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Abstract13

Discontinuities in flood frequency curves, here referred to as step changes, hinder the es-14

timation of high return levels of streamflow. In this paper, we develop a robust and ob-15

jective methodology for the detection of step changes, and apply it to a large dataset of16

catchments in the USA and Germany. Given the statistical uncertainty of observed time17

series due to their limited sample size, we then assess the reliability of a PHysically-based18

Extreme Value (PHEV) distribution of river flows to identify catchments that might ex-19

perience a step change. Results show that PHEV is suitable for step changes detection,20

with a high correct detection rate especially in the autumn and summer seasons, whereas21

it tends to often show a step change not visible in the observations in spring and win-22

ter (seasons typically characterized by persistent flow regimes with reduced likelihood23

of exhibiting relatively large floods), for which we examine the possible reasons. By means24

of a controlled experiment we re-evaluate the step change detection method on true pos-25

itive cases (i.e., when both observations and PHEV display a step change) discarding the26

highest maxima. PHEV confirms its capability to detect a step change, as observed in27

the original flood frequency curve, even if the shortened one does not show it. These find-28

ings prove the reliability of PHEV for the identification of step changes, especially rel-29

evant in scarce data regions, and set the premises for a deeper investigation of physio-30

graphic and hydroclimatic attributes controlling the emergence of discontinuities in flood31

frequency curves.32

Plain Language Summary33

Estimation of rare and extreme floods is an on-going challenge and is crucial for34

many applications, for example the design of hydraulic structures, planning of mitiga-35

tion measures and the underwriting process in the insurance industry. In several cases36

flood frequency curves, a widely used tool representing the magnitude of flow maxima37

versus their average observed recurrence interval (named return period) display a dis-38

continuity, meaning that some high floods occur more frequently than expected. This39

feature is hard to estimate by analyzing observations only, since the uncertainty due to40

the limited length of their time series prevails. Here, we first identify discontinuities (step41

changes) in the observed flood frequency curves, and then leverage a parsimonious physically-42

based extreme value distribution (PHEV) for their detection. Being PHEV suitable for43

detecting the emergence of step changes, this analysis prepares the ground for a more44

in-depth investigation of the physical/climatic features that make some catchments more45

unpredictable than others.46

1 Introduction47

Despite the efforts of researchers for achieving more reliable estimation of rare floods,48

these events are still the primary natural disasters (Wallemacq & House, 2018). The eval-49

uation of their hazard is yet crucial for several applications, among which the design of50

hydraulic structures, risk planning and mitigation, or computation of premiums in the insur-51

ance industry. Floods come unexpectedly and the surprise element is often neglected when52

evaluating their risk and planning their management (B. Merz et al., 2015). Understanding53

the reasons that lead to their occurrence and timely identifying hazardous catchments is54

therefore a fundamental goal of flood research (e.g., B. Merz et al., 2010; Wing et al., 2018).55

In recent years, alternatives have been proposed to the standard flood frequency anal-56

ysis, i.e., the fitting of a distribution on streamflow maxima and its performance evaluation57

by means of goodness-of-fit tests, whose criticism dates back to Kleme (1993). Some studies58

proposed to consider flood peaks as the product of two random variables, namely the runoff59

coefficient and a characteristic rainfall, yet focusing on synthetic experiments (Gaume., 2006;60

Viglione et al., 2009). R. Merz and Blschl (2008a, 2008b) and Viglione et al. (2013) proposed61

to extend the traditional flood frequency analysis by a systematic expansion of information62
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beyond the flood sample, to fully capture the subtleties of the flood characteristics. Others63

attempt to provide a more accurate description of the processes underlying the emergence of64

extremes from either a statistical (Marani & Ignaccolo, 2015; Zorzetto et al., 2016; Miniussi65

et al., 2020) or physically-based with stochastic components (Botter et al., 2009; Basso,66

Schirmer, & Botter, 2016) viewpoint.67

Rogger et al. (2012) focused their analyses on sudden increments of the flood frequency68

curve, which they called step change. In fact, if step changes are not mere statistical arte-69

facts, caused for instance by the limited length of the available observational sample, they70

might be highly critical for the appraisal of flood hazard (Rogger et al., 2013). Rogger et71

al. (2012) first researched step changes in flood frequency curves conducting tailored field72

studies in two small (i.e., with area lower than 100 km2) alpine catchments with the aim73

of understanding the reasons behind their emergence. Leveraging detailed information col-74

lected from field surveys, they calibrated a distributed deterministic rainfall-runoff model75

and suggested that the step change occurs when a threshold of the storage capacity of the76

catchment is exceeded. Based on this preliminary work, Rogger et al. (2013) performed a77

synthetic experiment to quantitatively examine the effects of catchment storage thresholds78

on step changes in the flood frequency curve and analyzed the combined effect of multiple79

controls (among others, the temporal variability of antecedent soil storage and the size of80

the saturated regions) to investigate how they influence the return period of occurrence of81

the step change.82

From another perspective, Guo et al. (2014) linked the shape of the flood frequency curve83

with the aridity index (i.e., the ratio between mean annual potential evaporation and pre-84

cipitation, Budyko (1974)), showing that flood frequency curves characterized by increasing85

aridity index are steeper. Along this line, Metzger et al. (2020) showed that the tail of86

extreme value distributions in arid/semi-arid watersheds is heavier compared to the one de-87

scribing Mediterranean watersheds. Basso, Schirmer, and Botter (2016) instead explained88

different shapes of the flood frequency curve in terms of the persistency index (i.e., the ratio89

between mean catchment response time and runoff frequency, Botter et al. (2013)), and90

highlighted that the concavity of the flood frequency curve changes from downward to up-91

ward shifting from persistent to erratic regimes. Diverse shapes of the flood frequency curve92

were also linked to different flood-generating processes (R. Merz & Blschl, 2003; Berghuijs93

et al., 2014; Tarasova et al., 2020) or mixtures of flood event types (Hirschboeck, 1987;94

Villarini & Smith, 2010; Smith et al., 2018).95

Former research found some indications of the possible role played by varied drivers in96

determining the shape of flood frequency curves. However, a quantitative and robust (i.e.,97

tested in a large set of case studies) methodology to identify step changes, which encom-98

passes the critical interactions among hydrological processes in river basins, is still lacking.99

In search for a suitable approach to characterize these behaviors, we observe that purely100

statistical models, whose parameters are fitted on observed flood values, either tend to sig-101

nificantly underestimate rare events or provide estimates which remarkably vary with the102

available observational sample (e.g., Laio et al., 2010; Viglione et al., 2013). High dimen-103

sional hydrological models as well suffer from large uncertainty in the identification of their104

parameters due to the limited information available (Beven, 2006; Her et al., 2019; Seibert et105

al., 2019), questioning their reliability in understanding the processes underlying the occur-106

rence of extremes. Conversely, process-based stochastic models proved themselves powerful107

tools in water science for inferring behaviors of complex systems (e.g. Porporato (2021);108

Montanari and Koutsoyiannis (2014); McGrath et al. (2019); Bertassello et al. (2020)). By109

accounting for both the stochastic character of climate conditions and the internal catch-110

ment dynamics, such approaches might provide valuable insights for the identification of111

step changes of flood frequency curves.112

The relevance of our study is twofold: (i) we develop an objective robust methodology113

for the detection of step changes and evaluate their emergence across the US and Germany,114

in a large set of catchments with contrasting climatic and physiographic characteristics; (ii)115

we examine the reliability of a process-based stochastic framework for the estimation of116
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Figure 1. Select river basins (white filled circles) from the (A) MOPEX and (B) German

datasets. The background of the maps represents 30-years annual precipitation normals (1981-2010

for the US and 1991-2020 for Germany).

flood frequency curves to detect step changes and infer their occurrence.117

After describing the data analyzed, we briefly summarize the theoretical foundations of118

such a mechanistic-stochastic framework (i.e., the PHysically-based Extreme Value (PHEV)119

distribution of river flows) and explain the methodology for step changes identification. We120

then present and discuss our findings, and recapitulate main results and future developments121

in the conclusions.122

2 Data and Methodology123

2.1 Datasets124

We analyze daily streamflow time series from the Model Parameter Estimation Ex-125

periment (MOPEX) dataset (Duan et al., 2005; Schaake et al., 2006) and from Germany126

(Tarasova et al., 2018) at a seasonal scale, to account for the seasonality of rainfall and127

runoff (Allamano et al., 2011; Baratti et al., 2012). In order to comply with the physical128

assumptions underlying PHEV, we consider only catchments with low human impact and129

weak or absent inter-seasonal snow dynamics (Botter et al., 2013; Wang & Hejazi, 2011).130

Hydrograph recession properties should as well not consistently vary with the peak flow131

(Basso et al., 2015). A fairly accurate estimation of the flood frequency curve by PHEV is a132

precondition to investigate if it is able to correctly identify the occurrence of step changes,133

and for understanding their possible relation with catchment properties embedded in PHEV.134

We will thus limit our analysis to cases in which the root mean square error between the135

whole predicted and observed flood frequency curve is limited (lower than 0.3), aiming to136

minimize step changes missclassifications due to error noise.137

The gauges remaining after this cascade selection process are shown in Figure 1.138

2.2 The PHysically-based Extreme Value (PHEV) distribution of river flows139

PHEV is a parsimonious mechanistic-stochastic formulation of flood frequency curves140

that stems from a rigorous mathematical description of catchment-scale daily soil moisture141

and streamflow dynamics in river basins (Laio et al., 2001; Porporato et al., 2004; Botter142

et al., 2007). In this framework, precipitation is represented as a marked-Poisson process143

with frequency λP [T−1] and exponentially-distributed depths with average value α [L].144

Soil moisture decreases due to evapotranspiration and is replenished by precipitation events145

that eventually trigger runoff pulses when an upper wetness threshold is crossed. These146

pulses, which feed water to a hydrologic storage, are also a Poisson process with frequency147

λP [T−1] and an exponential distribution of magnitudes with mean α [L]. A non-linear (i.e.,148
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power-law) storage-discharge relation epitomizes the hydrological response of the catchment149

and encompasses the joint effect of different flow components (Brutsaert & Nieber, 1977;150

Basso et al., 2015).151

The above-summarized mechanistic-stochastic description of runoff generation pro-152

cesses allows for expressing the probability distributions of daily flows (Botter et al., 2009),153

peak flows and flow maxima (Basso, Schirmer, & Botter, 2016) as a function of a few physi-154

cally meaningful parameters. In particular, the PHysically-based Extreme Value distribution155

of river flows reads:156

pM (q) = λτ exp(−λτDj(q)) pj(q) (1)

where τ [T] is the duration in days of the time frame chosen for the analyses (e.g., a season);157

pj(q) is the probability distribution of peak flows, pj(q) = Cq1−a exp( λq1−a

K(1−a) −
q2−a

αK(2−a) );158

Dj(q) =
∫∞
q
pj(q) dq is the exceedance cumulative probability of peak flows; α and λ are the159

aforementioned parameters describing Poisson-distributed effective rainfall events, a and K160

are the parameters of the power-law storage-discharge relation, and C is a normalization161

constant.162

2.2.1 Parameter Estimation163

The four parameters of PHEV (α, λ, a, K) are rather straightforward to estimate at164

the catchment scale. They are indeed directly derived from the observed time series of165

precipitation and streamflow: α is computed as the average rainfall depth during events,166

while λ (frequency of streamflow-producing rainfall) as the ratio between α and the long167

term average streamflow < q > (Botter et al., 2007). The parameters of the power-law168

storage-discharge relation (i.e., the recession exponent a and coefficient K) are estimated169

through hydrograph recession analysis (Brutsaert & Nieber, 1977) following the approach170

proposed by Biswal and Marani (2010), who noted that dQ/dt vs Q curves in a log-log plot171

can show signicant deviations from one another within the same catchment. Finally, the172

recession coefficient is not directly used as input in Eq. (1), but it is replaced by its maximum173

likelihood estimation on the observed seasonal flood frequency curve (Basso, Schirmer, &174

Botter, 2016). Therefore, although being a 4-parameter distribution, PHEV requires the175

actual calibration of one parameter only. Further details concerning parameter estimation176

methods are available in Basso, Schirmer, and Botter (2016) and Dralle et al. (2017).177

2.3 Step Change Identification178

Following Rogger et al. (2013), a step change is here defined as the sharpest bend of179

the flood frequency curve. We thus propose a methodology dedicated to its identification180

from both empirical estimates of the flood frequency curve obtained by means of Weibull181

plotting position and the analytical model. Some modifications are yet needed when ap-182

plying it to the observations, in order to deal with the noise affecting the computation of183

derivatives when only a discrete and rather sparse set of observations is available. The result-184

ing approach can be therefore further employed without depending on subjective evaluation.185

186

1. The curvature of the flood frequency curve, of which we show an example in Figure187

2, is computed as logTr′′/(1 + logTr′2)(3/2) (where the apex indicates the derivation188

operation with respect to q) for both the observations and PHEV. In the former case,189

we use the method developed by Jianchun et al. (1994) for computing derivatives in190

non-equally spaced points, while for PHEV we employ the Python routine from the191

Scipy library (misc.derivative), which uses a central difference formula with spacing192

dx to compute the nth derivative at a specified point.193

2. As the noise associated to computing the curvature on a non smooth set of points194

(seasonal maxima) might lead to identification errors, a filter is applied on the curva-195

ture calculated from observations: only points on the right-hand side of the last value196
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of the curvature exceeding the range ±σ (where σ indicates the standard deviation197

of the curvature itself), are considered (Figure 2c);198

3. The Mann-Whitney U-test (Mann & Whitney, 1947) is applied on the values of the199

first derivatives on the left and right-hand sides of each potential step change identified200

at point 2 to check if their distributions are statistically different at a significant level201

α equals to 0.05 (in other words, if the slope of the curve significantly differs between202

the left and right-hand side of the step change); the effect size is then computed by203

means of the Cohen’s d (Cohen, 1974) to evaluate if the magnitude of the difference204

is relevant (Sullivan & Feinn, 2012). For PHEV, this step is performed on a dense205

set of values, equally spaced with an interval ∆q = 0.05 up to a value of normalized206

streamflow equal to 200, i.e., 200 times the long-term average streamflow.207

4. We finally select the point for which the p-value of the Mann-Whitney test is the208

lowest, provided that the Cohen’s d is greater than 0.4 (small to medium effect size,209

according to Cohen (1974)).210

Figure 2 visually exemplifies the application of the developed approach for step changes de-211

tection to the flood frequency curve of the Rott river at Kinning, Bavaria (ID: 18801005), in212

the summer season. In Figure 2a the flood frequency curve is represented with switched axes213

(i.e., the logarithm of the return period is represented on the y-axis whereas the normalized214

seasonal maxima on the x-axis), as streamflow is the independent variable in Eq. (1). The215

red square in Figure 2a-d represents the selected step change, i.e., the one associated to the216

lowest p-value of the Mann-Whitney U-test applied to the distributions of the first deriva-217

tives (Figure 2b) and fulfilling the additional criterion on the Cohen’s d value, which must218

be greater than 0.4. We also show the points that could be considered as potential step219

changes (i.e., all the points with a Mann-Whitney p-value lower than 0.05, orange squares220

in Figure 2a). It is though important to stress that here we are most interested in the221

presence/absence of a step change, rather than in its exact position.222

3 Results and Discussion223

We apply the methodology for the identification of step changes introduced in the pre-224

vious section to each observed and analytic seasonal flood frequency curve, thus allowing for225

the evaluation of the step change detection rate of PHEV with respect to the observations226

(Figure 3). The bar plots in Figure 3 show the percentage of case studies for which a step227

change is identified from both PHEV and the observational records (true positives, dark228

green color), the fraction of cases which display a step change neither in the empirical nor in229

the analytic flood frequency curves (true negatives, light green), those where a step change230

is detected from the observations but not from the analytical model (false negatives, red),231

and those where the analytical model has foreseen the occurrence of a step change which is232

not confirmed by the available observations (false positives, orange).233

The bar plots in Figure 3a and 3b differ for the criteria applied in the step changes identi-234

fication methodology. In Figure 3a only the controls on the p-value of the Mann-Whitney235

U-test mentioned in Section 2.3 are considered, whereas the additional requirement on the236

effect size is as well used in Figure 3b. True positives (dark green) prevail in the summer237

and autumn seasons of Figure 3a, amounting to about 70% and 60% of the cases. False238

positives constitute instead a sizable share of the cases in spring and winter. When more239

stringent requirements for the identification of step changes are used, by accounting for the240

additional criterion on the effect size, the percentage of true positives decreases (Figure 3b,241

dark green). A few cases of those shifting category become true negatives, indicating that242

the slope of the flood frequency curve does not substantially increases on the right-hand side243

of the potential step change (although its change is statistically significant), thus not rep-244

resenting a noteworthy hazard. Most of them however become false positives (orange color245

in Figure 3b), as PHEV confirms the existence of a step change thanks to its evaluation in246

an arbitrary and not limited number of points. Conversely, the limited lengths of the data247

records prevent us from identifying statistically robust substantial changes of the slope of248
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Figure 2. Exemplary application of the proposed methodology to detect step changes to the

Rott river at Kinning, Bavaria (ID: 18801005), in the summer season. a) Visualization of how the

approach is actually applied, i.e., expressing the logarithm of the return period as a function of the

normalized seasonal maxima (gray filled circles). Potential step changes (i.e., all the points with a

p-value of the Mann-Whitney test lower than 0.05) are represented by orange squares, while the

selected one (i.e., the one exhibiting the minimum p-value of the Mann-Whitney test and Cohen’s

d greater than 0.4) is depicted with a red square. b) First derivative computed on observations.

c) Curvature computed on observations, with the shaded area representing twice its standard de-

viation. d) Standard representation of the flood frequency curve, namely observed maxima as a

function of the logarithmic value of the return period (gray filled circles). The red square indi-

cates the selected step change, while the orange shaded area represents the range variability of the

potential step changes.
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Figure 3. Performance of the PHysically-based Extreme Value (PHEV) distribution of river

flows in the detection of step changes when only the controls on the Mann-Whitney U-test are

applied (see Section 2.3, panel a) and when both the Mann-Whitney U-test and the Cohen’s d are

considered (panel b). True positives (dark green color) and true negatives (light green) indicate

coherence between PHEV and observations, i.e., step changes are either detected or not from both

PHEV and the observed records. These constitute a large number of cases in summer and autumn.

False positives (orange) and false negatives (red) represent the cases in which either PHEV detects

a step change that was not identified by the observations (in the majority of the remaining cases)

or the observations display a step change which is not detected by PHEV (only one case). The

reasons for the presence of false positives are further investigated in the study and clarified in the

text and figures.

the flood frequency curves from plain observations. Consistent results are also found when249

considering different significant levels for the Mann-Whitney test: the strictest the level the250

highest the share of cases shifting between true and false positives, which once again points251

to the unfeasibility of detecting step changes with confidence from plain observations.252

The existence of both true positives and true negatives emphasizes the capability of PHEV253

to mimic varied observed shapes of flood frequency curves (Basso, Schirmer, & Botter, 2016)254

and to identify both the presence and the absence of a step change. One single false nega-255

tive (i.e., a case where a step change is detected from observations but not foreseen by the256

model, red color in Figure 3b) occurs in the entire dataset. Whereas either PHEV limita-257

tions or statistical uncertainty intrinsic to relatively short data samples might cause such an258

occurrence, the existence of only one such case further confirms the remarkable capabilities259

of PHEV to spot the occurrence of step changes, especially when these are also detected in260

the available observations.261

The predominance of false positives in spring and winter (orange color in Figure 3) calls262

for further investigation of their causes. Our hypothesis is that PHEV, by leveraging the263

embedded mechanistic description of hydro-climatic dynamics taking place in watersheds264

and the information gained from analyzing daily rainfall and streamflow series, might indi-265

cate the possible emergence of step changes that are not yet displayed by the observed flood266

frequency curves. In fact, these empirical estimates are likely affected by small sizes of the267

samples of large events (i.e., those on the right-hand side of each potential step change, see268

Figure 2a) and by the specific character of catchments, which may have a more or less en-269

hanced propensity to exhibit extreme floods and thus display them in a limited data record.270

To test this hypothesis, we perform the following experiment. We consider the set of true271

positives (i.e., the 27 cases for which both PHEV as well as the observed flood frequency272

curve show a step change) and retain only maxima with return periods below 5 years (see an273

explanatory example in Figure 4a, where the maxima retained are represented by gray filled274

–8–



manuscript submitted to Water Resources Research

circles with blue contours). In so doing, we approximately discard in each case the largest275

ten points and their corresponding years of occurrence. Thereby, fictitious flood frequency276

curves only comprising maxima with smaller magnitudes (and return periods) are created,277

thus reproducing the conditions we hypothesized as possible reasons of the emergence of278

false positives. We then apply the usual methodology for identifying step changes on these279

fictitious flood frequency curves and the corresponding shortened data records.280

PHEV detects a true step change (i.e., true positives) in 100% of the cases even when the281

largest points are removed, whereas the observations only in 37%. The maps in Figure 4b282

and 4c summarize this result: half circles are colored either in green, if a step change is283

successfully detected from the shortened flood frequency curve, or in red in the opposite284

case. The left half of the circle depicts the detection capability of PHEV, while the right285

side the results obtained from the observations. It can be easily seen that all left halves of286

the circles are colored in green and most of the right ones are instead red, thus indicating a287

100% success rate of PHEV and a significantly lower success rate of observations in inferring288

the emergence of step changes from shortened records. A similar result is obtained when289

discarding maxima with return period greater than 10 years (i.e., discarding about five-six290

points instead of the highest ten). Only when retaining but the very left part of the flood291

frequency curve (return periods lower than 2 years) PHEV detection rate decreases. Also292

in this case, however, PHEV notably detects a discontinuity in 60% of the cases.293

The outcome of this experiment strongly suggests that the detected false positives (orange294

color in Figure 3) indeed arise because of the statistical uncertainty of limited data records295

and the capability of PHEV to infer the occurrence of step changes rather than by its in-296

ability to correctly identify inflection points which were detected (or not) in the observed297

flood frequency curves.298

A physical explanation of the reason why some observational series might not exhibit299

a step change, although this is expected according to PHEV estimates, is provided by300

considering typical streamflow dynamics occurring for distinct river flow regimes, here char-301

acterized by means of the persistency index ϕ (Botter et al., 2013). This index classifies302

hydrologic regimes into erratic (ϕ < 1) and persistent (ϕ > 1). An erratic regime, which303

is commonly found during dry seasons, very hot humid seasons with intense evapotranspi-304

ration or in fast responding catchments, is characterized by periods between the arrival of305

runoff-producing rainfall events which are longer than the typical duration of flow pulses.306

Conversely a persistent regime, typically occurring in cold-humid seasons and lowland catch-307

ments, is characterized by frequent rainfall events and a rather constant water supply to the308

catchment. In terms of flow dynamics, the behaviors of these different flow regimes can be309

explained as follows: when streamflow values weakly oscillate around their mean (persistent310

regimes), the probability of occurrence of relatively large flows is very low, and extreme311

events are unlikely to be captured by short time series. On the contrary, erratic regimes312

are composed of a sequence of high flows interspersed in between prolonged periods of low313

flows. Events which are several times (i.e., order of magnitudes) higher than the average314

flow are thus more likely to occur in these regimes (Basso, Frascati, et al., 2016). In the315

context of this study, false positives shall does mostly occur for persistent regimes, as such316

large events allowing for the detection of step changes from empirical flood frequency curves317

are less likely to have been observed during the available data record.318

In Figure 5 we compare the cumulative distributions of the persistency index for the sets of319

true positives (dark green) and false positives (orange). Clearly, the distributions differ and320

false positives mostly occur for persistent regimes. This qualitative evaluation is verified by321

applying the 2-sample Kolmogorov-Smirnoff test, which evaluates if two samples come from322

the same distribution (null-hypothesis): in this case we can reject the null-hypothesis at the323

0.01 significance level, meaning that the two samples are drawn from different distributions324

and false positives are significantly more likely to occur for persistent regimes, according325

to the physical explanation provided above. Remarkably, the seasons characterized by the326

larger portion of false positives are spring and winter, during which regimes tend to be more327

persistent thanks to a fairly constant water supply.328
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Figure 4. Visual explanation and results of the experiment we perform to test the hypothesis

on the emergence of false positives. a) Gray dots with black (blue) contour represent the complete

(shortened, until a return period of 5 years) observed seasonal maxima series of the Tug Fork

river near Kermit, WV (USGS ID: 03214000), in the autumn season. The solid black (blue) line

displays the analytic flood frequency curve (i.e., PHEV) whose parameters are estimated from the

complete (shortened) time series. The red (yellow) square indicates the step change detected from

the observations (by PHEV) using the complete series, while the corresponding crosses (the red

one is not visible in the plot as it overlaps the red square) represent the observed and analytic

step changes detected on the shortened flood frequency curve. b-c) Locations of the true positives

in the US (panel b) and Germany (panel c). The left (right) half of the circles represent PHEV

(observations) ability to detect a step change when the shortened flood frequency curves (i.e.,

maxima characterized by return period below 5 years) are used. The green (red) colored halves

indicate successful (failing) detection. Remarkably, all the left halves are green (PHEV always

detects true step changes, i.e., true positives, even from the shortened series), whereas most of the

right ones are red (step changes are not always identified from observations when the shortened

records are used).
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Figure 5. Empirical cumulative distribution functions of the persistency index values dividing

the case studies into true positives (dark green) and false positives (orange). The distributions are

significantly different in a statistical sense (the p-value of the 2-samples Kolmogorov-Smirnoff test

is lower than 0.01.)

4 Concluding Remarks329

In this work we examine the occurrence of sharp uprises in flood frequency curves330

(termed step changes), which are pivotal for a correct estimation of river flood hazard. We331

develop a robust and objective methodology to identify them from observational records, and332

employ a parsimonious PHysically-based Extreme Value distribution of river flows (PHEV)333

to evaluate its capability to reliably detect step changes, thus providing an agile methodol-334

ogy for their identification.335

Results show that PHEV is able to recognize the presence/absence of step changes with336

good coherence in a large set of case studies from the US and Germany. Possible reasons337

for the occurrence of a sizeable number of false positives are investigated by accounting338

for both the statistical uncertainty of relatively short observational records and the typical339

hydro-climatic variability of different river basins, which affects the information content of340

these limited data series.341

To this end, we perform a controlled experiment in which we remove the highest flow max-342

ima in the flood frequency curves of the true positive cases and repeat the step change343

detection analysis on the shorter series, showing that PHEV can foresee the emergence of344

step changes even if the shortened observations do not display it. The result supports claims345

of the dependability of step changes initially classified as false positives.346

An investigation of the intrinsic dynamics of streamflows in the set of true and false posi-347

tives further elucidates the issue. The majority of cases for which false positives are detected348

feature markedly persistent regimes that, by their nature, rarely exhibit large extreme flow349

values. The limited length of the available observed time series might be thus constraining350

the possibility to observe expected step changes, analogously to what occurs when we arti-351

ficially reduce the size of the observational sample.352

The present analysis, thoroughly performed on a wide set of catchments characterized by353

different hydroclimatic features, reveals PHEV as a reliable tool to identify and foresee the354

occurrence of step changes and consequently to unveil the propensity of rivers to large floods,355

with great relevance especially in data scarce conditions. The study lays the foundations for356

a better comprehension of climate and landscape controls on the emergence of step changes357

in flood frequency curves, which is the subject of current work.358
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