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Introduction

Text S1. CESM2 Large Ensemble. The Community Earth System Model version

2 Large Ensemble (CESM2-LE) is a project which contains data from 100 total ensem-

ble members using CESM2 with historical forcing from 1850 to 2014 and future SSP3-

7.0 (a medium-to-high emissions scenario) forcing from 2015 to 2100 (Rodgers et al.,

2021; O’Neill et al., 2016). 50 ensemble members (of the total 100) were forced with the

biomass burning (BB) emissions prescribed for CMIP6 historical and SSP3-7.0 scenario

simulations. The other 50 ensemble members were forced with temporally smoothed BB

emissions during the late historical and early future projection periods, achieved with an

11-year running mean filter from 1990 to 2020. This smoothing reduces temporal variabil-

ity in this ensemble set, but nearly preserves total emissions compared to the ensemble
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set containing the higher BB emissions variability (Rodgers et al., 2021). Each of the 100

ensemble members were simulated using a fully coupled configuration of CESM2 which is

comprised of the Community Atmosphere Model version 6 (CAM6; Danabasoglu et al.,

2020), Parallel Ocean Program version 2 (POP2; Smith et al., 2010), Los Alamos Sea Ice

Model version 5.1.2 (CICE5; Hunke et al., 2015), and Community Land Model version 5

(CLM5; Lawrence et al., 2019). Aerosols were simulated using the four-mode version of

the Modal Aerosol Module (MAM4; Liu et al., 2016). Each component was configured at

a nominal 1◦ spatial resolution (Rodgers et al., 2021). Each individual ensemble member

was initialized using a combination of micro perturbations to the temperature field and

macro perturbations based on different phases of the Atlantic Meridional Overturning

Circulation strength (Rodgers et al., 2021). We evaluate the impact of BB emissions

variability (Figures 1 and 4) as the difference between the ensemble mean of the high BB

emissions variability members and of the low BB emissions variability members, unless

otherwise specified.

Text S2. Forcing Calculation. We approximate the effective radiative forcing (ERF)

by running simulations in CESM2 with fixed sea surface temperatures (SSTs). By holding

SSTs constant, we remove most climate feedbacks by preventing the surface temperature

from changing (Hansen et al., 2005; Forster et al., 2021). The land surface, however,

is still active in our simulations, and thus able to change temperature in the presence

of a forcing. We adjust our ERF approximation for changes in land temperature by

approximating the Planck feedback due to this land temperature change using a radiative

kernel, as recommended by Forster et al. (2021). We use the land radiative kernel provided
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by Pendergrass, Conley, and Vitt (n.d.). We thus use the following to calculate the ERF:

ERF = ∆FfSST − k∆Tland (1)

Where ∆FfSST is the change in net radiation flux at the top of atmosphere, k is the land

radiation kernel, and ∆Tland is the change in land surface temperature. Differences are

taken as the difference between high BB emissions variability scenarios (i.e., Real-Var and

Pulse-Var) and the zero interannual variability baseline (Zero-Var).

Text S3. Aquaplanet Simulations. To evaluate if the observed response in clouds to

changes in BB emissions variability is the result of land surface feedbacks, we simulate the

Real-Var and Zero-Var scenarios using an aquaplanet configuration with CESM2. The

aquaplanet simulations have no topography, land, or sea ice (i.e., are entirely covered by

oceans), but otherwise use the same boundary conditions as our idealized fixed-SST sim-

ulations (see Section 2). Additionally, SSTs are prescribed to vary only with latitude and

the orbital parameters are set to perpetual equinox conditions (Neale & Hoskins, 2000).

Text S4. Idealized Aerosol-CRE Response. Figure 5 shows how the nonlinearity

in the aerosol-CRE relationship results in a weakening of the magnitude (less negative)

of CRE when there is greater aerosol emissions variability. Panel (a) in Figure 5 shows

probability density functions (PDF) of aerosol concentrations that are representative of

the Zero-Var (black) and Real-Var (green). The idealized aerosol PDFs are determined by

fitting normal and log-normal distributions to the June–September (JJAS) mean aerosol

concentrations averaged from Zero-Var and Real-Var simulations, respectively, averaged

over 50–70◦N. Panel (b) shows idealized CRE responses to aerosol concentration. The
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solid purple line shows a realistic nonlinear aerosol-CRE response, determined by fitting

a logarithmic curve to the JJAS 50–70◦N mean CRE responses to aerosol concentrations

from all experiments used in this study (and shown in Figure 4, except the CESM2-LE).

The nonlinear aerosol-CRE response is represented by the following equation (where a, b,

c are fit constants):

CRE = a · ln (Aer + b) + c (2)

The dashed purple lines shows a theoretical linear aerosol-CRE response, representative

of an assumption that emissions variability has no effect on the time-averaged CRE re-

sponse. The linear aerosol-CRE response is determined by fitting a linear curve to the

JJAS 50–70◦N mean CRE responses to aerosol concentrations from the Real-Var. The

nonlinear aerosol-CRE response is represented by the following equation (where d, e are

fit constants):

CRE = d · Aer + e (3)

Panel (c) shows the resulting CRE PDFs from the normal and log-normal aerosol concen-

tration PDFs. Solid (dashed) CRE PDFs show the transformation due to the nonlinear

(linear) aerosol-CRE responses. Nonlinear CRE PDF transformations were performed by:

PDFCRE = |Aer + b

a
| · PDFAer (4)

Linear CRE PDF transformations were performed by:

PDFCRE = |1
a
| · PDFAer (5)

Panel (d) shows a time series of aerosol concentrations comprised of 100 randomly selected

years from the normal and log-normal aerosol concentration PDFs (black and green lines,
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respectively). Panel (e) shows the corresponding CRE responses to the aerosol concen-

trations in panel (d). Solid (dashed) lines in panel (e) represent the response due to the

nonlinear (linear) aerosol-CRE curves shown in panel (b).

Text S5. CMIP6-AMIP Data. We use Coupled Model Intercomparison Project Phase

6 (CMIP6) Atmospheric Model Intercomparison Project (AMIP) historical simulations to

evaluate whether characteristic aerosol-cloud interaction nonlinearities can be found in

other Earth System Models (ESMs; Figure S7). We use all data available at the time of

writing to compute the cloud radiative effect. The models (number of ensemble mem-

bers) used are as follows: ACCESS-ESM1-5 (1), BCC-CSM2-MR (1), BCC-ESM1 (1),

CAMS-CSM1-0 (3), CanESM5 (7), CESM2 (2), CESM2-FV2 (1), CESM2-WACCM (3),

CESM2-WACCM-FV2 (1), CNRM-CM6-1 (1), CNRM-CM6-1-HR (1), CNRM-ESM2-1

(1), E3SM-1-0 (2), EC-Earth3-Veg (1), FGOALS-f3-L (3), GFDL-AM4 (1), GFDL-CM4

(1), GISS-E2-1-G (15), GISS-E2-2-G (1), HadGEM3-GC31-LL (5), HadGEM3-GC31-MM

(2), INM-CM4-8 (1), INM-CM5-0 (1), IPSL-CM6A-LR (11), KACE-1-0-G (1), MIROC6

(10), MPI-ESM1-2-HR (1), MRI-ESM2-0 (3), NESM3 (5), NorCPM1 (1), NorESM2-LM

(1), SAM0-UNICON (1), UKESM1-0-LL (2). Results are evaluated by pooling all ensem-

ble members together. Cloud radiative effects simulated by each CMIP6-AMIP model are

evaluated against the the CMIP6 prescribed BB emissions(van Marle et al., 2017).

Text S6. Evaluating Statistically-Robust Evidence of Emissions-CRE Nonlin-

earity. We categorize the response of cloud radiative effect (CRE) to biomass burning

(BB) emissions to have statistically-robust evidence of the expected nonlinear response
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(based on CESM2 results; see Figure 4b; and past observational evidence (Twomey, 1977;

Rissman et al., 2004; Reutter et al., 2009; Bougiatioti et al., 2016; Kacarab et al., 2020))

if the following criteria are met: (1) if the P-value of both (low and high BB emissions

value) regression slopes are less than 0.1; (2) if the P-value of the difference in slopes is

less than 0.1; (3) if both slopes values are negative; (4) if the slope of the regression over

low BB emissions values is more negative than the slope of the regression over high BB

emissions values.

Text S7. Evaluating Spatial Statistical Significance. We use a Welch’s t-test

to assess the the statistical significance of differences at spatial scales (i.e., grid point;

shown in figures as stippling). We additionally limit significance determinations for false

discoveries (Wilks, 2016). We use an αFDR of 0.20 to approximate a global significance

level of 0.1.
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Figure S1. Variability of biomass burning (BB) emissions prescribed in each ide-

alized experiment. Shown is the standard deviation of BB emissions (in 1012 particles m−2)

in the Real-Var (a and b) and Pulse-Var (c and d) experiments for annual (a and c) and June–

September (JJAS; b and d) means.
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Figure S2. Change in annual effective radiative forcing due to biomass burning

emissions variability (∆ERFBBVar). Panel (a) shows the absolute ERF due to BB emissions

in the Zero-Var experiment (relative to no BB emissions). ∆ERFBBVar is shown for the Real-

Var (Panel (b)) and Pulse-Var (Panel (c)) experiments. ∆ERFBBVar is defined as the variability

experiments minus the Zero-Var experiment. The left (right) column shows the annual (June–

September; JJAS) mean change. Stippling signifies 90% confidence (see Text S7).
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Figure S3. Annual mean change in cloud properties due to biomass burning (BB)

emissions variability. Annual mean change in cloud droplet number concentration (CDNC;

in 109 m−2; (a) and (b)) and cloud radiative effect (CRE; in W m−2; (c) and (d)) due to BB

emissions variability in the Real-Var (left column) and Pulse-Var (right column) experiments.

Changes due to BB emissions variability are defined as the variability experiments minus the

Zero-Var experiment. Stippling signifies 90% confidence (see Text S7).
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Figure S4. Change in cloud amount due to biomass burning (BB) emissions vari-

ability. June–September (JJAS) mean change in liquid water path (LWP; in 10−2 kg m−2;

(a) and (b)) and fraction ((c) and (d)) due to BB emissions variability in the Real-Var (a) and

Pulse-Var (b) experiments. Changes due to BB emissions variability are defined as the variability

experiments minus the Zero-Var experiment. Stippling signifies 90% confidence (see Text S7).
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Figure S5. Change in clear-sky top of atmosphere net radiative flux (RTOA,clear) and

surface albedo due to biomass burning (BB) emissions variability. As in Figure S4 but

for RTOA,clear (in W m−2; (a) and (b)) and surface albedo ((c) and (d)).
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Figure S6. Change in cloud properties due to biomass burning (BB) emissions

variability in aquaplanet simulations. June–September (JJAS) mean change in cloud droplet

number concentration (CDNC; in 109 m−2; (a)) radiative effect (CRE; in W m−2; (c)) due to BB

emissions variability in the Real-Var experiment in an aquaplanet simulation. Changes due to BB

emissions variability are defined as the variability experiments minus the Zero-Var experiment.

Stippling signifies 90% confidence (see Text S7).
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Figure S7. Cloud radiative effect (CRE) response at varying biomass burning (BB)

emissions averaged in CMIP6-AMIP models. Shown is the CRE response to varying BB

emissions (shown as dry matter (DM) emissions) averaged from 50–70◦N from data submitted to

the CMIP6-AMIP historical simulations from 1997–2014. The number of ensemble members used

for each model are shown in parentheses. See Text S5 for further information on data sources.

CRE anomalies are relative to the monthly mean values. Black lines show linear regressions of

the 80% most clean and polluted aerosol concentrations. Pslope (clean and polluted) refer to to

the P-value of whether the slope is significant from zero for the clean and polluted regressions,

respectively. Pslope (difference) refers to the P-value of whether the clean and polluted slopes are

significantly different from each other. P-values highlight in blue (red) are (are not) significant

to 90% confidence. January 5, 2023, 1:17am


