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Abstract 6	

Uncertainty on precipitation forecasts results in major high cancellation rate in Unmanned 7	
Aircraft Systems operations and reduces the benefits of BVLOS operations in terms of risk-8	
based contingency planning. Hence, quantifying and reducing the uncertainty on precipitation 9	
forecasts will reduce mission uncertainties, avoid accidents and make the integration of UAS into 10	
the National Airspace System more efficient and reliable. To achieve this goal, the Member-By-11	
Member post-processing technique is used to calibrate a probabilistic forecast composed of 20 12	
members of precipitation rate over South Florida during summer period. The Continuous Ranked 13	
Probability Score (CRPS) of the ensemble is minimized to achieve the optimal regression 14	
between ensemble members without any assumption on the forecasted parameter. The radar data 15	
from the Multi-Radar/Multi-Sensor (MRMS) is used to correct ensemble spread every 10 min 16	
and reduce forecasting uncertainty. A multi-physics ensemble was used to generate high-17	
resolution,  convection resolving/allowing 48-hours forecasts. The calibration was obtained over 18	
a learning process over the simulated period over 3 years. The comparison between the raw and 19	
calibrated ensemble from unseen data is presented in terms of bias correction and ensemble 20	
reliability.  The calibration was able to correct the bias found in raw probabilistic forecasts 21	
relative to MRMS data. The comparison with precipitation data from tipping buckets over four 22	
airports over South Florida revealed that the calibrated ensemble tends to overestimate the 23	
precipitation rates mainly because of the particles evaporation that is taking place under radar 24	
beam. 25	

Plain Language Summary  26	

The uncertainty on precipitation forecasts is a very important information for contingency 27	
planning within the framework of Beyond Visual Line Of Sight (BVLOS) Operations of 28	
Unmanned Aircraft Systems (UAS) and UAS Traffic Management (UTM) systems. In this 29	
article, forecasts uncertainty is reduced using ensemble calibration techniques using merged 30	
radar data over South Florida. This technique optimizes regression coefficients by learning from 31	
historical data and minimizing the difference between observations and forecasts and we show 32	
that thanks to the calibration, the ensemble becomes more reliable and the bias of the calibrated 33	
ensemble improved.  The comparison between precipitation forecasts and ground-based data 34	
over airports revealed an improvement the forecasts, as the calibration is very sensitive to the 35	
used radar observations.  36	
 37	

Introduction 38	
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Rain of different amplitudes accompanied by thunderstorms, reduced visibility and wind gusts 39	
are non-negligible threat to small Unmanned Aircraft Systems (sUAS). These precipitations are 40	
also a major cause of UAS flights cancellation as operators because flying during wet conditions 41	
is still conservative, which pose a genuine challenge to the business model of multiple 42	
companies relying on BVLOS operations (Campbell et al. 2017). Moreover, precipitations can 43	
cause lost-link hazard  which also make the BVLOS operations less efficient. In addition, 44	
contingency planning related to lost-link hazards is highly impacted by deterministic assessment 45	
of precipitation because it requires weather uncertainty information, uncertainty on precipitation 46	
forecasts in particular. To solve this problem, Campbell et al. 2017 suggested two main 47	
recommendations: 1) quantify forecasts uncertainty and 2) investigate new solutions to reduce 48	
these uncertainties.  49	

Within this risk-based planning approach, ensemble forecasting is widely used to provide more 50	
accurate forecasts and uncertainty information (Gneiting & Katzfuss, 2014). In fact, the 51	
ensemble mean is generally used as the forecast and the ensemble standard deviation or spread as 52	
the forecast uncertainty. However, systematic errors make forecasts ‘certainty and accuracy 53	
strongly degrade and their reliability decreases as a function of lead times as the ensembles 54	
become very overconfident (under-dispersive)  as shown in Nicolis et al. 2009 and Leutbecher 55	
and Palmer 2008.  56	

Foretunately, these forecasting issues can be solved using ensemble post-processing and 57	
calibration. Multiple studies used different calibration techniques to improve probabilistic 58	
forecasts of vector or scalar variables (Pinson, 2012, (Vannitsem, 2009; Van Schaeybroeck and 59	
Vannitsem, 2011, 2012).  60	

Two approaches exist today to calibrate an ensemble of forecasts. The first method is ‘statistical’ 61	
such as logistic distribution used in Wilks, 2009; Schmeits and Kok, 2010; Roulin and 62	
Vannitsem, 2012 or Non-homogeneous Gaussian Regression used in Gneiting et al., 2005; 63	
Hagedorn et al., 2008. However, these techniques are generally based on random sampling from 64	
assumed predictive distributions and ignore spatial and temporal correlations and cross-65	
correlations as shown in Van Schaeybroeck and Vannitsem 2015. The second approach adopted 66	
in this work is member by member (MBM) independent calibration by which every member is 67	
individually calibrated in order to retain correlation correlations (Van Schaeybroeck and 68	
Vannitsem 2015). 69	

In the MBM approach, Different cost functions and fitting procedures exist: Bayesian Model 70	
Averaging (BMA) used by Raftery et al. 2005; Sloughter et al. 2010. Other studies such as 71	
Bröcker and Smith 2007 used likelihood maximization with the logarithm loss but showed that 72	
this method fails to produce accurate calibrated members. However, the mentioned techniques 73	
are  mainly based on strong assumptions and do not offer strong guarantees on ensemble 74	
improvement. The continuous ranked probability score (CRPS) is the squared difference between 75	
the cumulative distribution functions of the ensemble forecast and the observation was used by 76	
Thorey et al. 2018, Gneiting et al. 2005, Gebetsberger et al. 2017 as a cost function to minimize 77	
and obtain calibrated forecasts as it does not need a theoretical assumption regarding parameters 78	
distribution.  79	
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The goal of this paper is to show how ensemble-spread correction using CRPS minimization 80	
relative to the Multi-Radar Multi-Sensor (MRMS) precipitation data over multiple years yield to 81	
an improvement of the predictions and evaluate the performance of probabilistic forecasts of 82	
precipitation by comparison to precipitation observations over airports. In this study, we start 83	
with 20-members ensemble of precipitation forecasts and apply a MBM calibration approach 84	
developed by Schaeybroeck et al. 2015 to improve the probabilistic forecasts of a precipitation 85	
event in South Florida. 86	

 87	

This paper is structured as follows: section 1 describes the calibration method. Section 2 88	
discusses the simulated use case, the simulation setup and ensemble building, and the datasets 89	
used in the calibration and evaluation. Section 3 explains the evaluation method. Section 4 90	
discusses the results and evaluation findings. 91	

 92	

1. Ensemble Calibration 93	
1.1. MBM post-processing method 94	

Following Schaeybroeck and Vannitsem 2015, the calibrated ensemble of 𝑀  members at time 𝑛  95	
𝑋!,!  = 𝑋!,!!  !!!!!can be expressed as a function of the raw ensemble 𝑋!  = 𝑋!!  !!!!! as 96	

shown in Equation 1where 𝑋!
 
 is the ensemble-mean, 𝛼 is the bias parameter, 𝛽 represents the 97	

ensemble-mean scale parameter. The parameter 𝜏! defined in Equation 2 is the spread tuner or 98	
adjuster of the corrected ensemble while 𝜖!   defined in equation 4 represents the deviation from 99	
the mean of the uncorrected ensemble. . ! denotes the ensemble average. The standard 100	
deviation of the corrected ensembles is used as a spread measure of the corrected forecasts to 101	
quantify the uncertainty of the forecasts.  102	

 103	

𝑋!,!  =  𝛼  +  𝛽 𝑋! + 𝜏!𝜖!              (1) 104	

𝜏! =  𝛾!  +  𝛾!𝛿!!!                  (2) 105	

𝛿!  =   𝑋!
!!   −  𝑋!

!!
!! !!

                         (3) 106	

 𝜖!  = 𝑋!    −  𝑋!                                      (4) 107	

1.2.CRPS minimization 108	

 109	

The parameters (α, β, γ1, γ2) are estimated through regression learning through the same time 110	
over 3 years by the minimization of the associated Continuous Ranked Probability Score (CRPS) 111	
which is the squared difference between the Cumulative Distribution Functions (CDFs) of the 112	
ensemble forecasts and observations.  113	
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The loss function defined as the CRPS corresponding to the observations  𝑋!,! and the corrected-114	
forecast members 𝑋!,!!  can be written as shown in Equation 5 (Gneiting and Raftery, 2007).  The 115	
correction is used every 10 min during the two simulated summer days for 3 years: 2019, 2020 116	
and 2021. The forecast ensemble used here covers three years 2019, 2020 and 2021 and the CDF 117	
of the observations was based on the radar MRMS observations over the same years at the same 118	
two days. Data from 2022 will be used as an independent test for the calibration. A short training 119	
period was chosen in this work (48 hours). In fact, there is a trade-off in selecting the length of 120	
the training period. Shorter training periods can be used to correct flow-dependent model biases 121	
that have rapid variations while longer training periods aim at reducing the statistical variability 122	
of different coefficients and hence the calibrated forecast.  123	

𝐶𝑅𝑃𝑆  𝛼,  𝛽,  𝛾!,  𝛾!   =   𝑋!,!!   −  𝑋!,! !   −  
!!
! !

                (5) 124	

2. Materials and Methods 125	
2.1.Use case description 126	

The simulated event is precipitation event that took place in South Florida that was visible in the 127	
MRMS data with scales of 200 km and small scales of 1-50 km as shown Figures 1 and 3. These 128	
events fall under Meso-β and Meso-𝛾  features. In South Florida, particularly during the summer, 129	
mesoscale weather features (e.g., land–sea breezes, thermal troughs, outflow boundaries, etc.) 130	
have a significant impact on day-to-day weather forecasting, as they frequently represent the 131	
primary forcing for convection. During the simulated period,  132	

These mesoscale features necessitate the use of high-resolution, convection resolving forecast 133	
tools in order to provide the detailed information needed to improve local forecasts and 134	
warnings. Moreover, Florida has recently emerged as a leader in autonomous vehicles including 135	
UAS through different investments in its Department of Transportation. Therefore, South Florida 136	
is a suitable area to study precipitation forecasting and its impact on UAS contingency planning. 137	

During the simulation summer period, precipitations were of different types: mainly convective 138	
because sea breezes are often form on the west and east sides of Florida, and due to differences 139	
in temperature between the land (which heats quickly) and the ocean (which heats up more 140	
slowly) which enhance the convective lift and induce intense rainfall and thunderstorms. 141	
Convective and tropical convective precipitation are often embedded in areas of warm stratiform 142	
precipitation. Warm stratiform precipitations are also present in South Florida that result from 143	
frontal systems where the growth of hydrometeor particles occurs. 144	
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Figure 1: MRMS Precipitation type over South Florida on July 16th at 5:40pm (left 147	
panel) and on July 17th  at 6:44 pm (right panel 148	
(https://mrms.nssl.noaa.gov/qvs/product_viewer/) . 149	

2.2.Ensemble Forecasts 150	
2.2.1. Simulations Setup 151	

WRF (Sharmarock et al. 2005) was widely used in both academic research and industry (Chrit et 152	
al. 2022, Chrit et al. 2018, Chrit et al. 2017). The fully compressible and non-hydrostatic 153	
dynamic framework is used in the ARW module. The simulated domains D1 and D2 shown in 154	
Figure 2 represent the outermost and innermost domains respectively. The horizontal resolutions 155	
of D1, D2 are 3-km and 1-km.  Vertically, 80 vertical levels are used with 30 vertical levels used 156	
below 1-km. The central point of the two domains is 80.74332 ºW, 26.40334 ºN.  157	

The outermost D1 and innermost D2 domains have 560 x 720 and 460 x 400 grid points 158	
respectively in the south-north and east-west directions. In order to guarantee the numerical 159	
stability of the WRF model, the adaptive time stepping is used. The configuration and the 160	
physical parameterizations used in the simulations over D1 and D2 are shown in Table [1] of 161	
Appendix A. 162	
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Figure 2: Left panel: Map of the simulated outermost and nested domains D1 and D2 delimited 164	
with green solid and red dashed rectangles, respectively. Right panel: Simulation domain is 165	
delimited with red dashed rectangle with the four ASOS stations used for evaluation shown with 166	
red points. The Three major cities in Florida (Miami, Orlando and Tampa) are shown in green 167	
stars. 168	

2.2.2. Ensemble design 169	

The ensemble used in the present study is a multi-physics ensemble with forecasts initialized 170	
with different initial and boundary conditions. In fact, multi-physics schemes have been very 171	
successful in generating reliable probabilistic forecasts, particularly for mesoscale prediction 172	
systems. Although obtaining these forecasts is computationally intensive, the ensemble results in 173	
members with physical interpretation comparing to members generated with perturbed initial 174	
conditions that poses difficulties for physical interpretation. On the other hand, precipitation 175	
forecasting is sensitive to the simulation setup namely the cumulus convection scheme (Vitart et 176	
al. 2001; Biswas et al. 2014), microphysics scheme (Liu et al. 2020), boundary layer 177	
parameterization (Taraphdar and Pauluis 2021) and radiations schemes (Li et al. 2014). 178	

In this work, 20 distinct combinations of physics packages for parameterizing the microphysics 179	
(MP scheme), cumulus (C), Short Waves (SW) and Long Waves (LW) parameterization, 180	
planetary boundary layer (PBL), and land-surface models, (Table 1) are used to build four 181	
ensembles: three ensembles simulating the same 48 hours plus 12 hours as spin-up period (from 182	
July 15th, 2018 at  12 pm UTC to July 18th, 2021 at 12 am UTC) but over 2019, 2020, 2021 for 183	
the training and the fourth for testing simulating the same 48 hours during 2022.  To maximize 184	
ensemble diversity, different boundary and initial conditions were used based on four models: 185	
the North American Model (NAM), RApid Refresh (RAP), North American Regional Reanalysis 186	
(NARR) and Global Forecast System (GFS). A total of 20 WRF simulations were performed to 187	
build the ensemble for each year.  188	
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Two MP parameterizations used are Microphysics schemes used are Thompson (Thom.; 189	
Thompson et al. 2008), WRF single-moment 6-class (WSM6; Hong and Lim . 2006). The C 190	
schemes used here are: Kain–Fritsch (Kain and Fritsch, 1993) cumulus parameterization, and 191	
Betts–Miller–Janjic cumulus parameterization (Betts & Miller, 1993). Two PBL 192	
parameterizations were used: Mellor–Yamada–Janjic (MYJ; Janjic 1994), Yonsei University 193	
(YSU; Noh et al. 2003). Two Land-Surface models were used: Rapid Update Cycle (RUC; 194	
Benjamin et al. 2004) or NOAH (NCEP–Oregon State University–Air Force–NWS Office of 195	
Hydrology; Ek et al. 2003). The SW parameterizations are Goddard (Tao et al. 2003) and Dudhia 196	
(Dudhia 1989), the LW radiations schemes are RRTM (Mlawer et al. 1997) and GFDL (Fels and 197	
Schwarzkopf 1981). 198	

Membe
r 
number 

ICs and 
LBCs 

MP scheme 
(Thom and 
WSM6) 

PBL 
para
meter
izatio
n 
(MYJ 
and 
YSU) 

Land-
Surface 
model 
(NOAH 
and 
RUC) 

SW 
parameter
ization 
(GFDL 
and 
DUDHIA) 

LW 
parame
terizati
on 
(GFDL 
and 
RRTM) 

C 
paramet
erization 
(KAIN 
FRTISC
H and 
BMJ) 

1 NAM Thom MYJ NOAH DUDHIA RRTM Kain 
2 NAM WSM6 MYJ NOAH DUDHIA RRTM Kain 
3 NAM Thom YSU NOAH DUDHIA RRTM Kain 
4 NAM Thom MYJ RUC DUDHIA RRTM Kain 
5 NAM Thom MYJ NOAH GFDL RRTM Kain 
6 NAM Thom MYJ NOAH DUDHIA GFDL Kain 
7 NAM Thom MYJ NOAH DUDHIA RRTM BMJ 
8 NAM Thom YSU RUC DUDHIA RRTM Kain 
9 NAM Thom YSU RUC GFDL RRTM Kain 
10 NAM WSM6 YSU RUC DUDHIA GFDL BMJ 
11 RAP WSM6 YSU RUC DUDHIA RRTM Kain 
12 NARR Thom MYJ NOAH DUDHIA RRTM Kain 
13 GFS Thom MYJ NOAH DUDHIA RRTM Kain 
14 NARR Thom MYJ NOAH DUDHIA RRTM Kain 
15 RAP Thom MYJ NOAH DUDHIA RRTM Kain 
16 RAP Thom YSU RUC GFDL RRTM Kain 
17 NAM WSM6 YSU RUC DUDHIA GFDL Kain 
18 RAP Thom MYJ RUC DUDHIA RRTM Kain 
19 GFS  Thom MYJ RUC DUDHIA RRTM Kain 
20 GFS WSM6 MYJ NOAH DUDHIA GFDL Kain 
Table  1:  Physics packages for multi-physics ensemble: Parameterizations and schemes used for 199	
every ensemble member. 200	

	201	

2.2.3. MRMS radar data 202	
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The Multi-Radar/Multi-Sensor (MRMS) system was created by  the NOAA National Severe 203	
Storms Laboratory (NSSL) to produce severe weather and precipitation products for decision-204	
making capabilities to improve severe weather forecasts and warnings, hydrology, aviation, and 205	
Numerical Weather Prediction. It currently integrates about 180 operational radars and creates a 206	
seamless 3D radar mosaic across the CONtiguous United States (CONUS) and southern Canada 207	
at very high spatial (1 km) and temporal (2 min) resolution.  208	

The performance of the MRMS system over single radar-based Quantitative Precipitation 209	
Estimates (QPE) across CONUS was reasonable (Zhang et al., 2016). Chen et al. (2020) 210	
evaluated the MRMS and Global Precipitation Measurement Mission (GPM) products at 1-hr 211	
temporal resolution across Harris County and Spring Basin Texas. Their results showed that 212	
remote sensing technologies could detect and estimate the unprecedented extreme rainfall 213	
associated with Hurricane Harvey. Among the remote sensing products they used in their study, 214	
MRMS had the best agreement with the network rain gauge observations. 215	

The MRMS surface precipitation rate used in this paper is currently calculated using multiple R–216	
Z relationships. Polarimetric variables are not used because various polarimetric radar QPE 217	
schemes are still under evaluation across CONUS and an optimal approach for all seasons and all 218	
geographic regions has yet to be developed. The following empirical R–Z relationships are used 219	
in MRMS to compute surface precipitation rate for each precipitation type: convective rain, hail, 220	
warm and cold stratiform rain, snow and tropical stratiform mixed rain.  More information about 221	
the MRMS system can be found at NSSL’s MRMS webpage (ASOS user guide), the MRMS 222	
Fact Sheet (https://www.nssl.noaa.gov/news/factsheets/MRMS_2015.March.16.pdf), and 223	
Kirstetter et al., 2012. The MRMS data for the two simulated days were re-gridded to the same 224	
WRF grid over D2 with a 1-km resolution for every year of the learning and testing years. 225	

2.2.4. ASOS data 226	

The Automated Surface Observing System (ASOS) network provides most of the basic 227	
hydrometeorological observations at different airports, including 1-hour accumulated 228	
precipitation. The data is reported every 5 min in the majority of the stations. One hour 229	
precipitation for the period from the observation time to the time of the previous hourly 230	
precipitation reset. The precipitation accumulation algorithm obtains precipitation accumulation 231	
data from the Heated Tipping Bucket (HTB) precipitation gauge once each minute (ASOS user 232	
guide).  The trace reports are considered as 0.1 mm. The detection threshold specified for the 233	
ASOS HTB is 0.01 inch per hour (0.254 mm per hour), and the precipitation rate accuracy is the 234	
larger of 10 percent or 0.01 inches per hour (0.254 mm per hour). 235	

For this study, four METAR observation sites located over South Florida were used for the 236	
evaluation of the different forecasts, and these sites are shown in Figure 1. Table [1] of Appendix 237	
B shows the characteristics of the four stations that will be used for comparison and evaluation. 238	
Additional stations are available, but either no precipitation is recorded, or most data is missing.  239	

3. Evaluation method 240	
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The probabilistic evaluation will be based on the rank histogram score and the reliability 241	
diagram. The rank-histogram score 𝛿  defined in Equation (6) is a tool used to measure the spread 242	
and hence the reliability of the ensemble. 243	

𝛿  = !!!
! !

  𝑟!   −  𝑟
!!

!!! 	 	 (6) 244	

𝑟  = !
! !!

	 	 	 	 (7) 245	

The rank-histogram score measures the deviation from a perfect and flat rank histogram 246	
(Talagrand et al., 1999; Candille and Talagrand, 2005). In Equation (6), N is the number of 247	
ensemble members, M is the number of observations, 𝑟! the number of observations of rank j, 248	
and 𝑟 is the expectation of 𝑟! defined in Equation (7). The optimal ensemble with a flat rank 249	
histogram has a score of 1. A score lower than 1 would indicate overconfidence in the results.  250	

Reliability is also assessed with the reliability diagram. This diagram provides a probabilistic 251	
interpretation in terms of frequency of occurrence of precipitation events. The x-axis represents 252	
the predicted probability of occurrence (p) of an event  in a time when the y-axis represents the 253	
relative frequency which is defined as the proportion of the observed event that really occurred 254	
among events with a predicted probability of p. A reliability curve overlaying the first bisector 255	
shows a perfectly reliable ensemble. 256	

The statistical evaluation of the forecasted PR against the ASOS data uses classical skill metrics 257	
namely the simulated mean (𝑠 ), the Root Mean Square Error (RMSE), the correlation coefficient 258	
(R) and the Mean Bias Error (MBE). These scores are defined in Table 1 in Appendix D. 259	

4. Results and discussions 260	
4.1.Performance evaluation  261	

In this section, we evaluate the two ensembles: the “Raw Ensemble” and the “Calibrated 262	
Ensemble” during the two simulated days of 2022 against the corresponding MRMS 263	
observations.   Figure 3 compares the PR measured by MRMS data and the simulated data using 264	
the Raw and calibrated ensembles on July 16th , 2022 at 10 pm. 265	

266	
Figure 3: Left panel: PR from MRMS data on July 16th at 10 pm. Middle panel: Simulated PR 267	
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with Raw Ensemble mean at the same time and date as the left panel. Right panel: Simulated PR 268	
with Calibrated Ensemble mean at the same time and date as the left panel. The white area 269	
represents areas with zero PR. 270	

 271	

Figure 3 shows clear discrepancies between the means of the Raw and Calibrated Ensembles. 272	
The Raw Ensemble was able to predict the location and timing of the meso-β precipitation 273	
system but was not able to reproduce the meso-𝛾  precipitation systems over the south-eastern 274	
part of the simulation domain. However, the raw prediction of the PR is underestimated by a 275	
factor of 2. In fact, 75 % of the raw ensemble members underestimate the PR mainly because 276	
75% of the simulated members use the Thompson microphysical scheme that produces less 277	
liquid condensate which results is lower precipitation amount. Similar results were found by Guo 278	
et al. 2019 by comparing four MP parameterizations over Eastern China over a six-year summer 279	
period (2009-2014). They concluded that the Thompson scheme creates more snow articles than 280	
other schemes which produces less graupel and precipitations during warm times. The prediction 281	
of PR using the calibrated ensemble substantially improved the PR forecasts as the predicted 282	
mean is closer to the MRMS observations and the predicted mean increased from 1 with the raw 283	
mean to 19 mm.h-1 with the calibrated mean. Furthermore, the calibration improved the timing 284	
and the location of this simulated precipitation event and the meso-𝛾 precipitations. 285	

	286	

Figure 4: Left panel: Absolute difference (mm.h-1) between the CRPS of the raw ensemble and 287	
the calibrated ensemble on July 16 at 10pm. Right panel: Similar to the left panel on July 17th at 288	
00 am. 289	

Figure 4 shows the impact of the calibration of the CRPS of the PR forecasts. The calibration 290	
was successful in reducing the CRPS of the calibrated ensemble by a 90 % approximately over 291	
the high PR areas, hence improving accuracy relative to MRMS observations. This improvement 292	
was guaranteed by the MBM method as it was based on learning the minimization of the CRPS. 293	



	 	 	
	

	 11	 	
	

This is indicative that the weighting coefficients were able to accurately learn temporal features 294	
during the two simulated days and correct the raw forecasts. 295	

Figure 5 shows the bias of the means of the Raw and Calibrated Ensembles relative to the 296	
MRMS data at two different times. The mean of the raw ensemble has a high bias significant 297	
over the precipitation areas that can be as high as 20% against the MRMS data. Figure 5 shows 298	
also the impact of ensemble calibration on bias and CRPS of the probabilistic forecasts. The 299	
calibration had a significant impact over the forecasted PR as the bias of the calibrated mean 300	
decreased by 20% relative to the MRMS observed PR. 301	

	302	

Figure 5: Top left panel: Bias error (mm.h-1) of the Raw Ensemble mean at July 16th  2022 at 303	
10pm . Top right panel: Absolute difference between Bias errors of the Calibrated and Raw 304	
ensemble means at 8pm. Bottom left panel: Similar to top left panel at July 17th   00pm . Bottom 305	
right panel: Similar to top right panel at July 17th  at 00 am. 306	

 307	
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The reliability diagram of the Raw and Calibrated ensembles are shown in Figure 6. Raw PR 308	
forecasts tend to over-forecast both high and low probability events. When considering the 309	
calibrated ensemble, the reliability increased for both low and high frequency events. In addition, 310	
there is a better reliability for low frequency precipitation events, but the calibrated ensemble is 311	
still over forecasting the high-frequency precipitation events.  The calibrated ensemble was not 312	
able to reproduce the high-frequency event because of biases related to the location and spatial 313	
extent of the precipitation events of different scales. The rank-histogram scores of the raw and 314	
calibrated ensembles are 15.9 and 4.1   respectively. The rank-histogram score decreased but still 315	
more than the optimal score confirming that the calibration improved the spread of the ensemble 316	
but still do not have optimal spread in our ensemble. Training on more years such as a decade, 317	
although very resource-intensive may further improve the reliability of the calibrated ensemble. 318	

 319	

 320	

Figure 6: Reliability diagram of the Raw and Calibrated ensembles over the simulated time and 321	
over the precipitation areas of the D2 domain. 322	

	323	

4.2.Comparison with ASOS data 324	

The calibration is evaluated against the measured PR over the four ASOS stations shown in 325	
Figure 7. Table 2 shows the statistical scores of both raw and calibrated means. Tables 1, 2, 3 326	
and 4 in Appendix C show the statistical evaluation of PR over the stations PGD, MIA, SRQ and 327	
VRB respectively.  328	

 329	
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	330	

Figure 7: Scatter plot of the simulated PR using the means Raw and Calibrated 331	
ensembles. The colors are the uncertainty of the forecasts. 332	

 333	

𝑜= 4.82 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 19.07 31.60 16.70 1807.09 
Calibrated Ensemble 

Mean 
10.31 11.07 23.15 615.91 

Table 2: Statistics of the means of the Raw and Calibrated ensembles against data over the four 334	
ASOS. 335	

 336	

The scatter plot in Figure 5 shows that both raw and calibrated means overestimate the observed 337	
PR over the four ASOS stations with a simulated means of 19.07 and 10.31 mm.h-1  for raw and 338	
calibrated ensemble respectively against 4.82 mm.h-1 .The slopes of the lines of best fit are 3.87 339	
and 1.57 for the raw and calibrated means respectively. The calibration improved the forecasts as 340	
the RMSE decreased from 31.60 mm.h-1  to 11.07 mm.h-1  and the MBE decreased from 341	
1807.09% to 615.91 %. Besides, the uncertainty of the forecasted PR was reduced because of the 342	
calibration as the uncertainty of the calibrated mean decreased from 14 to 4 mm.h-1. 343	

The calibrated ensemble still has high bias and significantly overestimates the PR by a factor of 344	
2. This overestimation may be due to the overestimation of PR during summertime by the 345	
MRMS data compared to ground based ASOS data because of the evaporation process occurring 346	
under the radar beam. In fact, both raw and calibrated PR forecasts overestimate the light 347	
precipitation (particularly PR less than 2 mm.h-1 because the MRMS data also overestimates the 348	



	 	 	
	

	 14	 	
	

light precipitations. Similar result was found by Gao et al. 2018 by evaluating the MRMS data 349	
against the NEXt generation weather RADar (NEXRAD) data over TEXAS, USA and a dense 350	
rain gauge network covering Harris County, Texas, USA. Santer and Grams 2020 evaluated the 351	
MRMS Quantitative precipitation estimation (QPE) and PR during 18-months period against rain 352	
gauges from the National Centers for Environmental Prediction Meteorological Assimilation 353	
Data Ingest System (MADIS) over CONUS and showed that, during warm times, an important 354	
systematic overestimation exist because of sub-radar beam evaporation. They also quantified the 355	
uncertainty of a MRMS radar measurement based on distance from the radar and partial radar 356	
beam blockage 357	

 358	

Conclusion 359	

In this study, we have applied the MBM calibration technique by minimizing CRPS in order to 360	
improve the probabilistic forecasting of precipitation as part of a risk-based approach to integrate 361	
UAS into the NAS. The algorithm does not depend on any assumptions on distributions such as 362	
gaussianity or uniformity and comes with theoretical guarantee of performance. 363	

The case study examined the impact of ensemble calibration on precipitation forecasts accuracy 364	
and uncertainty over South Florida. The MRMS radar data was used to calibrate a 20-members 365	
ensemble that was underestimating the PR. This paper showed that CRPS minimization brings 366	
improvement on classical scores for the ensemble mean and probabilistic diagnostic tools. 367	
Indeed, the forecasting capability measured by classical scores (RMSE, MBE and bias) are 368	
improved by the algorithm used during the two simulated summer days. Besides, this spread 369	
correction provides a bias correction, improved the reliability of the ensemble and reduced 370	
forecasts’ uncertainty although the comparison with ASOS data shows a persistent 371	
overestimation because of the inherent bias of the MRMS data.  372	

In addition, the selection of more predictors such as relative humidity, cloud cover and vertical 373	
wind velocity may further enhance the skill of probabilistic post-processing for near-real-time 374	
precipitation estimates. Besides, using satellite data along with radar data as used here may also 375	
improve the evaluation against ground-based validation.  The use of deep learning methods such 376	
as distributional regression network, Bernstein Quantile Network and Histogram Estimation 377	
Network is a promising as demonstrated in Schulz and Lerch 2022. 378	

Future work should investigate the validation of the impact of the calibration and weights on 379	
other use cases and the assessment of the performance of the calibrated ensemble over longer 380	
lead times and different testing periods. The validation against denser rain gauges network is also 381	
necessary as it will show the accuracy of the calibration over off-airport areas which is important 382	
for weather-risk assessment and contingency planning during BVLOS operations. 383	
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https://www.nssl.noaa.gov/projects/mrms/ . The WRF outputs are available upon request from 389	
the corresponding author. The code used to calibrate the ensemble is available in the open source 390	
python library available “pythie”  here: https://github.com/Climdyn/pythie. The ASOS data are 391	
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 544	

Appendix  545	

 546	

Appendix A 547	

  548	

Model parameter  Used configuration 

Model and domains 

Model version ARWv4.0 (Skarmarock et al. 2008) 

Time step Adaptative time step (36 s for D1) 

Map projection Lambert 

Pressure top 50 hPa 

Vertical levels 80 (*) 

Time integration scheme Third order Runge-Kutta scheme 

Time integration scheme for 
acoustic and gravity-wave 
modes 

Second order scheme 
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Horizontal/vertical advection Fifth order upwind 

Scalar advection Positive definite 

Upper-level damping (for 
vertical propagating gravity 
waves) 

Rayleigh damping 

Computational horizontal 
diffusion 

6th-order numerical diffusion	
	
 

Forecast period 60 h (from July 15th, 2018 at  12 pm UTC to July 18th, 2021 
at 12 am UTC) 

Table [1]: WRF model configuration and input physics parameterizations. * η levels are 1, 549	
0.99938147, 0.9918859506, 0.9860143, 0.9835575, 0.97480931, 0.9691238,    0.95061912, 550	
0.938789424, 0.91847208, 0.89114445, 0.87771024, 0.8344125,     0.807124586, 0.76820505, 551	
0.71652851, 0.6848121, 0.615978875, 0.5720332,     0.5472062, 0.5233661, 0.5004734, 552	
0.4784906, 0.4573815, 0.4371113,     0.4176468, 0.3989559, 0.3810079, 0.3637731, 0.3472234, 553	
0.3313315,     0.316071, 0.3014172, 0.2873457, 0.2738335, 0.2608584, 0.2483989,     554	
0.2364347, 0.2249459, 0.2139138, 0.2033201, 0.1931475, 0.1833792,     0.173999, 0.1649918, 555	
0.1563425, 0.1480369, 0.1400615, 0.132403,     0.1250489, 0.1179871, 0.111206, 0.1046944, 556	
0.09844154, 0.09243726,     0.08667168, 0.08113512, 0.07581868, 0.07071351, 0.06581128, 557	
0.06110381,     0.0565835, 0.05224282, 0.04807468, 0.04407217, 0.04022875, 0.0365381,     558	
0.03299413, 0.02959097, 0.02632311, 0.0231851, 0.02017184, 0.01727832,     0.0144998, 559	
0.01183172, 0.00926967, 0.006809457, 0.004447003, 0.002178475, 0. 560	

 561	

 Appendix B 562	

 563	

Station ID Latitude(ºN) Longitude(ºW) Height ASL (m) 
VRB 27.6556 80.4179 8.00 
PGD 26.9172 81.9914 8.00 
MIA 25.7880 80.3169 4.00 
SRQ 27.4014 82.5586 9.00 

Table 1: List of the four ASOS stations in South Florida and their corresponding latitude, 564	
longitude and above sea-level (ASL) height. 565	

 566	

Appendix C 567	

𝑜=5.02 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 29.71 53.92 14.49 2469.24 
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Calibrated Ensemble 
Mean 

10.77 14.24 20.81 575.37 

Table 1: Statistics of the raw and calibrated means over the PGD ASOS station 568	

 569	

𝑜= 4.34  mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 14.57 16.91 4.96 1023,87 
Calibrated Ensemble 

Mean 
13.79 15.09 8.39 940.71 

Table 2: Statistics of the raw and calibrated means over the MIA ASOS station 570	

 571	

𝑜= 2.54 mm.h-1 𝑠 (mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean 15.57 17.07 8.30 1302.87 
Calibrated Ensemble 

Mean 
8.60 9.77 29.36 605.77 

Table 3: Statistics of the raw and calibrated means over the SRQ ASOS station 572	

 573	

=7.39 mm.h-1  𝑠(mm.h-1) RMSE (mm.h-1) R (%) MBE (%) 
Raw Ensemble Mean  16.43 15.61 19.72 904.30 
Calibrated Ensemble 

Mean 
8.06 7.04 30.06 30.06 

Table 4: Statistics of the raw and calibrated means over the VRB ASOS station 574	

 575	

Appendix D 576	

Statistical indicator Definition 

s 
1
𝑛

𝑠!

!

!!!

 

o 
1
𝑛

𝑜!

!

!!!

 

RMSE 
1
𝑛

(𝑐! − 𝑜!)!
!

!!!
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Correlation  𝑠! −  𝑠  𝑜! −  𝑜  !
!!!

 𝑠! −  𝑠  !
!!!

!   𝑜! −  𝑜  !
!!!

!
 

MBE 1
𝑛

(𝑐! − 𝑜!)
!

!!!

 

Table 1: Definition of the statistics used in this work. oi  and si are the observed and simulated wind 577	
speeds at time i. n is the number of data. 578	

 579	


