which191

data assimilation is applied. Some more details of the data assimilation procedure are given in the192

next subsection. It might need to be reminded again that the other smaller scale variables (y or z)193

of the Lorenz system are neither used for training nor resolved in the NN.194

Figure 2: Schematic diagram for the training of neural network models

Since the solution of the Lorenz 96 equation has relatively short-term autocorrelation given the195

parameters in this study (Fig. 1a and 1c) and the input data are 1 MTUs apart, we did not select a196
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random splitting of training and verification data sets (Scher & Messori, 2019). As frequently done197

in machine learning practices, 80 % of the numerically generated data is used for training and 20 %198

for verification (Fig. 2). All input states of the large-scale variable xk have been normalized in such199

way that the value ranges between -1.0 and 1.0. The updated value using the output tendencies is200

then inverted again to produce new physical state xk. We have examined the performance sensitivity201

of NN models to the number of epochs, nodes, hidden layers, by simply changing their numbers.202

It is observed that the performance is little affected or even gets slightly worse if the number of203

hidden layers, nodes, and epochs exceeds 32, 100, 100, respectively for the dynamical system given204

parameters. In this study, we present results from tests all with the NN model combination of 32,205

100, 100 except one test with the combination 4, 100, 100 for the experiment with F = 8.0 and F206

= 20 for the two-level Lorenz ’96 equation.207

2.3 Data assimilation208

We are especially interested in the use of ensemble predictions from a NN prediction system209

as background states for data assimilation. The term ‘background’ means that the predicted states210

of each model prior to a data assimilation process. To examine this question, we use the Ensemble211

Kalman Filter (EnKF) method with perturbed observations with a simplified setting. The obser-212

vation is generated by adding perturbations to true states with the standard deviation of 1.0 which213

is often used in data assimilation studies (e.g., Ott et al., 2004, and others). At first, EnKF is214

applied at every time-step for the variable xk at every grid point. This is intended to examine the215

ability of models in updating right tendencies for the dynamic system when the state is corrected216

by EnKF every time step. After this test, data assimilation is applied for every 10 time step, which217

is approximately corresponding to 6 hour interval. A multiplicative inflation with a constant factor218

1.1 is multiplied to the background ensemble states. The size of ensemble is chosen to be 10, the219

same number as given degrees of freedom (the number of grid is 10) for the two-level system. We220

use the simply same number of ensemble member for the three-level tests as well, where the number221

of grid for the large-scale variable is 8. The initial ensemble states are sampled from the outputs222

from a long-term spin-up simulation of multi-level equations so that each member is the state at a223

randomly chosen time step. The accuracy of analysis is evaluated by comparing with the assumed224

true states which are obtained by numerically integrating the full-level equations for 2000 time steps225

starting from the final state of the spin-up simulation mentioned above. We use the Root Mean226

Square Difference (RMSD) from the true state to measure the accuracy of ensemble mean of model227

predictions or analysis.228

3 Results and Discussions229

3.1 The performance of NN models230

At first, we compare the results from the tests using the numerical solver and the NN models231

with 4 hidden layers having 100 neurons on each for the two-level Lorenz ’96 system with the232
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forcing F = 8. Data assimilation is processed at every time step, which means that corrections on233

the forecasts are made at every time step prior to the production of a new prediction. We expect234

that accuracy of analysis becomes equivalent to each other eventually in both numerical and NN235

model tests. Figure 3 shows the time series of ensemble spread and RMSD for all xk. Also, RMSD236

and ensemble spread averaged over the time period between 2 and 10 MTUs is denoted by ‘RMSD’237

and ‘SPRD’ respectively on the upper left part of each panel. We have excluded the values before238

2 MTU as a spin-up period of data assimilation. The RMSD and SPRD in the test with the NN239

model with 4 hidden layers (Fig. 3b) are equivalent to those values in the test with the numerical240

solver (Fig. 3a). This means that NN model with this configuration is as skillful as the numerical241

model for the dynamical system showing a quasi-periodic behaviors.242

(a)

0 2 4 6 8 10
Time in MTUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2

RM
SD

 / 
Sp

re
ad RMSD=0.279516

SPRD=0.386687
RMSD
Spread

(b)

0 2 4 6 8 10
Time in MTUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2

RM
SD

 / 
Sp

re
ad RMSD=0.283611

SPRD=0.392151
RMSD
Spread

Figure 3: Time series of RMSD and ensemble spread in tests with (a) a numerical model and (b) an
NN model with 4 hidden layers, for the two-level equation system with F=8.

Interestingly, the situation changes significantly when EnKF is applied to at every 10th step,243

i.e., every about 6 hour as often done in numerical weather prediction systems. Since observation244

is available at every grid point, the data assimilation works no better than a simple insertion of245

observation if a time-averaged RMSD is larger than the observation error. Figure 4a shows that246

the time-series of RMSD is below observation error 1.0 but much higher than the ensemble spread247

in the test with the numerical model. Meanwhile, the analysis RMSD is smaller than the value in248

the test with the numerical solver as well as the given observation error in the test using the NN249

model with 4 hidden layers (Fig. 4b). This result indicates that the the NN model is competent in250

predicting tendencies of large-scale flow even without resolving smaller scale evolutions explicitly.251

It may suggest that the NN model has potential to be an alternative tool in the prediction of large-252

scale geophysical flows with quasi-periodic behaviors with a lower computational complexity in that253

sub-grid processes are not required to be treated in predictions.254
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Figure 4: The same as figure 3, but EnKF is applied at every 10th time step.

Now, we compare the results from the tests for the system with the forcing F = 20. Differently255

from the situation in F = 8, the performance of the NN model with 4 hidden layers is slightly worse256

than that of the numerical counterpart according to the overall value of RMSD (Fig. 5a and 5b).257

In an attempt to improve the skill of the NN model, we first increase the number of hidden layers.258

Here, we present the result from the test with the NN model having 32 hidden layers. The increase259

of layers has led to an improvement in the performance and the peaks of large errors have subsided260

(Fig. 5c). Further increases in the number of layers or neurons (beyond 32 and 100, respectively261

and in combination) are little effective in a significant decrease of errors any more. From a number262

of tests with different combinations, we have learned that the improvement through such a simple263

change in the neural network might be limited and may not bring out fundamental changes in the264

predictive skill of NN models, at least for highly nonlinear problems. Therefore, we rather pay more265

attention to an alternative training strategy and network ensemble combinations than tuning of266

optimal NN configurations.267

First, we have examined the increase of training data for NN model. One way was simply268

increase the integration time for true states, and we found that there is no significant gain in the269

skill of NN models. Next, we have prepared a training data set including outputs from ensemble270

integrations starting from perturbed initial states so that the size of training data became the271

number of ensemble member multiplied by the 2,010,000 pairs of xn
k and ∆xn

k . It is found that272

the larger the ensemble size, the better the performance of NN models is. We present results from273

the test with the NN model trained by a data set including 30 members of ensemble integrations.274

Besides this approach, we have tested two additional ensemble approaches in the machine learning275

context. One is the training of neural networks with a single data set, but by starting different276
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Figure 5: Time series of RMSD and SPRD in tests with (a) a numerical model, (b) an NN model with
4 hidden layers, (c) and with 32 hidden layers for the two-level system with F=20.

initial seeds for the random number generators to produce multiple NN models. The ”Glorot277

normal” initialization procedure contained in the Keras package is used for the weight initialization278

in this study. This ensemble method is also tested for weather forecasts and showed good predictive279

skill in (e.g., Scher & Messori, 2021). As introduced in section 1, this is a kind of two-stage design280

process (Sharkey, 1996). Another ensemble approach examined here is the use of multiple training281

data sets to generate multiple NN models. We have prepared individual 10 training data sets from282

the ensemble integrations starting from perturbed initial conditions. This can be a kind of three-283

stage design process suggested by Loyola R. (2006) but here we do not go on selecting a subset284

of the generated networks for a combination. Thus, the number of NN models ready for use is285

10, which form another multi model ensemble. To identify the characteristics of the error growths286

in the ensemble predictions, we did not apply data assimilation at first. A brief description and287

the list of tests are summarized in Table 2. For comparisons, we have examined L1 norm errors288

and Continuous Ranked Probability Score (CRPS) of ensemble predictions in each test described289

in Table 2. The size of ensemble is set to be 10, as in the previous data assimilation test. Here,290

we show results only up to 1.0 MTU corresponding to about 5 days, since major differences in the291

predictive skills between models can be indiscernible later (Fig. 6). According to the L1 norm292
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Table 2: List of tests and brief descriptions

Test Model Description

Numeric Numerical solver for the equation of large-scale variable x

Single A single neural network with the configuration of 32 hidden layers

Ens.Train A single network trained with a data set made of ensemble simulations

Multiple NN-I Networks trained individually by using different data sets from each other

Multiple NN-II Networks generated individually by varying the initialization of weights
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Figure 6: Time series of (a) the L1 norm of ensemble predictions in tests ‘Numeric’, ‘Single’,
‘Ens.Train’, ‘Multiple NN-I’, and ‘Multiple NN-II’ and (b) CRPS in each test.

errors, predictions in Multiple NN-I and Multiple NN-II are better than others during the early293

stage less than 0.4 MTU (Fig. 6a). Around that time, the prediction error keeps on increasing294

rapidly in Multiple NN-I while the error remain lowest among predictions until 0.6 MTU. From295

then on the performances of the two models become similar to each other again. Meanwhile, the296

prediction error in Ens.Train is slightly larger than those in Multiple NN-I and Multiple NN-II in297

the early stage, but Ens.Train outperforms after 0.6 MTU and the errors remain smallest most of298

time. In contrast to this, prediction error in the test Numeric grows fastest but the growth rate299

diminishes in time so that the level of errors approaches to that of the errors in other tests after300

about 0.9 MTU. Likewise, the error growth in the test Single shows a similar pattern to this. In301

a summary, the early growth rates of errors in tests Numeric and Single are distinguishably larger302

than in other tests but performances of all tests alternate for lead in the later stage after about 0.9303

MTU.304
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The predictive skills of models measured by CRPS (Fig. 6b) are consistent with the accuracy305

of prediction measured by L1 error norms in Fig. 6a. A difference is that CRPS is best in the test306

Ens.Train soon after 0.4 MTUs, while the L1 error norm is lowest after 0.6 MTUs among the tests.307

Overall, it is apparent that those multi NN model ensembles (Multiple NN-I and Multiple NN-II308

here) response less sensitive to initial perturbations than other NN models as well as numerical309

models in the early stage. Therefore, the early growth of errors are slower than in other tests until310

the ensemble mean deviate eventually from the truth rapidly afterwards. The predictive skill seems311

to be best when the training approach in Ens.Train is used during the period presented here. In312

consideration of these results, we examine how this property affects the accuracy of analysis when313

data assimilation is applied to the predictions.314

Figure 7 shows the time series of analysis errors from the tests Ens.Train, Multiple NN-I,315

and Multiple NN-II. The overall accuracy of the analysis from the test Ens.Train is better than316

that in the test Numeric (for a comparison, see Fig. 5a). The other two NN approaches performs317

equivalently to the result in Numeric (Fig 7b and c). The time-averaged RMSD values in these318

three tests are also better than the ‘Single’ NN model test (Fig. 5c).
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Figure 7: Time series of RMSD and ensemble spread in tests (a) Ens.Train, (b) Multiple NN-I, and (c)
Multiple NN-II for the two-level system with F=20.

319
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As done in the test given F = 8, we examine the performance of models in a more realistic320

prediction-analysis cycle, i.e. when EnKF is applied to at every 10th step. Figure 8 shows the time321

series of RMSD and spread as well as their time-averaged values. In the test with the numerical322

model, data assimilation plays a role no more than just insertion of observation in the test Numeric323

(Fig. 8a). The RMSD value is much larger than the given observation error 1.0 most of the time324

period in this test. It means that the numerical model resolving only the large-scale flow of a multi-325

scale system cannot capture the evolution of the dynamics any more when the state is corrected326

through data assimilation only once in 10 time steps. On the other hand, the RMSD value is327

below 1.0 in a majority of the time period and the analysis errors do not keep growing in the test328

Single, which shows that the NN model is able to represent the dynamics to some degrees (Fig. 8b).329

Moreover, errors in the test Ens.Train, Multiple NN-I, and Multiple NN-II are better controlled330

than in the test Single (Fig. 8c-e). Interestingly, the capability of these NN models for identifying331

the dynamics is manifested strikingly when EnKF is applied once in 10 time steps. Especially, the332

accuracy of analysis is best in the test Ens.Train and the error is well controlled below 1.0 for the333

whole period. The gap between RMSD and SPRD is small compared to the tests Numeric and334

Single. In the next place, we examine further if the potential of NN models in representing the335

large-scale dynamics without resolving smaller scale processes also for the three-level system.336

3.2 Three-level equations337

NN models are trained by data sets including pairs of x and ∆x from the numerical simulation338

of the three-level equation set as described in section 2.2. The predictive skill of NN models is then339

evaluated for representing large-scale variable x without resolving y and z in the three-level equation340

set (Eq. 2) when EnKF is applied at every time step first. We have experimented the same set of341

tests listed in Table 2 as for the two-level system. Figure 9 shows that the time-averaged RMSD342

value is smallest in the test Numeric (Fig. 9a), while there are peaks of large errors outstanding343

between 5 and 8 MTUs in all the tests with NN models when EnKF is applied at every time step344

(Fig. 9b-e). During those time periods of large errors, sudden drops of predictive skill of NN models345

seem to occur and the uncontrolled errors accumulates. These errors might degenerate the overall346

performance by NN models and lead to a slightly larger time-averaged RMSD than in Numeric.347

However, errors do not keep on growing in time and disappear rather quickly so that models seem348

to find right tendencies again.349

Now, we examine the performance of NN models when EnKF is applied at every 10th step,350

i.e. about 6 hour as done in the two-level tests. Figure 10a shows that the accuracy of analysis351

is marginally better than a direct insertion of observations since the time-averaged RMSD is only352

slightly smaller than observation error 1.0. In comparison with this, the growths of errors are better353

controlled in all the tests with NN models, but several enlarged peaks of large RMSD close to354

3.0 are still outstanding (Fig. 10b-e). The accuracy of analysis is significantly better in the test355

Ens.Train, Multiple NN-I, and Multiple NN-II (Fig. 10c-e) than in the test Single (Fig. 10b).356
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Figure 8: Time series of RMSD and SPRD in tests with (a) Numeric, (b) Single, (c) Ens.Train, (d)
Multiple NN-I, and (e) Multiple NN-II when EnKF is applied every 10th time step for the two-level
system with F=20.
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Figure 9: Time series of RMSD and SPRD in tests (a) Numeric, (b) Single, (c) Ens.Train, (d) Multi-
ple NN-I, and (e) Multiple NN-II when EnKF is applied at every time step for the three-level system
with F=20.
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The RMSD values are controlled around the value 0.5 mostly except the period between 5 and357

6 MTUs, 7 and 8 MTUs, and close to 10 MTUs in the test Multiple NN-I, Multiple NN-II and358

Ens.Train. These results may suggest that NN models have the potential in reproducing large-359

scale flows without resolving smaller-scale processes as well as interactions with them. However, a360

notable point is that NN models deviate significantly when the multi-level dynamic system possibly361

undergoes highly-nonlinear transitions that they are probably rarely trained for. To investigate this362

point, we examine background error covariances and the evolution of the large-scale variables at363

specific positions for those time periods when NN models suffer from finding right tendencies. All364

of the following investigations are about the results from the test when EnKF is applied once in 10365

time steps.366

Figure 11 shows background error covariances computed over time and space in the tests,367

Ens.Train, Multiple NN-I, and Multiple NN-II. The error covariances distinguish the test Multiple368

NN-II (Fig. 11c) from the other two tests Ens.Train and Multiple NN-I. Ensemble members show369

stronger tendency to evolve in the same direction as each other in the test Multiple NN-II than370

Ens.Train and Multiple NN-I. This coincides with that analysis in the test Multiple NN-II are least371

accurate among the three tests (see Fig. 10e). Accordingly, we presume that the background error372

covariances indicate to which degree errors of ensemble members covariate and this can be related373

with the accuracy of analysis (Fig. 10). The collective behavior of ensemble members shows the374

lack of diversity so that it increases chance for the ensemble mean to drift away from the true state.375

To validate this reasoning, we have examined individual variables and present here the evolution376

of x8 for which NN models produce significantly inaccurate predictions for the time period 7 and 8377

MTUs. Also, we show the temporal changes of another variable x5 for a comparison as NN models378

suffer less severely from incorrect estimation of tendencies than x8.379

Figure 12 shows the time series of background states of those variables in Numeric and380

Ens.Train, and they are compared to their corresponding true states between 7 and 8 MTUs. The381

background states of x5 in the two tests approximates the true states during the most of the time382

period. Only after 7.8 MTU, they deviate notably from the true state. Meanwhile, the temporal383

variations of the true x8 are much more rapid and larger in magnitude than those of x5. Prior384

to 7.2 MTUs the background states in Numeric deviate from the true state more than those in385

Ens.Train. However, between 7.2 and 7.5 MTUs the background states of x8 in Ens.Train change386

in considerably retard of the true states so that errors become larger than in Numeric. Thereafter,387

there is a short period of sharp increase in the magnitude of the true x8 after 7.7 MTU and then the388

true state drops rapidly again, while the changes of background states delay again. In a summary,389

the NN model in Ens.Train has potentials for identifying right direction of state changes mostly390

but lack skills in producing tendencies strong enough to represent rapid transitions of nonlinear dy-391

namics closely. These two points lead us to examine if the NN models tend to estimate tendencies392

depending on the probability of the occurrence of states that they have learned about. This may393
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Figure 10: The same is as in fig. 9, except that EnKF is applied at every 10th time step.
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Figure 11: Background error covariances in tests (a) Ens.Train, (b) Multiple NN-I, and (c) Multiple
NN-II for the three-level system with F=20.

not be surprising but the clarifications may provide some insights for the design of a more skillful394

NN model.
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Figure 12: Time series of the the true state, background states in Numeric and Ens.Train for (a) x5

and (b) x8.

395

We have examined the Probability Density Function (PDF) of the normalized background396

states of xk in the test Ens.Train in comparison with the PDFs of the true states during the test397

period between 2 and 10 MTUs. The number of samples for xk each from the true and predicted398

states in the test Ens.Train is 12,800 and they are distributed approximately to a Gaussian function399

(Fig. 13a). Also, the PDF of all xk states in the training data is shown together, which is close400

to a Gaussian distribution curve (Fig. 13a). The PDF of the background states in Ens. Train401

resembles that of true states, which may indicate that NN models are skillful overall in representing402
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the true dynamics. Now, we have examined the PDF of x8 specifically as done for the time series403

of the predictions (Fig. 12b). Figure 13b shows the PDF of the normalized x8 from the training404

data set, true trajectories, and background states in Ens.Train for the time period between 2 and405

10 MTUs. The PDF of the true states is distributed well within the cap of the PDF of the training406

data mostly, but peaks sharply in the values between 0.2 and 0.3 of the normalized x8 (Fig. 13b).407

Although the PDF of the background states approximate that of the true state in general, some408

discrepancy can be unavoidable in that range of the x8 value as the peak extrudes far beyond the409

value of the Gaussian PDF of the training data. This may imply that the NN models presumably410

have more difficulties in identifying the right tendencies for such state changes than those in the411

other ranges of the value.
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Figure 13: Probability Density Function (PDF) for the normalized values of (a) the all xk and (b) x8

between 2 and 10 MTUs in the test Ens.Train (PDFNN) in comparison with those in the training data
set (PDFtrain) and the true states (PDFtruth).

412

4 Conclusions413

In this study, we examine the predictive skill of NN models for the multi-scale Lorenz ’96414

systems and suggest their potentials in capturing large-scale atmospheric dynamics without resolving415

smaller-scale processes explicitly. The predictions by NN models are more accurate than those by416

a numerical solver for the single-level Lorenz ’96 equation until the saturation of prediction errors417

approaches. As long as the data assimilation is applied at every time step, the predicted large-418

scale states approximate true states well for a long time period of prediction-analysis cycle. Even419

when ensemble data assimilation is applied only once in 10 time steps (∼ 6 hour) NN models are420

skillful in representing the evolution of the dynamics, while the accuracy of analysis is nearly no421

better than a direct insertion of observations when the numerical solver is used. Especially, the NN422

model trained by a data set containing dozens of long-term ensemble simulations of the Lorenz ’96423

system outperforms other NN model ensemble approaches. However, it has been also shown that424
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the performance of NN models can drop suddenly in an extreme situation when a fully turbulent425

system evolves rapidly. The system show rapid transitions of states from a maximum and to a426

minimum value of the large-scale variable at a certain spatial positions within a time period of427

about 1 MTUs (∼ 5 days). The cyclic application of data assimilation makes effective adjustment428

to the predictions by NN models, but the correction may not be enough to prevent the model from429

estimating inaccurate tendencies in such circumstances. It is probably due to that NN models have430

less chances to learn the extreme events and may underestimate their occurrences. Besides, we431

have shown that the predictability of the true system can drop sharply when the dynamical system432

undergo such transitions, and this coincides with the outstanding peak of large errors in the NN433

model tests. The NN models seem to response sensitively to an event of low predictability and434

predictions drift away from the true states until the model resume estimating a relevant tendency435

again. Consequently, our interests have been drawn to questions how we can deal with the limitations436

of NN models in representing highly unpredictable evolution of an atmospheric dynamical system.437

In this study, we have focused on figuring out where the weakness of the NN model originates438

and proposing what we can do to alleviate the difficulties. One of feasible approach can be the439

construction of training datasets describing features that a dynamical system can have as fully as440

possible to provide NN models with comprehensive information about the system. Simultaneously,441

we also acknowledge that it is a challenging task to sample a number of datasets which can satisfy442

physical constraints and at the same time represent diverse states observed in nature (Paul & Aires,443

2015). Also, the computational costs and requiring storage would increase rapidly with the increase444

of degrees of freedom of targeting problems. Nevertheless, it would be critical to carefully produce445

datasets such as “reanalysis ensemble (Carton et al., 2019)” that can be used for diverse purposes,446

probably also for the training of NN models. Another notable point is that individual networks are447

trained independent of each other and this may result in ensemble members eventually similar to448

each other so that they don’t contribute much for the diversity of a whole ensemble. Loyola R. (2006)449

have suggested training the ensemble members by using such as different initial conditions, training450

patterns, topology of the neural network, and training algorithms to ensure that all the members451

not make the same errors. Among those suggestions, we plan to examine training algorithms to452

improve the diversity of a whole ensemble such as a negative correlation learning (Liu & Yao, 1999)453

and search for ways to minimize the collective behaviors of NN model ensembles.454

Acknowledgments455

The author thanks Samuel Hatfield for the source codes that are used for the experiments discussed456

in this study. This work was funded by the Korea Meteorological Administration Research and457

Development Program under Grant KMI2018-07010 and KMI2020-01115 . A software package for458

this research is available in this in text data citation reference: 10.5281/zenodo.5528329.459

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

References460

Borovkova, S., & Tsiamas, I. (2019). An ensemble of lstm neural networks for high-frequency461

stock market classification. Journal of Forecasting , 38 , 600-619.462

Brajard, J., Carrassi, A., Bocquet, M., & Bertino, L. (2020). Combining data assimilation and463

machine learning to emulate a dynamical model from sparse and noisy observations: a case464

study with the lorenz 96 model. Geoscientific Model Development Discussions, 44 , 1–21.465

Carton, J. A., Penny, S. G., & Kalnay, E. (2019). Temperature and salinity variability in the466

soda3, ecco4r3, and oras5 ocean reanalyses, 1993–2015. J. Clim., 32 , 2277-2293.467

Chollet, F. e. a. (2015). Keras. Retrieved from https://github.com/fchollet/keras468

Dueben, P. D., & Bauer, P. (2018). Challenges and design choices for global weather and climate469

models based on machine learning. Geoscientific Model Development Discussions, 11 , 3999-470

4009.471

Eslami E., Y. C. A. S., A. K. Slman, & Lops, Y. (2019). A data ensemble approach for real-time472

air quality forecasting using extremely randomized trees and deep neural networks. Neural473

Computing and Applications, 32 , 7563–7579.474

Hatfield, S. (2019). Evaluating neural network-based surrogates for the forecast model in an en-475

semble kalman filter. Retrieved from https://github.com/samhatfield/ml da476

Hsieh, W. W., & B., T. (1998). Applying neural network models to prediction and data analysis477

in meteorology and oceanography. Bull. Amer. Metor. Soc, 79(9), 1855-1870.478

Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12 ,479

1399–1404.480

Lorenz, E. N. (1996). Predictability: A problem partly solved. In Proc. ecmwf seminar on pre-481

dictability (Vol. I, p. 1-18).482

Lorenz, E. N., & Emanuel, K. A. (1998). Optimal sites for supplementary weather observations:483

Simulation with a small model. J. Atmos. Sci., 55 , 399-414.484

Loyola R., D. G. (2006). Applications of neural network methods to the processing of earth obser-485

vation satellite data. Neural Networks, 19 , 168-177.486

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., . . . A., Y. J.487

(2004). A local ensemble kalman filter for atmospheric data. A local ensemble Kalman filter488

for atmospheric data assimilation, 56A, 415–428.489

Paul, M., & Aires, P. (2015). Using shannon’s entropy to sample heterogeneous and high-490

dimensional atmospheric datasets. Quart. Journal of Roy. Metor. Soc., 141 , 469-476.491

Rasp, S., & Lerch, S. (2018). Neural networks for postprocessing ensemble weather forecasts.492

Mon. Wea. Rev., 146 , 3885–3900.493

Scher, S. (2018). Toward data-driven weather and climate forecasting: Approximating a sim-494

ple general circulation model with deep learning. Geophysical Research Letters, 45 , 12616–495

12622.496

Scher, S., & Messori, G. (2019). Generalization properties of feed-forward neural networks trained497

on lorenz systems. Nonlin. Processes Geophys., 26 , 381-399.498

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Scher, S., & Messori, G. (2021). Ensemble methods for neural network-based weather forecasts.499

Journal of Advances in Modeling Earth Systems, 13 , e2020MS002331.500

Schmidhuber, J. (2014). Deep learning in neural networks: An overview. Neural Networks, 61 ,501

85-117.502

Sharkey, A. J. C. (1996). On combining artificial neural nets. Connection Science, 8:3-4 , 299-503

314.504

Sterk, A. E., & van Kekem, D. L. (2017). Predictability of extreme waves in the lorenz-96 model505

near intermittency and quasi-periodicity. Complexity , 2017 (Article ID 9419024), 14.506
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