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Ensemble Calibration and Uncertainty Quantification of Precipitation Forecasts for a 
Risk-based UAS Navigation 

Mounir Chrit1 

1. Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND 4149, USA. 

 

Abstract 

Uncertainty on precipitation forecasts results in major high cancellation rate in Unmanned 
Aircraft Systems operations and reduces the benefits of BVLOS operations in terms of risk-
based contingency planning. Hence, quantifying and reducing the uncertainty on precipitation 
forecasts will reduce mission uncertainties, avoid accidents and make the integration of UAS into 
the National Airspace System more efficient and reliable. To achieve this goal, the Member-By-
Member post-processing technique is used to calibrate a probabilistic forecast composed of 20 
members of precipitation rate over South Florida during summer period. The Continuous Ranked 
Probability Score (CRPS) of the ensemble is minimized to achieve the optimal regression 
between ensemble members without any assumption on the forecasted parameter. The radar data 
from the Multi-Radar/Multi-Sensor (MRMS) is used to correct ensemble spread every 10 min 
and reduce forecasting uncertainty. A multi-physics ensemble was used to generate high-
resolution,  convection resolving/allowing 48-hours forecasts. The calibration was obtained over 
a learning process over the 48-h simulated period over 3 years. The comparison between the raw 
and calibrated ensemble from unseen data is presented in terms of bias correction and ensemble 
reliability.  The calibration was able to correct the bias found in raw probabilistic forecasts 
relative to MRMS data. The comparison with precipitation data from tipping buckets over four 
airports over South Florida revealed that the calibrated ensemble tends to overestimate the 
precipitation rates mainly because of the particles evaporation that is taking place under radar 
beam. 

 

Introduction 

Weather events, such as heavy rain accompanied by strong winds, hail, lightning or 
thunderstorms present a non-negligible threat to the small Unmanned Aircraft Systems (sUAS) 
navigation (Campbell et al. 2017). In addition, a primary concern of UAS operators conducting 
BVLOS missions is lost-link contingency planning. The current operational philosophy 
regarding flying in wet conditions is to be very conservative in go/no-go decision making even if 
there is a small chance of precipitation on either the flight plan or contingency routing. This 
results in a relatively high cancellation rate compared to conventional aviation, and significantly 
decreases the efficiency and potential benefit of BVLOS operations.  

 

In addition, precipitation uncertainty significantly impacts lost-link contingency planning due to 
the need to avoid the safety problems that arise with lost-link coupled with the need to avoid 
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overly conservative assessments of weather impact. More effective contingency planning would 
be possible if there were precipitation uncertainty information that could be used for a risk-based 
contingency planning. Campbell 2017 recommended to 1) explore concepts to provide UAS 
operators with weather impact uncertainty information to aid in contingency planning and 2) 
reduce uncertainty of precipitation forecasts. The intent of these recommendations is to decrease 
mission cancellation rates by increasing user confidence in forecasts of route-based weather 
impacts. 

Within this risk-based planning approach, ensemble forecasting, and more generally probabilistic 
forecasting has been widely covered in the meteorological community (Gneiting & Katzfuss, 
2014) to provide more accurate forecasts and uncertainty information. Moreover, the ensemble 
mean is the quantity usually disseminated while the ensemble spread is a measure of the flow-
dependent forecast uncertainty. However, it is well-known that, for state-of-the-art weather 
forecasts, the uncertainty measure is not very accurate (Schulz and Lerch 2022) as models' 
accuracy strongly degrades as a function of lead time (Nicolis et al. 2009). Moreover, at the 
surface, experiments show that ensemble forecasts are consistently under-dispersive (or 
overconfident) for long lead times (Leutbecher and Palmer, 2008). This feature can be partly 
traced back to systematic errors, relevant to the model at hand, that could be partly corrected by 
calibration or post-processing. That is why post-processing methods that are based on different 
regression techniques were introduced for the improvement of both scalars (Vannitsem, 2009; 
Van Schaeybroeck and Vannitsem, 2011, 2012) but also for vector variables such as wind 
(Pinson, 2012).  

 Two approaches exist today to correct the ensemble members. The first method is ‘statistical’ 
calibration approaches which assume specific ensemble distributions and have predictive 
distributions as output, rather than an ensemble of discrete size. For example, logistic distribution 
has been successfully applied in the context of post-processing of precipitation forecasts (Wilks, 
2009; Schmeits and Kok, 2010; Roulin and Vannitsem, 2012). For temperature, one of the most 
competitive approaches is the Non-homogeneous Gaussian Regression (Gneiting et al., 2005; 
Hagedorn et al., 2008). NGR uses Gaussian predictive distributions with mean and spread that 
depend linearly on the corresponding quantities of the raw forecast.  However, applying 
statistical post-processing methods to reconstruct ensembles by random sampling  do not take 
into account the correlations between the values of nearby stations, lead times and 
meteorological variables as shown in Van Schaeybroeck et al. 2015. The second approach, 
adopted in this work, is member by member (MBM) correction in which each ensemble member 
is corrected individually by a linear mapping, thereby retaining rank correlations. Therefore, 
each member retains to a large extent correlation structures in the case of multiple independent 
calibrations (Van Schaeybroeck and Vannitsem 2015). Moreover, in terms of skill our MBM 
approach can be as high as NGR as shown in Van Schaeybroeck and Vannitsem 2015.  

Different loss functions and fitting procedures exist today to conduct MBM correction: Bayesian 
model averaging (BMA) techniques provide a mixture of parametric distributions, usually a 
Gaussian sum (Raftery et al.  2005) or gamma distributions sum for wind and precipitation 
applications (Sloughter et al. 2010, Sloughter et al. 2007). Non-homogeneous regression fits the 
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parameters of a parameterized distribution using characteristics of the ensemble of forecasts 
Gneiting et al. (2005), Thorarinsdottir and Gneiting (2010), Wilks (2009). For instance, a 
Gaussian distribution is fitted using a linear model between the mean of the distribution and the 
mean of the forecasts. Besides, likelihood maximization with the logarithm loss is not an 
appropriate tool in our setting since it fails to produce satisfactory scores for a discrete 
probability distribution. A discussion on local scores such as the logarithm loss is addressed by 
Bröcker and Smith (2007b). However, these techniques do not offer theoretical guarantees of 
robustness and usually resort to strong assumptions on the distributions. The continuous ranked 
probability score (CRPS) is the squared difference between the cumulative distribution functions 
of the ensemble forecast and the observation was used by Thorey et al. 2018, Gneiting et al. 
2005, Gebetsberger et al. 2017 as a cost function to obtain calibrated probabilistic forecasts as it 
does not need a theoretical assumption regarding parameters distribution.  

 

The goal of this paper is to show how ensemble-spread correction using CRPS minimization 
relative to the Multi-Radar Multi-Sensor (MRMS) precipitation data yield to an improvement of 
the predictions and evaluate the performance of probabilistic forecasts of precipitation by 
comparison to airport precipitation observations. In this study, we start with 20-members 
ensemble of precipitation forecasts and apply a MBM calibration approach developed by 
Schaeybroeck et al. 2015 to improve the probabilistic forecasts of a precipitation event in South 
Florida. 

 

This paper is structured as follows: section 1 describes the calibration method. Section 2 
discusses the simulated use case, the simulation setup and ensemble building, and the datasets 
used in the calibration and evaluation. Section 3 explains the evaluation method. Section 4 
discusses the results and evaluation findings. 

 

1. Ensemble Calibration 
1.1. MBM post-processing method 

Following Schaeybroeck and Vannitsem 2015, the calibrated ensemble of 𝑀  members at time 𝑛  
𝑋!,!  = 𝑋!,!!  !!!!!can be expressed as a function of the raw ensemble 𝑋!  = 𝑋!!  !!!!! as 
shown in Equation 1where 𝑋!

 
 is the ensemble-mean values, regression coefficient  𝛼 is the bias 

parameter while the coefficient 𝛽 is the ensemble-mean scale parameter. The parameter 𝜏! 
defined in Equation 2 adjusts the spread of the new ensemble and the deviation from the 
ensemble mean 𝜖!  is defined in equation 4. The fact that 𝜏!  depends on the ensemble index n 
comes from its dependence on ensemble spread 𝛿!  defined in Equation 3. . ! denotes the 
ensemble average. 

𝑋!,!  =  𝛼  +  𝛽 𝑋! + 𝜏!𝜖!              (1) 

𝜏! =  𝛾!  +  𝛾!𝛿!!!                  (2) 
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𝛿!  =   𝑋!
!!   −  𝑋!

!!
!! !!

                         (3) 

 𝜖!  = 𝑋!    −  𝑋!                                      (4) 

The correlation between the corrected ensemble mean and the observation is equal to the 
correlation between the uncorrected ensemble mean and the observation (Johnson and Bowler, 
2009).  The standard deviation of the corrected ensembles is used as a spread measure of the 
corrected forecasts to quantify the uncertainty of the forecasts.  

1.2. CRPS minimization 

 

The parameters (α, β, γ1, γ2) are estimated through regression learning through 3 years by the 
minimization of the associated Continuous Ranked Probability Score (CRPS) which is the 
squared difference between the Cumulative Distribution Functions (CDFs) of the ensemble 
forecast and the observation.  

The loss function defined as the CRPS corresponding to the observations  𝑋!,! and the corrected-
forecast members 𝑋!,!!  can be written as shown in Equation 5 (Gneiting and Raftery, 2007).  The 
minimization and hence the correction is used every 10 min during the two simulated summer 
days for 3 years: 2019, 2020 and 2021. The forecast ensemble used here covers three years 2019, 
2020 and 2021 and the CDF of the observations was based on the radar MRMS observations 
over the same years. Data from 2022 will be used as an independent test for the calibration. A 
short training period was chosen which 48 hours. In fact, there is a trade-off in selecting the 
length of the training period. Shorter training periods can adapt rapidly to seasonally varying 
model biases, changes in the performance of the ensemble member models, and changes in 
environmental conditions. On the other hand, longer training periods reduce the statistical 
variability in the estimation of the different coefficients and hence the calibrated PR. 

𝐶𝑅𝑃𝑆  𝛼,  𝛽,  𝛾!,  𝛾!   =   𝑋!,!!   −  𝑋!,! !   −  
!!
! !

                (5) 

2. Materials and Methods 
2.1.Use case description 

The simulated event is precipitation event that took place in South Florida that was visible in the 
MRMS data with scales of 200 km and small scales of 1-50 km as shown Figures 1 and 3. These 
events fall under Meso-β and Meso-𝛾  features. 

In South Florida, particularly during the summer, mesoscale weather features (e.g., land–sea 
breezes, thermal troughs, outflow boundaries, etc.) have a significant impact on day-to-day 
weather forecasting, as they frequently represent the primary forcing for convection. During the 
simulated period,  

These mesoscale features necessitate the use of high-resolution forecast tools in order to provide 
the detailed information needed to improve local forecasts and warnings. Moreover, Florida has 
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recently emerged as a leader in autonomous vehicles including UAS through different 
investments in its Department of Transportation. Therefore, South Florida is a suitable area to 
study precipitation forecasting and its impact on UAS contingency planning. 

During the simulation summer period, precipitations were of different types: mainly convective 
because sea breezes are often form on the west and east sides of Florida, and due to differences 
in temperature between the land (which heats quickly) and the ocean (which heats up more 
slowly) which enhance the convective lift and induce intense rainfall and thunderstorms. 
Convective and tropical convective precipitation are often embedded in areas of warm stratiform 
precipitation. Warm stratiform precipitations are also present in South Florida that result from 
frontal systems where the growth of hydrometeor particles occurs. 

		

	 	

Figure 1: MRMS Precipitation type over South Florida on July 16th at 5:40pm (left 
panel) and on July 17th  at 6:44 pm (right panel 
(https://mrms.nssl.noaa.gov/qvs/product_viewer/) . 

2.2.Ensemble Forecasts 
2.2.1. Simulations Setup 

WRF (Sharmarock et al. 2005) was widely used in both academic research and industry (Chrit et 
al. 2022, Chrit et al. 2018, Chrit et al. 2017). A fully compressible and non-hydrostatic dynamic 
framework is adopted in the ARW module. The outermost and innermost simulated domains D1, 
D2 respectively are shown in Figure 2. The horizontal resolutions of D1, D2 are 3km and 1km.  
The two domains are centered on 80.74332 ºW, 26.40334 ºN.  
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The outermost D1 and innermost D2 domains have 560 x 720 and 460 x 400 grid points 
respectively in the south-north and east-west directions.  The WRF model contains 80 vertical 
levels in the vertical and the lowest 30 levels are below 1-km. The adaptive time stepping is used 
to guarantee the numerical stability of the WRF model.  Table [1] of Appendix A shows the 
configuration and the parameterizations used in the simulations over D1 and D2. 

	

Figure 2: Left panel: Map of the simulated outermost and nested domains D1 and D2 delimited 
with green solid and red dashed rectangles, respectively. Right panel: Simulation domain is 
delimited with red dashed rectangle with the four ASOS stations used for evaluation shown with 
red points. The Three major cities in Florida (Miami, Orlando and Tampa) are shown in green 
stars. 

2.2.2. Ensemble design 

The ensemble used in the present study is a multi-physics ensemble with forecasts initialized 
with different initial and boundary conditions. In fact, multi-physics schemes have been very 
successful in generating reliable probabilistic forecasts, especially for mesoscale prediction 
systems. Although the maintenance of these forecasts is resource-intensive when deployed 
operationally, the ensemble will result in members with physical interpretation rather than 
members generated with perturbed initial conditions, which poses difficulties for physical 
interpretation and statistical post-processing. On the other hand, precipitation forecasting is 
sensitive to details of the cumulus convection scheme (Vitart et al. 2001; Biswas et al. 2014), 
microphysics scheme (Liu et al. 2020), boundary layer parameterization (Taraphdar and Pauluis 
2021) and radiations schemes (Li et al. 2014). 

20 different combinations of physics packages for parameterizing the microphysics (MP 
scheme), cumulus (C), Short Waves (SW) and Long Waves (LW) parameterization, planetary 
boundary layer (PBL), and land-surface models, (Table 1) are used to build four ensembles: three 
ensembles for the training and the fourth for testing.  To maximize ensemble diversity, different 
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boundary and initial conditions were used based on 4 models: the North American Model 
(NAM), RApid Refresh (RAP), North American Regional Reanalysis (NARR) and Global 
Forecast System (GFS). A total of 20 WRF simulations were performed to build the ensemble. 
Similar ensemble design were built for three years 2019, 2020 and 2021. 

Two MP parameterizations used are Microphysics schemes used are Thompson (Thom.; 
Thompson et al. 2008), WRF single-moment 6-class (WSM6; Hong and Lim . 2006). The C 
schemes used here are: Kain–Fritsch (Kain and Fritsch, 1993) cumulus parameterization, and 
Betts–Miller–Janjic cumulus parameterization (Betts & Miller, 1993). Two PBL 
parameterizations were used: Mellor–Yamada–Janjic (MYJ; Janjic 1994), Yonsei University 
(YSU; Noh et al. 2003). Two Land-Surface models were used: Rapid Update Cycle (RUC; 
Benjamin et al. 2004) or NOAH (NCEP–Oregon State University–Air Force–NWS Office of 
Hydrology; Ek et al. 2003). The SW parameterizations are Goddard (Tao et al. 2003) and Dudhia 
(Dudhia 1989), the LW radiations schemes are RRTM (Mlawer et al. 1997) and GFDL (Fels and 
Schwarzkopf 1981). 

Membe
r 
number 

ICs and 
LBCs 

MP scheme 
(Thom and 
WSM6) 

PBL 
para
meter
izatio
n 
(MYJ 
and 
YSU) 

Land-
Surface 
model 
(NOAH 
and 
RUC) 

SW 
parameter
ization 
(GFDL 
and 
DUDHIA) 

LW 
parame
terizati
on 
(GFDL 
and 
RRTM) 

C 
paramet
erization 
(KAIN 
FRTISC
H and 
BMJ) 

1 NAM Thom MYJ NOAH DUDHIA RRTM Kain 
2 NAM WSM6 MYJ NOAH DUDHIA RRTM Kain 
3 NAM Thom YSU NOAH DUDHIA RRTM Kain 
4 NAM Thom MYJ RUC DUDHIA RRTM Kain 
5 NAM Thom MYJ NOAH GFDL RRTM Kain 
6 NAM Thom MYJ NOAH DUDHIA GFDL Kain 
7 NAM Thom MYJ NOAH DUDHIA RRTM BMJ 
8 NAM Thom YSU RUC DUDHIA RRTM Kain 
9 NAM Thom YSU RUC GFDL RRTM Kain 
10 NAM WSM6 YSU RUC DUDHIA GFDL BMJ 
11 RAP WSM6 YSU RUC DUDHIA RRTM Kain 
12 NARR Thom MYJ NOAH DUDHIA RRTM Kain 
13 GFS Thom MYJ NOAH DUDHIA RRTM Kain 
14 NARR Thom MYJ NOAH DUDHIA RRTM Kain 
15 RAP Thom MYJ NOAH DUDHIA RRTM Kain 
16 RAP Thom YSU RUC GFDL RRTM Kain 
17 NAM WSM6 YSU RUC DUDHIA GFDL Kain 
18 RAP Thom MYJ RUC DUDHIA RRTM Kain 
19 GFS  Thom MYJ RUC DUDHIA RRTM Kain 
20 GFS WSM6 MYJ NOAH DUDHIA GFDL Kain 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 	 	
	

	 8	 	
	

Table  1:  Physics packages for multi-physics ensemble: Parameterizations and 
schemes used for every ensemble member. 

	

2.2.3. MRMS radar data 

The Multi-Radar/Multi-Sensor (MRMS) system was created at the NOAA National Severe 
Storms Laboratory (NSSL) to produce severe weather and precipitation products for decision-
making capabilities to improve severe weather forecasts and warnings, hydrology, aviation, and 
Numerical Weather Prediction. MRMS currently integrates about 180 operational radars and 
creates a seamless 3D radar mosaic across the contiguous United States (CONUS) and southern 
Canada at very high spatial (1 km) and temporal (2 min) resolution.  

The performance of the MRMS system over single radar-based Quantitative Precipitation 
Estimates (QPE) across CONUS was reasonable (Zhang et al., 2016). Chen et al. (2020) 
evaluated the MRMS and Global Precipitation Measurement Mission (GPM) products at 1-hr 
temporal resolution across Harris County and Spring Basin Texas. Their results showed that 
remote sensing technologies could detect and estimate the unprecedented extreme rainfall 
associated with Hurricane Harvey. Among the remote sensing products they used in their study, 
MRMS had the best agreement with the network rain gauge observations. 

The MRMS surface precipitation rate used in this paper is currently calculated using multiple R–
Z relationships. Polarimetric variables are not used because various polarimetric radar QPE 
schemes are still under evaluation across CONUS and an optimal approach for all seasons and all 
geographic regions has yet to be developed. The following empirical R–Z relationships are used 
in MRMS to compute surface precipitation rate for each precipitation type: convective rain, hail, 
warm and cold stratiform rain, snow and tropical stratiform mixed rain.  More information about 
the MRMS system can be found at NSSL’s MRMS webpage (ASOS user guide), the MRMS 
Fact Sheet (https://www.nssl.noaa.gov/news/factsheets/MRMS_2015.March.16.pdf), and 
Kirstetter et al., 2012. The MRMS data for the two simulated days were re-gridded to the same 
WRF grid over D2 with a 1-km resolution for every year of the learning and testing years. 

2.2.4. ASOS data 

The Automated Surface Observing System (ASOS) network provides most of the basic 
hydrometeorological observations at different airports, including 1-hour accumulated 
precipitation. The data is reported every 5 min in the majority of the stations. One hour 
precipitation for the period from the observation time to the time of the previous hourly 
precipitation reset. The precipitation accumulation algorithm obtains precipitation accumulation 
data from the Heated Tipping Bucket (HTB) precipitation gauge once each minute (ASOS user 
guide).  The trace reports are considered as 0.1 mm. The detection threshold specified for the 
ASOS HTB is 0.01 inch per hour (0.254 mm per hour), and the precipitation rate accuracy is the 
larger of 10 percent or 0.01 inches per hour (0.254 mm per hour). 

For this study, four METAR observation sites located over South Florida were used for the 
evaluation of the different forecasts, and these sites are shown in Figure 1. Table [1] of Appendix 
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B shows the characteristics of the four stations that will be used for comparison and evaluation. 
Additional stations are available, but they are either no precipitation is recorded, or most data is 
missing.  

3. Evaluation method 

The probabilistic evaluation will be based on the rank histogram score and the reliability 
diagram. The rank-histogram score 𝛿  defined in Equation (6) is a tool used to measure the spread 
and hence the reliability of the ensemble. 

𝛿  = !!!
! !

  𝑟!   −  𝑟
!!

!!! 	 	 (6) 

𝑟  = !
! !!

	 	 	 	 (7) 

The rank-histogram score is used to measure the deviation from flatness of a rank histogram 
(Talagrand et al., 1999; Candille and Talagrand, 2005). In Equation (6), N is the number of 
members (i.e., models), M is the number of observations, 𝑟! the number of observations of rank j, 
and 𝑟 is the expectation of 𝑟! defined in Equation (7). In theory, the optimal ensemble has a score 
of 1 when enough members are available. A score lower than 1 would indicate overconfidence in 
the results, with an ensemble matching the observed variability better than statistically expected.  

 

From a frequentist perspective, assuming that we test the occurrence of an event with probability 
p on several occasions, the proportion of trials where the event occurs is approximately equal to 
p. Based on this interpretation, a desirable property of a probabilistic prediction system is 
reliability. For p in [0, 1], we define the relative frequency f(p) as the proportion of the events 
that occurred among the events for which the system assigned a forecast probability p. A 
prediction system is reliable if, �p � [0, 1], f(p) = p. For instance, with a reliable prediction 
system, among the events that obtained a probability of p = 0.2 according to the prediction 
system, exactly f(p) = 20% of them actually occurred (i.e., were observed). Reliability is 
assessed with a reliability diagram, which is simply the plot of f(p) against p. In an ideally 
reliable case, we obtain a curve that is overlaid on the first bisector. 

 

The statistical evaluation of the forecasted PR against the ASOS data was based on a set of 
performance statistical indicators: the simulated mean (𝑠 ), the Root Mean Square Error (RMSE), 
the correlation coefficient (R) and the Mean Bias Error (MBE). These metrics are defined in 
Table 1 in Appendix D. 

4. Results and discussions 
4.1.Performance evaluation  

In this section, we evaluate the two ensembles: the “Raw Ensemble” and the “Calibrated 
Ensemble” against the MRMS observations.   Figure 3 compares the PR measured by MRMS 
data and the simulated data using the Raw and calibrated ensembles on July 16th , 2022 at 10 pm. 
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Figure 3: Left panel: PR from MRMS data on July 16th at 10pm. Middle panel: Simulated PR 
with Raw Ensemble mean at the same time and date as the left panel. Right panel: Simulated PR 
with Calibrated Ensemble mean at the same time and date as the left panel. The white area 
represents areas with zero PR. 

 

Figure 3 shows clear discrepancies between the means of the Raw and Calibrated Ensembles. 
The Raw Ensemble was able to predict the location and timing of the meso-β precipitation 
system but was not able to reproduce the meso-𝛾  precipitation systems over the south-eastern 
part of the simulation domain. However, the raw prediction of the PR is underestimated by a 
factor of 2. In fact, 75 % of the raw ensemble members underestimate the PR mainly because 
75% of the simulated members use the Thompson microphysical scheme as the Thompson 
scheme produces less liquid condensate which results is lower precipitation amount. Similar 
results were found by Guo et al. 2019 by comparing four MP parameterizations over Eastern 
China over a six-year summer period (2009-2014). They concluded that the Thompson scheme 
creates more snow articles than other schemes which produces less graupel and precipitations 
during warm times. The prediction of PR using the calibrated ensemble substantially improved 
the PR forecasts as the predicted mean is closer to the MRMS observations. Furthermore, the 
calibration improved the timing and the location of this simulated precipitation event. 
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Figure 4: Left panel: Absolute difference (mm.h-1) between the CRPS of the raw ensemble and 
the calibrated ensemble on July 16 at 10pm. Right panel: Similar to the left panel on July 17th at 
00 am. 

Figure 4 shows the impact of the calibration of the CRPS of the PR forecasts. The calibration 
was successful in reducing the CRPS of the calibrated ensemble by a 90 % approximately over 
the high PR areas, hence improving accuracy relative to MRMS observations. This improvement 
was guaranteed by the MBM method as it was based on learning the minimization of the CRPS. 
This is indicative that the weighting coefficients were able to accurately learn temporal features 
and correct the raw forecasts. 

Figure 5 shows the bias of the means of the Raw and Calibrated Ensembles relative to the 
MRMS data at two different times. The mean of the raw ensemble has a high bias significant 
over the precipitation areas that can be as high as 20% against the MRMS data. Figure 5 shows 
also the impact of ensemble calibration on bias and CRPS of the probabilistic forecasts. The 
calibration had a significant impact over the forecasted PR as the bias of the calibrated mean 
decreased by 20% relative to the MRMS observed PR. 
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Figure 5: Top left panel: Bias error (mm.h-1) of the Raw Ensemble mean at July 16th  2022 at 
10pm . Top right panel: Absolute difference between Bias errors of the Calibrated and Raw 
ensemble means at 8pm. Bottom left panel: Similar to top left panel at July 17th   00pm . Bottom 
right panel: Similar to top right panel at July 17th  at 00 am. 

 

The reliability diagram of the Raw and Calibrated ensembles are shown in Figure 6. Raw PR 
forecasts tend to over-forecast both high and low probability events. When considering the 
calibrated ensemble, the reliability increased for both low and high frequency events. In addition, 
there is a better reliability for low frequency precipitation events, but the calibrated ensemble is 
still over forecasting the high-frequency precipitation events.  The calibrated ensemble was not 
able to reproduce the high-frequency event because of biases related to the location and spatial 
extent of the precipitation events of different scales. The rank-histogram scores of the raw and 
calibrated ensembles are 15.9 and 4.1   respectively. The rank-histogram score decreased but still 
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more than the optimal score confirming that the calibration improved the spread of the ensemble 
but still do not have optimal spread in our ensemble. 

 

 

Figure 6: Reliability diagram of the Raw and Calibrated ensembles over the simulated time and 
over the precipitation areas of the D2 domain. 

	

4.2.Comparison with ASOS data 

The calibration is evaluated against the measured PR over the four ASOS stations shown in 
Figure 7. Table 2 shows the statistical scores of both raw and calibrated means. Tables 1, 2, 3 
and 4 in Appendix C show the statistical evaluation of PR over the stations PGD, MIA, SRQ and 
VRB respectively.  
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Figure 7: Scatter plot of the simulated PR using the means Raw and Calibrated 
ensembles. The colors are the uncertainty of the forecasts. 

 

𝑜= 4.82 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 19.07 31.60 16.70 1807.09 
Calibrated Ensemble 

Mean 
10.31 11.07 23.15 615.91 

Table 2: Statistics of the means of the Raw and Calibrated ensembles against data over the four 
ASOS. 

 

The scatter plot in Figure 5 shows that both raw and calibrated means overestimate the observed 
PR over the four ASOS stations with a simulated means of 19.07 and 10.31 mm.h-1  for raw and 
calibrated ensemble respectively against 4.82 mm.h-1 .The slopes of the lines of best fit are 3.87 
and 1.57 for the raw and calibrated means respectively. The calibration improved the forecasts as 
the RMSE decreased from 31.60 mm.h-1  to 11.07 mm.h-1  and the MBE decreased from 
1807.09% to 615.91 %. The calibrated ensemble still has high bias and significantly 
overestimates the PR by a factor of 2. This overestimation may be due to the overestimation of 
PR during summertime by the MRMS data compared to ground based ASOS data because of the 
evaporation process occurring under the radar beam. In fact, both raw and calibrated PR 
forecasts overestimate the light precipitation (particularly PR less than 2 mm.h-1 because the 
MRMS data also overestimates the light precipitations. Similar result was found by Gao et al. 
2018 by evaluating the MRMS data against the NEXt generation weather RADar (NEXRAD) 
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data over TEXAS, USA and a dense rain gauge network covering the whole Harris County, 
Texas, USA. Santer and Grams 2020 evaluated the MRMS QPE and PR during 18-months 
period relative to rain gauges from the National Centers for Environmental Prediction 
Meteorological Assimilation Data Ingest System (MADIS) over CONUS and showed that, under 
warm conditions, a non-negligible systematic overestimation exist because of sub-radar beam 
evaporation. They also quantified the uncertainty of a MRMS radar measurement based on 
distance from the radar and partial radar beam blockage. The uncertainty of the forecasted PR 
was reduced because of the calibration as the uncertainty of the calibrated mean decreased from 
14 to 4 mm.h-1. 

 

Conclusion 

In this study, we have applied the MBM calibration technique by minimizing CRPS in order to 
improve the probabilistic forecasting of precipitation as part of a risk-based approach to integrate 
UAS into the NAS. The algorithm does not depend on any assumptions on distributions such as 
gaussianity or uniformity and comes with theoretical guarantee of performance. 

The case study examined the impact of ensemble calibration on precipitation forecasts accuracy 
and uncertainty over South Florida. The MRMS radar data was used to calibrate a 20-members 
ensemble that was underestimating the PR. This paper showed that CRPS minimization brings 
improvement on classical scores for the ensemble mean and probabilistic diagnostic tools. 
Indeed, the forecasting capability measured by classical scores (RMSE, MBE and bias) are 
improved by the algorithm used during the two simulated summer days. Besides, this spread 
correction provides a bias correction, improved the reliability of the ensemble and reduced 
forecasts’ uncertainty although the comparison with ASOS data shows a persistent 
overestimation because of the inherent bias of the MRMS data.  

In addition, the selection of more predictors such as relative humidity, cloud cover and vertical 
wind velocity may further enhance the skill of probabilistic post-processing for near-real-time 
precipitation estimates. Besides, using satellite data along with radar data as used here may also 
improve the evaluation against ground-based validation.  The use of deep learning methods such 
as distributional regression network, Bernstein quantile network and histogram estimation 
network is a promising as demonstrated in Schulz and Lerch 2022. 

Future work should investigate the validation of the impact of the calibration and weights on 
other use cases and the assessment of the performance of the calibrated ensemble over longer 
lead times and different testing periods. The validation against denser rain gauges network is also 
necessary as it will show the accuracy of the calibration over off-airport areas which is important 
for weather-risk assessment and contingency planning during BVLOS operations. 
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Data Availability Statement 

The MRMS data used in this paper are publicly available in 
https://www.nssl.noaa.gov/projects/mrms/ . The WRF outputs are available upon request from 
the corresponding author. The code used to calibrate the ensemble is available in the opensource 
python library available “pythie”  here: https://github.com/Climdyn/pythie. The ASOS data are 
publicly available in 
https://mesonet.agron.iastate.edu/request/download.phtml?network=JP__ASOS. 
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Appendix  

 

Appendix A 

  

Model parameter  Used configuration 

Model and domains 

Model version ARWv4.0 (Skarmarock et al. 2008) 

Time step Adaptative time step (36 s for D1) 

Map projection Lambert 

Pressure top 50 hPa 

Vertical levels 80 (*) 

Time integration scheme Third order Runge-Kutta scheme 

Time integration scheme for 
acoustic and gravity-wave 
modes 

Second order scheme 
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Horizontal/vertical advection Fifth order upwind 

Scalar advection Positive definite 

Upper-level damping (for 
vertical propagating gravity 
waves) 

Rayleigh damping 

Computational horizontal 
diffusion 

6th-order numerical diffusion	
	
 

Forecast period 60 h (from July 15th, 2018 at  12 pm UTC to July 18th, 2021 
at 12 am UTC) 

Table [1]: WRF model configuration and input physics parameterizations. * η levels are 1, 
0.99938147, 0.9918859506, 0.9860143, 0.9835575, 0.97480931, 0.9691238,    0.95061912, 
0.938789424, 0.91847208, 0.89114445, 0.87771024, 0.8344125,     0.807124586, 0.76820505, 
0.71652851, 0.6848121, 0.615978875, 0.5720332,     0.5472062, 0.5233661, 0.5004734, 
0.4784906, 0.4573815, 0.4371113,     0.4176468, 0.3989559, 0.3810079, 0.3637731, 0.3472234, 
0.3313315,     0.316071, 0.3014172, 0.2873457, 0.2738335, 0.2608584, 0.2483989,     
0.2364347, 0.2249459, 0.2139138, 0.2033201, 0.1931475, 0.1833792,     0.173999, 0.1649918, 
0.1563425, 0.1480369, 0.1400615, 0.132403,     0.1250489, 0.1179871, 0.111206, 0.1046944, 
0.09844154, 0.09243726,     0.08667168, 0.08113512, 0.07581868, 0.07071351, 0.06581128, 
0.06110381,     0.0565835, 0.05224282, 0.04807468, 0.04407217, 0.04022875, 0.0365381,     
0.03299413, 0.02959097, 0.02632311, 0.0231851, 0.02017184, 0.01727832,     0.0144998, 
0.01183172, 0.00926967, 0.006809457, 0.004447003, 0.002178475, 0. 

 

 Appendix B 

 

Station ID Latitude(ºN) Longitude(ºW) Height ASL (m) 
VRB 27.6556 80.4179 8.00 
PGD 26.9172 81.9914 8.00 
MIA 25.7880 80.3169 4.00 
SRQ 27.4014 82.5586 9.00 

Table 1: List of the four ASOS stations in South Florida and their corresponding latitude, 
longitude and above sea-level (ASL) height. 

 

Appendix C 

𝑜=5.02 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 29.71 53.92 14.49 2469.24 
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Calibrated Ensemble 
Mean 

10.77 14.24 20.81 575.37 

Table 1: Statistics of the raw and calibrated means over the PGD ASOS station 

 

𝑜= 4.34  mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 14.57 16.91 4.96 1023,87 
Calibrated Ensemble 

Mean 
13.79 15.09 8.39 940.71 

Table 2: Statistics of the raw and calibrated means over the MIA ASOS station 

 

𝑜= 2.54 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 15.57 17.07 8.30 1302.87 
Calibrated Ensemble 

Mean 
8.60 9.77 29.36 605.77 

Table 3: Statistics of the raw and calibrated means over the SRQ ASOS station 

 

=7.39 mm.h-1  𝑠(mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean  16.43 15.61 19.72 904.30 
Calibrated Ensemble 

Mean 
8.06 7.04 30.06 30.06 

Table 4: Statistics of the raw and calibrated means over the VRB ASOS station 

 

Appendix D 

Statistical indicator Definition 

s 
1
𝑛

𝑠!

!

!!!

 

o 
1
𝑛

𝑜!

!

!!!

 

RMSE 
1
𝑛

(𝑐! − 𝑜!)!
!

!!!
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Correlation  𝑠! −  𝑠  𝑜! −  𝑜  !
!!!

 𝑠! −  𝑠  !
!!!

!   𝑜! −  𝑜  !
!!!

!
 

MB 1
𝑛

(𝑐! − 𝑜!)
!

!!!

 

Table 1: Definition of the statistics used in this work. oi  and si are the observed and simulated wind 
speeds at time i. n is the number of data. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


