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Key Points 

 

 All parameters for the spatial downscaling and bias-correction can be simultaneously 
estimated and interpolated at the desired points 

 The parameter interpolation is more effective than that of the precipitation in the context 
of spatial downscaling and bias-correction 

 The BK-SDQDM effectively can reproduce spatial dependency in the interpolated 
parameters associated with bias-correction 

 

Abstract  

This study proposes a novel approach that expands the existing QDM (quantile delta 
mapping) to address spatial bias, using Kriging within a Bayesian framework to assess the 
impact of using a point reference field. Our focus here is to spatially downscale daily rainfall 
sequences simulated by regional climate models (RCMs), coupled to the proposed QDM-
spatial bias-correction, in which the distribution parameters are first interpolated onto a fine 
grid (rather than the observed daily rainfall). The proposed model is validated through a 
cross-validatory (CV) evaluation using rainfall data from a set of weather stations in South 
Korea and climate change scenarios simulated by three alternate RCMs. The results 
demonstrate the efficacy of the proposed model to simulate the bias-corrected daily rainfall 
sequences over large regions at fine resolutions. A discussion of the potential use of the 
proposed approach in the field of hydrometeorology is also offered. 
 
Keywords: quantile delta mapping, bias-correction, climate models, climate change scenario, 

statistical downscaling  

 

Plain Language Summary 

Climate models can simulate biased representations of atmospheric processes, necessitating 
procedures for correction before use in hydrological applications. Such spatial bias can be 
caused for many reasons, one of which is the use of point data in establishing a spatial 
reference field to compare model simulations against. The most straightforward way to 
address this bias is to interpolate the locally observed data at the weather station onto a fine 
grid and use as reference. Alternatively, one can define a bias-correction model that accounts 
for the systematic impact induced by the use of point data, of special importance when the 
point data field is sparse and unevenly distributed. Here, we develop a novel approach to 
better address spatial bias using the Bayesian Kriging model. The results demonstrate the 
efficacy of the proposed model to simulate the bias-corrected daily rainfall sequences over 
large regions at fine resolutions. 
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1. Introduction 

Due to the increased variability in the climate caused by global warming, the number of 

natural disasters has risen over the past four decades (Brown et al., 2008). Extreme events 

beyond the historical record and the bounds of natural variability have led to human 

casualties, property damages, and socioeconomic problems, creating international 

disagreements (AghaKouchak et al., 2014; Meehl et al., 2000; Oki & Kanae, 2006). It has 

become increasingly important to consider the changes in extreme events to design for safety 

from natural disasters as the climate gets warmer. 

Climate models (e.g., global climate models (GCMs) and regional climate models (RCMs)) 

represent the main tools used to assess the future climate and the associated changes in the 

hydrological circulation over a long-term planning horizon (Borgomeo et al., 2014; Haro-

Monteagudo et al., 2020; Steinschneider et al., 2015). These climate models attempt to 

simulate accurately the current climate as well as the response of the climate system to 

projected greenhouse gas concentrations into the future (Kattsov et al., 2007; Kripalani et al., 

2007). However, model simulations are known to exhibit systematic bias, which has limited 

the direct use of especially precipitation from climate models (S. Kim et al., 2020; 

Woldemeskel et al., 2016). GCMs often have a low spatial resolution (100-300 km), with 

which regional climate may not be well reproduced (Diaconescu et al., 2018). In this context, 

RCMs with higher resolutions of 50km or less can provide a better representation of localized 

extreme rainfall events at finer spatial scales (Hadjinicolaou et al., 2011; Hanel & Buishand, 

2011; Hewitson & Crane, 1996; Kyselý & Beranová, 2009; Kyselý et al., 2011; Wilks & 

Wilby, 1999). 

The dynamic downscaling models (e.g., GCMs and RCMs) could capture key features of the 
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large climate system, and their outputs are mainly used for statistical downscaling approaches 

as inputs. Nonetheless, a reliable assessment of the implications for regional climates is still 

difficult to evaluate due to large uncertainties associated with initial and boundary conditions, 

model inadequacy, and resolution. A bias-correction approach, therefore, is often required to 

remove systematic bias for climate change impact assessment (Ayar et al., 2016; Tan et al., 

2020; Wilby et al., 1998). More importantly, the quantile mapping (QM) based bias-

correction approach with a downscaling model is commonly employed to correct hydro-

meteorological variables (e.g., temperature and precipitation) at the station levels (Khalil et 

al., 2010; Y. T. Kim et al., 2020; Kwon et al., 2011; Lima et al., 2016; Lima et al., 2018; So 

et al., 2017) and finer resolutions (Guo & Wang, 2016; Mamalakis et al., 2017). 

Operationally, the statistical downscaling with the bias-correction is preferred due to its 

ability and simplicity in downscaling the GCM outputs, especially precipitation. Statistical 

downscaling methods include the delta approach (Kuok et al., 2016; Simonovic et al., 2016), 

the disaggregation approach (Koutsoyiannis et al., 1998; Pui et al., 2012), the nonstationary 

frequency analysis for downscaling precipitation extremes (Cheng & AghaKouchak, 2014; 

Lehmann et al., 2016; Lima et al., 2016), and approaches that model long-term dependence in 

both space and time (Mehrotra & Sharma, 2006; Mehrotra et al., 2013). Recently, the spatial 

downscaling of daily rainfall with the bias-correction has been widely applied for 

downscaling the simulated precipitation at desired grids and points (Immerzeel et al., 2009; 

Kim et al., 2019; Kim et al., 2015; Kwon et al., 2012; Nahar et al., 2017, 2018).  

The bias-correction procedure often relies on observed variables at the weather station and 

grid points, which limits the full use of precipitation information obtained from the GCMs (or 

RCMs). Therefore, in order to fully utilize spatially varying climate model simulations, it is 

desirable to have the grid-based observation data at finer spatial resolution (or at least the 
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same resolution) than those from climate models to construct transfer function for adjusting 

bias at any desired location in space and time. It is worth noting that high-resolution daily 

gridded rainfall observation data is not readily available in many countries, including South 

Korea. Under these circumstances, there are two ways of modeling bias-correction at the 

desired grid resolution. First, the observed data at the weather station can be interpolated onto 

a fine grid to allow proper comparison to proceed. Alternatively, a set of parameters 

associated with the bias-correction can be gridded to form a spatial bias-correction model. To 

the best of our knowledge, there is no reason to prefer one or the other approach, as there is 

no systematic comparison in the literature between them in the context of bias-correction and 

spatial downscaling. This work expects to shed some light on this problem by exploring the 

following issues within the bias-correction and spatial downscaling: 

(1) Can all parameters associated with the spatial downscaling and bias-correction be 

simultaneously estimated and interpolated at the desired points? 

(2) Can the interpolation of the bias-correction parameters be more effective than the 

interpolation of the daily precipitation in the context of spatial downscaling and bias-

correction?  

(3) Can a Bayesian Kriging based bias-correction approach effectively reproduce spatial 

dependency over a network of weather stations in the interpolated parameters 

associated with bias-correction? 

We intend to contribute to the existing literature with a novel approach that incorporates the 

spatial downscaling and the QDM (quantile delta mapping) with a Bayesian Kriging method, 

which, as compared with the large variety of statistical downscaling and bias correction 
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methods, finds motivation by the need to better address spatial dependencies of distribution 

parameters over gauging stations, including parameter uncertainty representation, and 

consequently provide unbiased, interpolated rainfall simulations with sound GCM/RCM 

subgrid variability. The Bayesian parameter estimation has been widely employed in the field 

of hydrology (Haddad et al., 2012; Kwon et al., 2011; Kwon et al., 2008; Liang et al., 2011; 

Lima et al., 2018; Lima & Lall, 2010; Viglione et al., 2013). Our focus here is to spatially 

downscale daily rainfall sequences simulated by regional climate models (RCMs) at any 

desired higher resolution, fully coupled with the QDM-based bias-correction. Our approach 

assumes that persistence or low-frequency variability attributes in the precipitation simulations 

are unbiased, and the main bias resides in the probability distribution of the rainfall amounts, 

largely a result of the use of point observed data instead of compatible gridded fields. The 

proposed modeling framework is demonstrated through a Leave-One-Out CV (LOOCV) 

evaluation in South Korea and climate change scenarios simulated by three different RCMs 

informed by the HadGEM2-AO GCM (Kim et al., 2020; Magnusson et al., 2020; Park et al., 

2016; Sivula et al., 2020).  

The precipitation data, including climate change scenarios used in this study, are summarized 

in the following section. The proposed Bayesian Kriging Spatial Disaggregation Quantile Delta 

Mapping (SD-QDM) approach for bias-correction and spatial downscaling is described in 

Section 3. The modeling results and their efficacy are demonstrated and discussed in Section 

4. Finally, concluding remarks and a summary of this work are provided.  

 

2. Observation Data and Climate Change Scenario 

The daily precipitation data was compiled from over 92 Automatic Synoptic Observation 
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System (ASOS) across South Korea, operated by the Korea Meteorological Administration 

(KMA). Here, daily precipitation data at 60 weather stations with more than 45 years, ranging 

from 1973 to 2018, were finally selected for the subsequent analysis. The data used in this 

study can be obtained from the KMA data library, and the locations of weather stations used in 

this work are reported in Table S1. It should be important to highlight that approximately 60% 

of the annual rainfall is attributed to the summer season, from mid-June to early September, 

and extreme rainfalls often occur in this season. In the present work, we explore a seasonal-

varying model under the circumstances of high rainfall variability, without focusing on an 

annual basis model, in a more general context. 

This study aims to develop a spatial downscaling model that is fully coupled with the QDM-

based bias-correction. The proposed model is applied to climate change scenarios simulated by 

three different RCMs employed in the Coordinated Regional Climate Downscaling 

Experiment-East Asia (CORDEX-EA), covering the entire East Asian areas, including South 

Korea, as shown in Figure S1. CORDEX is an internationally coordinated framework with the 

use of multiple RCMs for providing high-resolution climate change projections (So et al., 2017). 

The three different RCMs in the CORDEX-EA Phase 2 considered in the study are Seoul 

National University Regional Climate Model (SNURCM, with a spatial resolution of 

12.5kmൈ12.5km) (Lee et al., 2004), Weather Research and Forecasting (WRF, with a spatial 

resolution of 25kmൈ 25km) model (Skamarock & Klemp, 2008), version 3.7, and the 

Consortium for Small-scale Modeling (COSMO)-CLM (or CCLM, with a spatial resolution of 

25kmൈ25km) 5.0 (Huang et al., 2015; Huang et al., 2017; Wang et al., 2013) for downscaling 

from the Hadley Centre Global Environment Model version 2 (HadGEM2-AO) atmosphere-

ocean coupled general circulation model (Baek et al., 2013; Ngai et al., 2017). For more details, 

please refer to the link for details of the models (http://cordex-ea.climate.go.kr). In this study, 
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the future precipitation simulation for 2006-2100 under the representative concentration 

pathways (RCP) 4.5 and 8.5 was used with the historical precipitation simulation for 1979-

2005. The Bayesian Kriging based SD-QDM approach was applied to provide downscaled 

precipitation at finer scales of about 6.25km, 12.5km and 12.5km resolution for SNURCM, 

WRF, and CCLM, respectively, which is typically more relevant as input for hydrological 

model applications.  

 

3. Quantile Delta Mapping with Bayesian Kriging Approach 

3.1 Bayesian Kriging based SD-QDM (Quantile Delta Mapping) 

This study assumes that the daily precipitation amounts follow a Gamma distribution, and the 

CDF for Gamma distribution with the shape (𝑘௢௛) and scale (𝜃௢௛ሻ parameters can be defined 

as follow: 

𝐹ሺ𝑥|𝑘௢௛, 𝜃௢௛ሻ ൌ
ଵ

ఏೖ௰ሺ௞ሻ 
׬ 𝑡௞ିଵ𝑒ି௧/ఏ𝑑𝑡
௫
଴ ;   𝑥 ൒ 0;  𝑘, 𝜃 ൐ 0   ሺ1ሻ 

𝑘௢௛~𝐼𝑛𝑣 െ 𝐺ሺ𝑠ℎ𝑎𝑝𝑒: 0.01, 𝑠𝑐𝑎𝑙𝑒: 0.01ሻ    (2) 

𝜃௢௛~𝐼𝑛𝑣 െ 𝐺ሺ𝑠ℎ𝑎𝑝𝑒: 0.01, 𝑠𝑐𝑎𝑙𝑒: 0.01ሻ     (3) 

For the Gamma distribution parameters (shape (𝑘௢௛) and scale (𝜃௢௛ሻ), this study adopts a 

weakly informative Gamma distribution with the shape (0.01) and scale (0.01) parameters, 

conjugate prior distribution (Gelman, 2006; Lima et al., 2018; Lunn et al., 2012). 

More generally, let us say that 𝑆 is our variable of interest, to which we want to perform the 

spatial interpolation. 𝑆 can be, for instance, the shape and scale parameters (i.e., the 𝑘௢௛ 

and 𝜃௢௛) of the Gamma distribution representing daily rainfall. 𝑆 has a dimension 𝑛, the 
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number of rainfall gauges. For simplicity, we assume that 𝑆 follows a multivariate normal 

distribution (MVN)  

𝑆~𝑀𝑉𝑁ሺ𝜇, 𝜏ଶ∑ሻ       (4) 

where 𝜇 is the mean vector, 𝜏ଶ is the overall variance and 𝛴 is a squared positive-definite 

matrix of size 𝑛 representing the spatial dependence present. 

We want to model the spatial variability of 𝑆 through a parametric formulation for 𝛴: 

  ∑௜௝ ൌ 𝑓൫𝑑௜௝|𝜃൯        (5) 

where 𝑑௜௝ is the distance between sites 𝑖 and 𝑗 and 𝜃 represents the correlation 

parameters. 

We adopt here the powered exponential family for the function 𝑓:  

𝑓൫𝑑௜௝|𝜙, 𝜅൯ ൌ 𝑒𝑥𝑝 ቂെ൫𝜙 ∙ 𝑑௜௝൯
ఋ
ቃ     (6) 

in which 𝜙 ൐ 0 governs the decay of the spatial correlation with distance and 0 ൏ δ ൏ 2 is 

the smoothing degree for 𝑆.  

The estimation of the set of parameters 𝑘௢௛,𝜃௢௛,𝜇, 𝜏ଶ,𝜙 and 𝛿 will be performed here 

using Bayesian inference, which provides a better groundwork to deal with parameter 

uncertainties, particularly for a small data set, as compared with traditional methods in 

ordinary Kriging. In addition to the distance, the formulation of the spatial model could be 

expanded by including auxiliary variables, such as elevation. The first two Gamma 

distribution parameters (i.e., 𝑘௢௛, 𝜃௢௛) are spatially varying, but the remainings (𝜏ଶ,𝜙 and 

𝛿) are not. 
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We start by setting the prior distributions for the parameters. As for 𝜇, since no relevant 

information is known about it, we define independent and weakly informative priors: 

𝜇௜ ∝ 1         (7) 

where 𝑖 ൌ 1, … ,𝑛 denotes the rainfall gauge. In our case, we have 𝜇௜ ൐ 0; therefore, our 

prior should be restricted to the positive domain. For the purpose of coding the MCMC 

simulation, we adopted the gamma distribution with the values 100 and 0.01 for scale and 

shape parameters, respectively.  

For the overall variance parameter 𝜏ଶ, we adopt a weakly informative, conjugate prior 

distribution as done in other studies (Gelman, 2006; Lima et al., 2018; Lunn et al., 2012): 

𝜏ଶ~𝐼𝑛𝑣 െ 𝐺ሺ0.01, 0.01ሻ      (8) 

The prior for 𝜙 should ideally consider the minimum and maximum correlations at the 

minimum and maximum distances 𝑑௜௝, respectively. It results, therefore, in the following 

uniform prior: 

𝜙~𝑈ሺ0, 1.0ሻ        (9) 

The joint posterior distribution of 𝑘௢௛, 𝜃௢௛, 𝜇, 𝜏ଶ,𝜙  and 𝛿  is obtained following the 

Bayesian rule, which combines the Likelihood function 𝐿ሺ𝑆|𝑘௢௛,𝜃௢௛, 𝜇, 𝜏ଶ,𝜙, 𝛿ሻ with the 

prior distributions described above. The Markov Chain Monte Carlo (MCMC) approach is 

adopted to sample from the joint posterior distribution, as an analytical integration is not 

feasible. The module GeoBUGS from the free software OpenBUGS was used for the MCMC 

algorithm. We checked the convergence using the R coefficient as proposed in Gelman et al. 

(2013) and visually based on the mixture of 5 chains with 2,000 simulations each. The powered 

exponential function in (6) is already implemented in GeoBUGS and this was the main 
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motivation for its choice. Moreover, it has proved to facilitate the convergence of the MCMC 

chains. Other spatial models (e.g., spherical) could be tested as well, but their implementation 

under the Bayesian framework used here may not be straightforward and the convergence of 

the MCMC chains may be hard to achieve. The flowchart of the proposed modeling framework 

is illustrated in Figure S2. 

3.2 Quantile Delta Mapping (QDM) Approach 

The quantile delta mapping (QDM) has been widely adopted for bias-correction of the 

climate change scenarios due to its ability to preserve relative changes in quantiles over 

historical and future simulations. The QDM approach is based on the cumulative distribution 

functions (CDFs) obtained from precipitation sequences over two time periods that represent 

modeled and observed precipitation during the historical period (1979-2005) and projected 

precipitation during the future period (2006-2100). A graphical representation of the QDM is 

provided in Figure S3. 

The cumulative probability of the projected precipitation 𝒙𝒔𝒇 can be obtained from the CDFs 

(𝐹௦௙) as follows: 

𝑄௦௙ሺ𝑡ሻ ൌ 𝐹௦௙
ሺ௧ሻඃ𝑥௦௙ሺ𝑡ሻඇ, 𝑄௦௙ሺ𝑡ሻ ∈ ሼ0,1ሽ      (10) 

Here, 𝐐𝐬𝐟 represents non-exceedance probability at time 𝑡. The modeled quantiles during the 

historical and future periods corresponding to the 𝑄௦௙ can be obtained from 𝐹௦௛
ିଵ and 𝐹௦௙

ିଵ 

(inverse cumulative distribution functions, ICDFs), respectively. The simulated precipitation 

𝑥௦௙ is denoted by the subscript s during the future period, denoted by the subscript 𝑓, and 

similarily for the CDF 𝐹௦௙. The relative quantile changes in precipitation over two time periods 

at time 𝑡 is given as follows: 



[12] 
 

Δ𝑤௦ሺ𝑡ሻ ൌ
ிೞ೑
ሺ೟ሻషభඃொೞ೑ሺ௧ሻඇ

ிೞ೓
ሺ೟ሻషభඃொೞ೑ሺ௧ሻඇ

ൌ
௫ೞ೑ሺ௧ሻ

ிೞ೓
ሺ೟ሻషభඃொೞ೑ሺ௧ሻඇ

      (11) 

The bias-corrected quantile 𝑥ො௦௛ for the modeled 𝑄௦௙ at time 𝑡 can be obtained by adopting 

the inverse CDF (𝐹௢௛
ିଵ) estimated from the observed precipitation during the historical period 

as written in equation (3). The CDF 𝐹௦௛ of the simulated precipitation during the historical 

period is denoted by the subscripts 𝑠, and ℎ and similarly for the CDF of the observed 

precipitation during the historical period 𝐹௢௛, marked by the subscripts 𝑜, and ℎ. 

𝑥ො௦௛ሺ𝑡ሻ ൌ 𝐹௢௛
ିଵሺ𝑄௦௙ሺ𝑡ሻሻ       (12) 

Lastly, the bias-corrected future scenario values 𝑥ො௦௙ can be computed by multiplying the 

relative quantile changes Δ𝑤௦ and the bias-corrected quantile 𝑥ො௦௛ሺ𝑡ሻ during the historical 

period. Hence the relative changes can be preserved in the course of bias-correction. 

𝑥ො௦௙ሺ𝑡ሻ ൌ 𝑥ො௦௛ሺ𝑡ሻ ∙ Δ𝑤௦ሺ𝑡ሻ       (13) 

 

 

4. Result and Discussion 

4.1 Parameter Estimation and Cross Validation 

The gamma distribution is often used to model daily rainfall (Aksoy, 2000; Kim et al., 2019; 

Lee et al., 2019; Yoo et al., 2005) in hydrological applications, particularly for the bias-

correction of modeled rainfall sequences obtained from climate models (Bárdossy & Pegram, 

2011; Heo et al., 2019; Johnson & Sharma, 2012; Kim et al., 2016; Lee et al., 2019; Piani et 

al., 2010; Volosciuk et al., 2017). The two-parameter gamma distribution was selected based 

on Bayesian Information Criterion (BIC) value as the best distribution for the observed and 
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modeled daily rainfall during the historical period (1979-2005) and projected daily rainfall 

during the future period (2006-2100). 

First, we explored whether all parameters can be simultaneously estimated and interpolated at 

the desired points within a Bayesian Kriging modeling framework. In this perspective, the 

gamma distribution was fitted to daily rainfall series from 60 weather stations, and the 

distribution parameters were retained. More importantly, the distribution parameters were 

simultaneously interpolated by the Bayesian Kriging approach over the gauge locations in the 

parameter estimation process. The model performance was explored by testing the 

predictions of the parameters over the entire station set within a LOOCV framework. Here, 

the LOOCV scheme drops one gauge, and the remaining gauges are used to estimate all the 

parameters associated with both the gamma distribution and the Kriging model. The spatial 

location of the gauge that is not considered in the calibration process is then used as input to 

obtain its predictive gamma distribution parameters. The cross-validated results and the 

associated credible intervals for August are illustrated in Figure 1(a) for a graphical 

representation of the efficacy of the proposed model. The results showed that the predicted 

parameters (i.e., shape and scale parameters) fall within the 95% credible interval derived 

from the predictive posterior distribution. As illustrated in Figure 1(a), the predicted 

parameters are strongly correlated with those estimated directly from the observations 

(Pearson correlation equals to 0.95 for the shape and 0.98 for the scale parameter). The 

results for the remaining months are also similar to that of August and are displayed in Figure 

S4. As inferred from the Pearson correlation coefficient (not shown here), the proposed 

model yields slightly better predictions for the scale parameter as compared to those for the 

shape parameter. Moreover, a seasonal-varying model under the LOOCV scheme is 

investigated, and the model performance with four different performance metrics (Table S2) 
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(correlation coefficient (CC), Nash–Sutcliffe Efficiency (NSE), Index-of-Agreement (IoA), 

and Root Mean Square Error (RMSE)) is summarized in Table S3. For the shape parameter, 

the model showed slightly lower performance in the spring season from February to April in 

terms of the NSE. Still, the model predictability can be regarded as “Very good: NSE ≥ 0.7” 

according to the given criteria suggested by Kalin et al. (2010), and other performance 

measures are largely comparable to that of different seasons. For the scale parameter, the 

predicted parameters appear to be almost identical to that of the observed, confirming the 

efficacy of the model. 

 [Insert Figure 1] 

Following the previous step, we investigated whether the grid generated by direct 

interpolating the gamma parameters can be more reliable than the grid obtained by first 

interpolating the observed daily precipitation onto the grid and thereafter estimating the 

gamma parameters over these points. The directly interpolated gamma distribution 

parameters through the proposed Bayesian Kriging approach were then compared to the 

parameters obtained from the interpolated daily precipitation that will serve as a baseline 

model. Note that daily precipitation was also interpolated by the Bayesian Kriging approach 

and all the results presented here were achieved under the LOOCV scheme. Figure 1(b) 

shows the gamma parameters interpolated onto the locations of the rainfall gauge set using 

both approaches (displayed along the y-axis) and the local estimates of the gamma 

parameters (displayed along the x-axis), obtained from the rainfall gauge data. It is clear that 

the proposed model outperformed the baseline model, which is based on the interpolated 

daily rainfall series. This finding is likely a direct result of the difficulty to effectively 

interpolate daily precipitation sequences due to the nature of rainfall intermittency in both 
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space and time, which is closely related to the binary process representing rainfall occurrence 

(i.e., rain and no rain) (Hasenauer et al., 2003; Kleiber et al., 2012; Militino et al., 2015). 

Furthermore, due to the large spatial and temporal variability in precipitation, it is believed 

that there are limitations in accurately reproducing the underlying distribution of precipitation 

in the interpolation stage (Y.-T. Kim et al., 2020; Ly et al., 2013; Mandapaka et al., 2009; 

Obled et al., 1994). The bias in estimating the parameters in the interpolation process 

eventually leads to incorrect estimation of the probability density function, as illustrated in 

Figure 1. Here, for the graphical representation, gamma distributions over two approaches are 

compared with the representative stations (i.e., ST. No 100 and 105). Based on these results 

and under these contexts, we suggest avoiding the estimate of the parameters onto the fine 

grid from the interpolated daily precipitation for the bias-correction and their use to the 

spatial downscaling. The results for the remaining months are all comparable to that of 

August and are displayed in the supplementary information section (Figure S5).  

4.2 Interpolation of Parameters Using Bayesian Kriging Approach 

Furthermore, the gridded estimates using the Bayesian Kriging approach (right panel) are 

illustrated in Figure 2 for August, with the point estimates (left panel) for the weather stations 

considered in this study. The relatively large shape parameters are identified in the 

southeastern regions, while relatively large scale parameter values are concentrated in the 

southern coastal area. On the other hand, the smaller shape parameters are mainly distributed 

in the mid-western region, while the lower scale parameter values are largely seen in the 

southern part of South Korea. Overall, the proposed Bayesian Kriging approach is capable of 

reproducing the main spatial patterns seen in the direct point estimates of both shape and 

scale parameters.  
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[Insert Figure 2] 

This study further tested the efficacy of the model in effectively reproducing spatial 

dependency over a network of weather stations in the interpolated gamma parameters. The 

semivariogram of gamma parameters estimated from the posterior distributions obtained from 

the Bayesian Kriging approach was then compared to that obtained from local estimates based 

on gauged rainfall data. Figure 3 (a) shows, for August, the efficacy of the proposed model to 

reproduce the bias-correction parameters while preserving the spatial variability observed in 

the historical data-based estimates, where both semivariograms are almost identical. The 

semivariogram directly obtained from the interpolated precipitation is significantly biased from 

the observed one. Similarly, the spatial pattern of the parameters for the remaining months is 

well captured by the Bayesian Kriging based SD-QDM approach, as displayed in the 

supplementary information, Figure S6. Moreover, the Bayesian Kriging based SD-QDM model 

was compared with the ordinary Kriging approach, which is widely adopted in spatial 

interpolation. The results confirmed that the proposed approach showed better performance to 

estimate the Gamma distribution parameters in the context of cross-validation, as illustrated in 

Figure S7. 

 [Insert Figure 3] 

4.3 Spatial Downscaling of Climate Change Scenarios 

Finally, the interpolated parameters shown in Figure 2 can then be used to construct the 

transfer functions at the fine grid for the bias-correction and spatial downscaling of simulated 

daily precipitation. More specifically, in order to illustrate the use of the proposed Bayesian 

Kriging based SD-QDM approach, this work downscaled the historical and the future daily 

precipitation simulated by RCMs in the CORDEX-EA Phase 2 for 1979-2005 and 2006-
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2100, respectively, under the RCP 4.5 and RCP 8.5 scenarios shown in Figure 3(b-c) for 

WRF RCM as a representative example. Further, Figure S8 displays the mean annual 

precipitation compiled from three RCMs (i.e., SNURCM, WRF and CCLM) without bias-

correction (Figure S8 (a)) and with bias-correction based on the SD-QDM approach (Figure 

S8(b)). Here, spatial downscaling was done at the fine grid by interpolating the pointwise 

estimation of QDM parameters onto the same grid points (or same spatial resolutions) of 

three RCMs, with resolutions of 12.5km, 25km and 25km for SNURCM, WRF, and CCLM, 

respectively. Further, the proposed Bayesian Kriging based SD-QDM approach provides 

downscaled precipitation at finer scales of about 6.25km, 12.5km and 12.5km resolution for 

SNURCM, WRF, and CCLM, respectively, which could be more relevant for hydrological 

models as input (Figure S8(c)). As illustrated in Figure S8, the spatial patterns of mean 

annual precipitation with Bayesian Kriging SD-QDM are largely similar and comparable to 

that of the three RCMs without bias-correction, confirming that the proposed model can 

preserve the spatial variability after bias-correction. But more importantly, there is a 

substantial increase in the amount of precipitation with bias-correction due to the significant 

underestimation of precipitation simulated from RCMs without bias-correction.  

5. Concluding Remarks 

The bias-correction of precipitation simulated by GCMs (or RCMs) is often dependent on 

observed precipitation at the weather station and grid points, limiting the full use of climate 

information obtained from climate models. In particular, daily gridded rainfall observation 

data at high resolution is not readily available in many countries. In this perspective, this 

study proposed a Kriging Bayesian SD-QDM approach to obtain distribution and bias-

correction parameters over a fine grid, representing the appropriate spatial dependencies 

observed over gauging stations. We illustrated the efficiency and applicability of the 



[18] 
 

proposed model through a cross-validatory experiment (LOOCV scheme) using observed 

rainfall data from several stations covering the entire South Korea and historical and future 

rainfall scenarios generated by 3 RCMs. The key findings from this work are provided as 

follows:  

(1) We investigated whether all parameters associated with the SD-QDM approach can 

be simultaneously estimated and gridded at the desired points within a Bayesian 

Kriging modeling framework. In particular, a gamma distribution was fitted to daily 

rainfall series over 60 weather stations, and the associated parameters were 

simultaneously interpolated by a Bayesian Kriging approach onto a fine grid. The 

cross-validated results under the LOOCV scheme showed that the predicted 

(interpolated) parameters at the locations of the gauge stations are almost identical to 

that of local estimates obtained directly from the fitting of the gamma distribution to 

the rainfall gauge data parameters, confirming the efficacy of the model. 

(2) Under the LOOCV scheme, we also found that the directly interpolated gamma 

parameters through the proposed Bayesian Kriging approach outperformed the 

baseline model based on interpolated daily rainfall, which produced a substantial bias 

that leads to an incorrect representation of the probability density function. Under 

these circumstances, the direct estimation of the distribution parameters from the 

interpolated daily precipitation for bias-correction and spatial downscaling should be 

cautious. This study further investigated whether spatial dependency over the 

interpolated gamma parameters can be effectively preserved. In this regard, the 

semivariogram of gamma parameters obtained from the proposed model was 

evaluated. The results confirmed that the proposed model could effectively reproduce 
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the spatial variability of parameters estimated from gauging stations, given that the 

semivariogram of the interpolated parameters estimated from the Bayesian Kriging 

based SD-QDM approach was almost identical to that of the local parameters 

estimated from gauged rainfall data. In contrast, the semivariogram directly obtained 

from the interpolated precipitation highly deviated from the observed.  

The proposed Bayesian Kriging based SD-QDM approach could apply to various 

applications with different temporal scales in hydrometeorology to establish a spatial 

reference field to compare model simulations against. More specifically, the bias-

correction and spatial downscaling for other climate variables, including temperature, soil 

moisture, solar radiation and wind field, rely on observed variables at the weather station 

(or grid points), limiting the full use of climate information obtained from the climate 

models. Although the proposed modeling framework provides an important basis for the 

spatial downscaling of climate model outputs, the variability of precipitation areal 

reduction factors are not fully incorporated and explored in this study. These aspects will 

be further investigated in future work. 
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Figures 

(a) 

 
(b)       (c) 

 
Figure 1. (a) The cross-validated results and their 95% credible intervals (shaded region) of the 
Gamma parameters within a LOOCV assessment in August. The black-filled circles are the 
parameters estimated from observed precipitation, while the red-dotted lines represent the 
median values estimated from the predictive posterior distribution. The number on the X-axis 
represents the gauge code, summarized in the supplementary information. (b) Comparison of 
gamma parameters directly interpolated from the proposed model (blue-filled circles) and 
obtained from the interpolated precipitation field (red-filled circles). Both estimates are shown 
along the y-axis, while the x-axis refers to the local estimates, obtained from the gauged data. 
(c) Comparison of gamma distributions directly interpolated from the proposed model (blue 
line) and obtained from the interpolated precipitation field (red line), along with the observed 
gamma distributions obtained from the representative stations (i.e., ST. No 100 and 105) 
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Figure 2. Gamma parameters estimated from observed precipitation at weather stations (left 
panel) and gridded parameters (12.5kmൈ 12.5km) obtained from the Bayesian Kriging 
approach (median estimates from the predictive posterior distribution). The estimates refer to 
the period 1979 – 2005 
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Figure 3. (a) Comparison of semivariogram estimated from the directly interpolated gamma 
parameters via the Bayesian Kriging approach (red filled circle) and the baseline model based 
on interpolated daily rainfall (blue filled circle). The semivariogram obtained from the local 
estimates of the gamma parameters is shown as black-filled circles. The reference month is 
August. (b) Mean annual precipitation compiled from WRF (25kmൈ25km) without bias-
correction. (c) Spatially downscaled mean annual precipitation (12.5kmൈ12.5km) from WRF 
(25kmൈ25km) through the proposed Bayesian SD-QDM approach. Here, the historical and the 
future daily precipitation are simulated by WRF in the CORDEX-EA Phase 2 for 1979-2005 
(“Historical”) and 2006-2100 (“Future”) under the RCP 4.5 and 8.5 


